This invention relates to a system for electrically isolating a plurality of batteries in a vehicle electrical system to control charge and discharge of each battery. In particular, the present invention controls preferential charging of batteries and impedes discharged batteries from draining energy from charged batteries.
More than one battery may be installed in some vehicles, such as recreational vehicles and trucks, the batteries being connected to a common charging source such as an alternator. A first battery is typically reserved for starting the engine of the vehicle, while the second is for bulk energy storage, e.g., static power used to operate accessories when the primary energy source is not available, such as when the vehicle engine (the prime mover) is off. In such electrical systems the highest priority is to charge the engine-starting battery or batteries, since the engine is necessary to operate the vehicle. In multiple-battery systems, if a fully charged battery is connected directly to a discharged battery, the voltage in the charged battery will cause current to flow from the charged battery into the discharged battery until the current drawn from both batteries reaches equilibrium. As a result, the engine-starting battery can become discharged and unable to start the engine, leaving the vehicle disabled. Others have attempted to prevent this condition by electrically isolating the starting battery from the bulk storage battery. In addition, the batteries may be of different types, such as a flooded lead acid battery for the cranking battery and an AGM battery for the bulk storage battery. These batteries have differing charge requirements, making it beneficial to be able to independently control the charge voltage for each battery. There are two primary types of battery isolators, known in the art as diode isolators and contactor isolators.
Diode isolators have significant drawbacks. A first drawback is loss of efficiency due to heat generated by the diodes as a result of the charging current flowing through them. The heat losses reduce the efficiency of the electrical system and drives a need for cooling the diodes. A second drawback is a reduced charge voltage, on the order of about a 0.5 to 1.0 volt reduction, due to the inherent voltage drop of a semiconductor diode. In addition, when both the starting and bulk storage batteries are in a condition wherein both batteries are close to the same voltage, the bulk storage battery will typically draw most of the charge current if it is depleted, because of its large capacity and correspondingly higher charging current requirement in comparison to the starting battery.
Contactor isolators suffer from drawbacks as well, the first of which is a limited service life. When contactor isolators are connected between a full battery and a discharged battery, large currents can flow, stressing electrical contacts of the isolator and causing wearing of the contacts. In addition, the contactor may be closed or opened due to battery charge sensing errors inherent in the charging system, and multiple attempts may be necessary before the system voltages reach levels where the contactor can remain closed. This causes loss of charge time and further wear on the contactor. Thus, there is a need for a battery isolator that overcomes the limitations of diode isolators and contactor isolators.
The present invention is a battery isolator for an electrical system that includes at least a first battery and a second battery, wherein a negative terminal of each of the first and second batteries are connected together at a ground point and a charging source is continuously connected in parallel with one of the first and second batteries. The battery isolator comprises an inductor having a first terminal and a second terminal. A first switch is connected between a positive terminal of the first battery and the first terminal of the inductor, and a second switch is connected between a second terminal of the inductor and a positive terminal of the second battery. The first and second switches are selectively actuated to charge at least one of the first battery and the second battery.
Another aspect of the present invention is a battery isolator for an electrical system that includes at least a first battery and a second battery wherein a negative terminal of each of the first and second batteries are connected together at a ground point and a charging source is continuously connected in parallel with one of the first and second batteries. The battery isolator comprises an inductor having a first terminal and a second terminal. A first switch is connected between a positive terminal of the first battery and the first terminal of the inductor. A second switch is connected between a second terminal of the inductor and a positive terminal of the second battery. A third switch is connected between the first terminal of the inductor and the ground. A fourth switch is connected between the second terminal of the inductor of the ground. The first, second, third and fourth switches are selectively actuated to charge at least one of the first battery and the second battery.
Yet another aspect of the present invention is a battery isolator for an electrical system that includes at least a first battery and a second battery, wherein a negative terminal of each of the first and second batteries are connected together at a ground point and a charging source is continuously connected in parallel with one of the first and second batteries. The battery isolator comprises an inductor having a first terminal and a second terminal. A first switch is connected between a positive terminal of the first battery and the first terminal of the inductor. A second switch is connected between a second terminal of the inductor and a positive terminal of the second battery. A third switch is connected between the first terminal of the inductor and the ground. A fourth switch is connected between the second terminal of the inductor of the ground. The first, second, third and fourth switches are selectively actuated to function as one of a buck switching converter and a boost switching converter to charge at least one of the first battery and the second battery.
Still another aspect of the present invention is a battery isolator for an electrical system that includes at least a first battery and a second battery, wherein a negative terminal of each of the first and second batteries are connected together at a ground point and a charging source is continuously connected in parallel with one of the first and second batteries. The battery isolator comprises an inductor having a first, a second, a third and a fourth winding, a first end of each winding being connected together. A first switch is connected between a positive terminal of the first battery and a second end of the first winding. A second switch is connected between a second end of the second winding and the ground. A third switch is connected between a positive terminal of the second battery and a second end of the third winding. A fourth switch is connected between a second end of the fourth winding and the ground. The first, second, third and fourth switches are selectively actuated to charge at least one of the first battery and the second battery.
