This nonprovisional application is based on Japanese Patent Application No. 2021-048295 filed on Mar. 23, 2021 with the Japan Patent Office, the entire contents of which are hereby incorporated by reference.
The present disclosure relates to a battery management system and a battery management method.
Japanese Patent Laying-Open No. 2018-205873 describes prompting a user of an electric vehicle having a storage battery suitable for an electric power storage system to replace the storage battery.
In recent years, vehicles equipped with battery packs for driving have been spread rapidly. Therefore, the number of used batteries collected along with the buying and disassembling of these vehicles is increasing. From the viewpoint of promoting the sustainable development goals (SDGs), it is desired to manufacture a new assembled battery using the recovered used battery and reuse the used battery. The present inventors have focused on the following problems when reusing used batteries.
The battery is stored in a physical distribution base or the like while waiting for use. Proper storage of batteries is costly. In addition, a certain amount of time (storage period) may be required from the carry-in of the collected battery to the carry-out for use. Therefore, it is desirable to effectively utilize the storage period of the battery.
It is conceivable to rank batteries according to their degree of degradation. The required rank varies depending on the usage or the like. Therefore, there is a possibility that a rank having a relatively high demand exists while a rank having a relatively low demand exists. In the battery management system, it is desirable to reserve a number of batteries as stocks for each rank in accordance with demand for use. On the other hand, the battery management system cannot adjust the rank of batteries to be recovered from the market. In addition, degradation of the battery progresses even during a storage period in the battery management system, which may result in a reduction in rank.
The present disclosure has been made in order to solve the above-described problems, and an object of the present disclosure is to ensure inventory of batteries of high rank.
(1) A battery management system according to an aspect of the present disclosure includes: a storage box that stores a plurality of batteries; a power converter electrically connected between the plurality of batteries stored in the storage box, and an electric power system, the power converter being capable of bidirectional power conversion; and a control device that controls operation of the power converter in accordance with a demand response request from the electric power system, to cause charging and discharging of the plurality of batteries. The control device suppresses charging and discharging of batteries of a rank representing a smaller degree of battery degradation, relative to charging and discharging of batteries of a rank representing a greater degree of battery degradation.
With the above configuration (1), charging and discharging of batteries of a rank representing a smaller degree of battery degradation is suppressed, relative to charging and discharging of batteries of a rank representing a greater degree of battery degradation. The rank of batteries of a smaller degree of battery degradation is maintained relative to the rank of batteries of a greater degree of battery degradation. As a result, inventory of batteries of a higher rank can be ensured.
(2) When an amount of charging and discharging power of batteries that are included in the plurality of batteries and are of a rank representing a greater degree of battery degradation is smaller than an amount of charging and discharging power determined in accordance with the demand response request, the control device causes charging and discharging of batteries of a rank representing a smaller degree of battery degradation, together with the batteries of the rank representing the greater degree of battery degradation.
With the above configuration (2), the rank of batteries of a smaller degree of battery degradation can be maintained while enabling charging and discharging in accordance with a demand response request from the electric power system.
(3) The battery management system further includes a switching device that is capable of switching between electrical connection and disconnection between the plurality of batteries and the electric power system. The control device controls the switching device to electrically disconnect, from the electric power system, batteries of a rank for which charging and discharging are suppressed.
With the above configuration (3), batteries of a rank for which charging and discharging are suppresses are electrically disconnected from the electric power system. Accordingly, the rank of batteries for which charging and discharging are suppressed can more reliably be maintained.
(4) The control device causes an amount of charging and discharging power, within a predetermined period, of batteries of a rank for which charging and discharging are suppressed, to be smaller than an amount of charging and discharging power, within the predetermined period, of batteries of a rank different from the batteries of the rank for which charging and discharging are suppressed.
(5) The control device causes a charging and discharging frequency of batteries of a rank for which charging and discharging are suppressed, to be lower than a charging and discharging frequency of batteries different from the batteries of the rank for which charging and discharging are suppressed.
(6) A battery management method according to another aspect of the present disclosure is a battery management method using a server. The method includes causing, by the server, charging and discharging of a plurality of batteries stored in a storage box, in accordance with a demand response request from an electric power system. Causing the charging and discharging includes suppressing charging and discharging of batteries of a rank representing a smaller degree of battery degradation, relative to charging and discharging of batteries of a rank representing a greater degree of battery degradation.
With the above method (6), a proper inventory of batteries of a high rank can be ensured, similarly to the above configuration (1).
In the present disclosure and embodiments, charging and discharging of a battery means at least one of charging and discharging of the battery. That is, charging and discharging of the battery is not limited to both charging and discharging of the battery, and may be charging of the battery alone or discharging of the battery alone.
In the present disclosure, an assembled battery includes a plurality of modules (also referred to as blocks or stacks). The plurality of modules may be connected in series or may be connected in parallel to each other. Each of the plurality of modules includes a plurality of cells (single cells).
