The present invention relates to a battery having a controller and an additional interface, to a motor vehicle having a battery according to the invention, to an analysis connector for a battery according to the invention and to a method for monitoring a battery.
It is becoming apparent that in future there will be increased use of new battery systems both for static applications (e.g. in the case of wind power installations) and in vehicles such as hybrid and electric vehicles, said battery systems being subject to very great demands in terms of reliability. The background to these great demands is that failure of the battery can lead to failure of the overall system or even to a safety-related problem. In wind power installations, for example, batteries are used to protect the installation against inadmissible operating states in a high wind by virtue of rotor blade adjustment.
In order to ensure this protection, batteries usually comprise a controller that is able to monitor operating data for the battery and to reliably control the operation of the battery. The controller can be used to communicate via a data line in order to request relevant state data for the battery. In addition, this controller can be used to connect the internal high voltage of the battery to the outer connections in order to draw energy from the battery.
By way of example, laid-open specification DE 10 2009 046 564 A1 discloses a battery controller architecture according to which a controller comprises a microcontroller and a nanocontroller that are connected to monitoring units on the individual battery cells by means of a communication bus and are thereby able to detect and monitor various properties of the battery or of individual battery cells, for example temperature and state of charge.
A disadvantage of the prior art is that communication is possible exclusively via the integrated controller and there is no longer access to the battery in the event of failure of the often extremely complex controller, which means that it becomes impossible to read operating data for the battery and/or to discharge the battery in the event of a critical state occurring. This frequently results in damaged batteries needing to be disposed of with a high level of involvement and cost.
The invention provides a battery having a controller, which battery comprises an interface that is designed to allow measurement of battery properties and/or discharge of the battery when the controller has failed. As a result of the battery comprising an additional interface, redundant access to elementary data and functions of the battery is made possible. The interface can be used for measurement access to the inside of the battery, even when the controller of the battery has failed. This allows insights about the state of the battery to be obtained, which can be used to plan suitable further handling of the battery, for example opening and/or repair.
The battery may preferably be a lithium ion battery. Preferably, the interface is designed to allow measurement of at least one temperature inside the battery when the controller has failed. By way of example, relevant temperature sensors can be tapped that would indicate critical temperatures inside the battery.
Preferably, the interface is designed to allow measurement of a battery voltage when the controller has failed. In one preferred embodiment, the battery also comprises a multiplicity of battery cells and/or a multiplicity of battery modules. Preferably, the interface is designed to allow measurement of the voltage of at least one battery cell and/or of at least one battery module when the controller has failed. By way of example, the pack voltage or particular elemental voltages can be tapped off. From this it is possible to identify the state of charge or increased self-discharge of the battery. Furthermore, it is therefore possible to use this line to slowly discharge the battery and hence to minimize its hazard potential.
Preferably, the battery also comprises at least one measurement circuit for at least one battery cell and/or at least one battery module and also a communication bus for communication between the controller and the at least one measurement circuit, wherein the interface is designed to allow access to the communication bus when the controller has failed. Preferably, the interface is designed to allow discharge of the battery when the controller has failed.
In a further preferred embodiment, the battery comprises a maintenance connector. The interface can advantageously be arranged in the region of the maintenance connector, since the latter is generally positioned at easily accessible locations in the vehicle in order to allow interruption of the circuit between the individual modules of the battery.
Preferably, the maintenance connector can be replaced by an analysis connector. Such an analysis connector could be interchanged with the normal connector in the workshop, for example, and could then allow the access described above.
The maintenance connector and/or the analysis connector may comprise a voltage indicator that is designed to indicate whether the state of charge of the battery is critical when the controller has failed. In addition, the maintenance connector and/or the analysis connector may comprise a warning indicator that is designed to indicate whether the temperature of the battery has increased when the controller has failed. For this purpose, the connector could be connected to temperature sensors inside the battery. The maintenance connector and/or the analysis connector may also comprise a discharge resistor. The discharge resistor could be activated using suitable resources when needed and therefore allows a damaged battery to be discharged in situ.
The advantage of such monitoring that is simple but difficult to destroy is that it is still possible to obtain some basic information about the battery state even when the battery has damage that results in failure of the battery controller and hence normal communication with the battery.
Furthermore, the invention provides a motor vehicle, particularly an electric motor vehicle, that comprises a battery according to the invention. The invention also provides an analysis connector that is designed to replace the maintenance connector of a battery according to the invention. Furthermore, a method for monitoring a battery is provided, in which an interface is used to allow measurement of battery properties and/or discharge of the battery when the controller has failed.
An exemplary embodiment of the invention is explained in more detail with the aid of the drawing and the description below. In the drawing:
Number | Date | Country | Kind |
---|---|---|---|
10 2011 084 689.1 | Oct 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/067751 | 9/12/2012 | WO | 00 | 8/6/2014 |