Further features of the inventive embodiments will become apparent to those skilled in the art to which the embodiments relate from reading the specification and claims with reference to the accompanying drawing, in which:
A diode isolator 100 common in the art is shown in
Diodes 108, 110 are placed in series with batteries 102, 104, respectively. Diodes 108, 110 are each forward-biased for charging current supplied by charging source 106, allowing the charging current to recharge the batteries. In the event that battery 104 is depleted and charging source 106 is unavailable (i.e., the vehicle engine is not running and/or the alternator is not supplying sufficient power), the resultant lower voltage of battery 104 as compared to battery 102 reverse-biases diode 108, preventing battery 102 from discharging into battery 104 and thus preserving the charge of battery 102 for engine starting. Likewise, if battery 102 is depleted, diode 110 is reverse-biased to prevent battery 104 from being discharged by battery 102.
The diode isolator of
A contactor isolator 200 common in the art is depicted in
Contactor battery isolators also suffer from drawbacks. One drawback is that the large charge current associated with accessory battery 204 tends to pull down the voltage of charging source 206. Consequently, a voltage monitor associated with a charging controller (not shown) may inaccurately indicate that engine-starting battery 202 is discharged and will open contactor 208 in order to preferentially charge the engine-starting battery. Subsequently, the charging controller may determine that engine battery 202 is fully charged and close contactor 208 to charge accessory battery 204, again allowing the accessory battery to pull down the voltage of charging source 206. This cycling of contactor 208 may occur repeatedly until accessory battery 204 is at least partially recharged, resulting in accelerated wear of the contactor while also increasing the amount of time required to charge accessory battery 204.
A battery isolator 300 in accordance with an embodiment of the present invention is shown in
The first control loop preferentially charges primary battery 302 by limiting the charging current supplied from charging source 306 to secondary battery 304. To accomplish this, switch 308 (labeled “S1” in
Switches 308 and 312 may also be duty-cycle controlled to function as a charge current regulator for primary battery 302 and/or secondary battery 304. For example, the charging current supplied to primary battery 302 by charging source 306 may be controlled to a predetermined set value by selectively diverting a portion of the capacity of the charging source to secondary battery 304 through switches 308 and 312. Similarly, the duty cycle of switches 308 and 312 may be adjusted to apportion the charging current between batteries 302 and 304 in any desired manner, including charging the primary and secondary batteries equally, charging the primary battery preferentially to the secondary battery, and charging the secondary battery preferentially to the primary battery. Preferential charging of secondary battery 304 is possible due to its relatively large charging current relative to primary battery 302. To preferentially charge secondary battery 304, switches 308 and 312 are actuated at a duty cycle sufficient to cause a greater portion of the capacity of charging source 306 to flow into the secondary battery, the remainder of the capacity going to charge primary battery 302.
With continued reference to
A second regulation loop is a current-limiting loop that prevents a fully-charged primary battery 302 from sourcing high currents to a discharged bulk storage battery 304 and so eliminates that condition as a potential failure mechanism for isolator 300. In the event that charging source 306 is not present, it is often desirable to isolate primary battery 302 from secondary battery 304 so that the energy stored in the primary battery is conserved for such actions as starting the engine of a vehicle. To accomplish this, either or both of switches 308, 312 may be set at a low duty cycle or turned OFF entirely, preventing current from flowing from primary battery 302 to secondary battery 304.
There may also exist a condition wherein charging source 306 is unavailable and primary battery 302 is discharged, but secondary battery 304 is at least partially charged. In this condition, switches 308 and 312 may be actuated to connect battery 304 to battery 302 to facilitate starting of the vehicle's engine. Alternatively, switches 308 and/or 312 may be duty-cycle controlled to provide for charging of battery 302 by battery 304. Likewise, switches 308 and 312 may be duty-cycle controlled to provide for charging of battery 304 by battery 302 when charging source 306 is not present.
With continued reference to
As an example, the boost mode converter may function to step up a voltage V1 from charging source 306 and/or primary battery 302 to charge a higher-voltage V2 secondary battery 304. In this configuration, switch 308 may be closed and 310 may be open. Switches 312 and 314 cycle repetitively and in a complementary fashion at a predetermined duty cycle to store and discharge energy in inductor 316, stepping up an input voltage V1 to a higher voltage V2. The operation of a boost-mode switching converter is well-known in the art, and thus details of the components and controls typically associated with such converters is left to the artisan.
Similarly, the boost converter may be utilized to step up a voltage V2 to a higher-level V1. In this configuration, switch 312 may be closed and switch 314 may be open. Switches 308 and 310 cycle repetitively and in a complementary fashion at a predetermined duty cycle to store and discharge energy in inductor 316, stepping up input voltage V2 to a higher voltage V1. In this configuration charging source 306 is preferably connected to battery 304 in the same manner that charging source 406 of
With continued reference to
Likewise, a higher voltage V2 may be stepped down to a lower voltage V1 by keeping switch 308 closed, switch 310 open, and cycling switches 312 and 314 repetitively and in a complementary fashion at a predetermined duty cycle. In this configuration charging source 306 is preferably connected to battery 304 in the same manner that charging source 406 of
With reference now to
Switches 308-314 of
Referring now to
Although not shown for reasons of clarity, it is anticipated that battery isolators 300, 400 will include a charging control portion for monitoring voltages, currents, battery charge/discharge state, changing operating modes of the battery isolator, and controlling the operation of switches 308-314 and 408-414. The control portion may include conventional analog and/or digital control circuitry, and may further include a microprocessor, microcontroller, or other similar device that is capable of executing a predetermined set of instructions and/or algorithms, such as computer software.
Another alternate embodiment of the present invention is shown in
Likewise, in a second operational mode windings 522, 524 may be pulse-width modulated by switch 512 and switch 514 to step up or step down a voltage V2 to a higher or lower voltage V1. In this mode switch 508 is closed and switch 510 is open. The amount of voltage step-up or step-down is controlled by both the turns ratio of windings 522, 524 and the duty cycle of pulse width modulation of switches 512, 514.
With reference to
A vehicle electrical system 700 is shown in
First battery 704 is typically a cranking battery for starting an internal combustion engine (not shown), the starter of the engine being generally represented by first load 706. First load 706 also represents loads imposed upon electrical system 700 by essential vehicle controls such as, for example, an engine controller and driving lights. Collectively, first battery 704 and first load 706 are termed primary subsystem 714 herein.
Second battery 710 is provided for energy storage. Second battery 710 also provides power to second load 712, which generally represents loads placed on system 700 by auxiliary (i.e., lower priority) loads such as, for example, cabin lighting and accessories. Collectively, second battery 710 and second load 712 are termed secondary subsystem 716 herein.
Battery isolator 708 controls electrical energy provided to secondary subsystem 716 by either or both charging source 702 and first battery 704. In one embodiment of the present invention battery isolator 708 includes (or is controlled by) a pulse width modulation (PWM) control 718 which utilizes signal inputs from one or more of a charge priority control 720, a discharge limit control 722, a charge current control 724 and a charge voltage control 726. PWM control 718 pulse width modulates the duty cycle of battery isolator 708 in a predetermined manner to control the voltage and/or current supplied to secondary subsystem 716 via the battery isolator by either or both charging source 702 and first battery 704, as detailed more fully below.
If first battery 704 requires recharging in preference to supplying energy to secondary subsystem 716 charge priority control 720 acts to limit (or cut off entirely) energy transferred to secondary subsystem 716 by reducing the duty cycle of battery isolator 708 to an appropriately low value, thereby isolating second electrical subsystem 716 from charging source 702 and first battery 704. During such operating conditions energy from charging source 702 is supplied to first battery 704, as well as first load 706. If excess energy from charging source 702 is available in addition to supplying energy to first battery 704 and first load 706, charge priority control 720 may be configured to increase the duty cycle of battery isolator 708 to provide energy to secondary subsystem 716 via the battery isolator in proportion to the amount of excess energy available beyond that needed to support primary subsystem 714.
Depending upon the operational requirements of electrical system 700, energy supplied to secondary subsystem 716 via battery isolator 708 can be further PWM controlled by PWM control 718 to give priority to either second battery 710 or second load 712. For example, PWM control 718 may be configured to set the PWM duty cycle of battery isolator 708 to a relatively low duty cycle PWM, in which case a discharged second battery 710 (which appears as a relatively low-impedance load to the battery isolator) will receive a significant portion of the energy of charging source 702 and/or first battery 704 provided to secondary subsystem 716 via the battery isolator. Under some vehicle operating conditions second load 712 may be deemed essential to the operation of the vehicle. In such cases PWM control 718 may direct battery isolator 708 to operate at a sufficiently high PWM duty cycle such that, regardless of the charging state of first battery 706, adequate power is supplied to second load 712. The PWM duty cycle of battery isolator 708 may further be set to a relatively high duty cycle by PWM control 718 so that second load 712 will receive a significant portion of the energy provided to secondary subsystem 716 by the battery isolator in the manner previously described.
Because of the functional differences between first battery 704 and second battery 710 in supplying the first and second electrical subsystems 714, 716, respectively, the two batteries may have different electrical attributes, such as voltage and amp-hour capacity. First and second batteries 704, 710 may also be of differing type and thus may require different recharge characteristics. Accordingly, charge current control 724 and/or charge voltage control 726 may direct PWM control 716 to establish a duty cycle of battery isolator 708 to an average charge voltage and/or current that is compatible with second battery 710. Likewise, second battery 710 may be used to charge first battery 704 by appropriately configuring battery isolator 708 and establishing a predetermined duty cycle of the battery isolator with PWM control 718 to produce a charge voltage and/or current that is compatible with the first battery.
In operation, electrical system 700 may be configured in a number of different ways, depending upon the operational status of the electrical system and the priorities of various loads coupled to the system. In a first configuration, electrical system 700 may include monitoring of charging source 702 to estimate the condition of the system and establish the amount of load to apply thereto. For example, in a typical 12 volt electrical system 700 first battery 704 will be charging with any voltage above about 13.6 volts and the set point of charging source 702 will be about 14.2 volts. Battery isolator 708 can be configured to regulate the input voltage from charging source 702 to about 13.9 volts by appropriately loading the charging source, by increasing the duty cycle of the battery isolator and shunting a portion of the energy to an electrical ground of system 700 if the voltage increases above this threshold. Battery isolator 708 may likewise be adjusted by PWM control 718 to increase its PWM duty cycle (and thus its output to subsystem 716) as the input voltage (i.e., the voltage of charging source 702) rises from about 13.7 volts to about 14 volts. Thus, battery isolator 708 will only divert charge current when there is sufficient energy to charge first battery 704. Accordingly, the load imposed upon charging source 702 will be limited.
In another configuration of electrical system 700 a feedback control loop 728 may be established between charging source 702 and battery isolator 708, as generally shown in
In yet another configuration of electrical system 700 battery isolator 708 may be configured to monitor the current supplied to subsystem 716 by second battery 710. If second load 712 is active and charging source 702 is heavily loaded, a discharge limit control 722 may act to reduce the duty cycle of battery isolator 708 to a minimal value via PWM control 718. Hence, second load 712 will not consume current from second battery 710, but neither will the second battery consume charge current from charging source 702. This configuration may also be used to prevent second subsystem 716 from discharging first battery 704 via battery isolator 708 under some certain conditions, such as when charging source 702 is not providing charging voltage and/or current. Discharge limit control 722 may also act to command PWM control 718 to reduce the duty cycle of battery isolator 708 to a low level for certain conditions wherein it is desirable to prevent first subsystem 714 from discharging energy stored in second battery 710 via the battery isolator.
Conversely, when charging source 702 has excess energy capacity over and above that required by first subsystem 714, the PWM duty cycle of battery isolator 708 may be set to the lesser of the charging capacity of second battery 710 and the maximum capacity of the charging source.
Battery isolator 708 may be configured in several ways, depending upon the needs of electrical system 700. For example, if the predetermined (i.e., nameplate) voltages of first and second batteries 704, 710 respectively are such that the voltage of the second battery is always less than that of the first battery and electrical isolation is not required, battery isolator 708 may be less complex and thus built at a lower cost than either an isolated system, or a system wherein voltage step-up conversion or step-down conversion between the first and second batteries is required. In other configurations battery isolator 708 may be bi-directional to provide for the transfer of energy from second battery 710 to first battery 704. For example, if the cranking battery (e.g., first battery 704) is discharged, battery isolator 708 can be configured to provide an energy path from second battery 710 to first battery 704, thereby using energy stored in the second battery to re-charge the first battery.
PWM control 718, charge priority control 720, discharge limit control 722, charge current control 724 and charge voltage control 726 all represent control elements that affect the operation of battery isolator 708 and, in turn, electrical system 700 in a predetermined manner. It is understood that these control elements may be realized as separate subsystems. Conversely, some or all of the control elements may be integrated together. Furthermore, the control elements may be realized utilizing analog control circuitry or may include, in part or as a whole, a digital control system operating in accordance with characteristics defined by a set of instructions stored in a computer-readable medium, such as a computer program.
While this invention has been shown and described with respect to a detailed embodiment thereof, it will be understood by those skilled in the art that changes in form and detail thereof may be made without departing from the scope of the claims of the invention. For example, conventional filters may be connected to the input and/or output of the isolator to smooth the input and/or output voltage and current, and to meet desired electromagnetic compatibility requirements. In addition, conventional resonant switching circuits may be incorporated into the isolators disclosed herein, improving performance and efficiency. Such resonant circuits are well-known in the art and will not be discussed herein.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/035,608, filed Jan. 14, 2005, which claims priority to U.S. provisional application 60/536,328, filed Jan. 14, 2004, the contents of each being hereby incorporated by reference thereto.
Number | Date | Country | |
---|---|---|---|
60536328 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11035608 | Jan 2005 | US |
Child | 11873536 | Oct 2007 | US |