Generally, “reuse” of a battery pack is roughly classified into reuse, rebuild, and material recycling. In the case of reuse, the collected battery pack is shipped as it is as a reuse product after necessary shipping inspection. In the case of rebuilt, the collected battery pack is once disassembled into modules. Then, of the disassembled modules, usable modules (may be modules that can be used after performance recovery) are combined to manufacture a new battery pack. The newly manufactured battery pack is shipped as a rebuilt product after shipping inspection. On the other hand, in the material recycling, a reproducible material (resource) is extracted from each cell. The collected battery pack is not used as another battery pack.
In the embodiments described below, the battery pack recovered from the vehicle is once disassembled into modules. Then, various processes are performed on a module-by-module basis. That is, in the following description, a reusable used battery means a module that can be rebuilt. However, disassembly into modules is not essential. Depending on the configuration of the battery pack or the degree of degradation of the battery pack, reuse can be performed without disassembling the module.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference numerals, and the description thereof will not be repeated.
<Battery Distribution Model>
The recoverer 1 recovers the used battery pack (the used battery 9) from a plurality of vehicles. The recoverer 1 may be a vehicle dealer or a vehicle disassembly provider. In this example, identification information (battery ID) is assigned to each used battery 9 (see
The battery cellar 2 is a facility for appropriately managing the used batteries 9 recovered by the recoverer 1, such as a wine cellar for storing a wine bottle under the control of temperature and humidity. In the example shown in
Referring back to
The recycling plant 4 performs material recycling for recycling the used battery 9 determined to be unusable by the battery cellar 2 as a raw material of another product.
The electric power system 5 is a power network constructed by power plants, power transmission and distribution facilities, and the like. In this embodiment, the electric power company serves as both a power generation company and a power transmission and distribution company. The electric power company corresponds to a general electric power transmission and distribution company, and also corresponds to an administrator of the electric power system 5 to maintain and manage the electric power system 5. The electric power system 5 is provided with a company server 50. The company server 50 belongs to the electric power company and manages the electric power supply and demand of the electric power system 5. The server 20 and the company server 50 are configured to be capable of two-way communication.
The DER 6 is provided at a physical distribution site (or a peripheral area thereof) where the battery cellar 2 is installed. The DER 6 is a relatively small-scale electric power facility, and the DER 6 is configured to be able to exchange electric power with the battery cellar 2. The DER 6 includes, for example, a power generation type DER and a power storage type DER.
The power generation DER may include a natural variable power source and a generator. The natural variable power source is a power generation facility in which the power generation output varies depending on weather conditions. Although a solar power generation facility (a solar panel) is illustrated in
The storage DER may include a power storage system and a heat storage system. The power storage system is a stationary power storage device that stores electric power generated by a natural variable power source or the like. The power storage system may be a power to gas device that uses electrical power to produce gaseous fuels (hydrogen, methane, etc.). The heat storage system includes a heat storage tank provided between a heat source and a load, and is configured to temporarily store a liquid medium in the heat storage tank in a heat-retaining state. Heat storage systems can be used to temporally offset the generation and consumption of heat. Therefore, for example, heat generated by operating the heat source device by consuming electric power during nighttime can be stored in the heat storage tank, and air conditioning can be performed by consuming the heat during daytime.
As described above, the used batteries 9 recovered by the recoverer 1 are stored in the battery cellar 2 while waiting for delivery to the sales destination 3 or the recycling plant 4. However, maintenance cost (running cost) is also required to appropriately store the used batteries 9 using the battery cellar 2. Further, a certain amount of time may be required between the entry of the recovered used battery 9 and the entry to the sales destination 3 or the recycling plant 4. Therefore, it is desirable to effectively utilize the storage period of the used battery 9 in the battery cellar 2.
In the present embodiment, the battery cellar 2 functions as a virtual power plant (VPP) in addition to the storage location of the used batteries 9. Thus, the opportunity for the used battery 9 to charge and discharge serves both as a degradation evaluation of the used battery 9 for determining the reuse mode of the used battery 9 and as a power supply and demand balance adjustment of the electric power system 5 using the used battery 9. As a result, in the battery handler 2, the storage of the used battery 9, the evaluation of deterioration of the used battery 9, and the adjustment of the power supply and demand balance by the used battery 9 are integrally performed.
<Reusing Battery>
In the present embodiment, the server 20 performs a degradation evaluation test (performance test) on each of the used batteries 9 in a state of being stored in the storage unit 21 (S2). The server 20 evaluates the degree of degradation of each used battery 9 based on electrical characteristics such as full charge capacity and internal resistance (e.g., AC impedance). Then, the server 20 determines whether each used battery 9 is reusable or not based on the result of the degradation evaluation test (S3).
In the present embodiment, ranking of the used batteries 9 is performed in accordance with the result of the degradation evaluation test (more specifically, the measurement result of the full charge capacity). For example, as shown in
When it is determined that reuse is possible (YES in S3), the working process proceeds to the performance recovery process (S4). In the performance recovery step, a process (performance recovery process) for recovering the performance of the used battery 9 is performed. For example, the fully charged capacity of the used battery 9 can be recovered by overcharging the used battery 9. However, the performance recovery step may be omitted. In addition, as a result of the degradation evaluation test, the performance recovery process may be performed on the used battery 9 having a large degree of degradation (the performance is greatly reduced), whereas the performance recovery process may not be performed on the used battery 9 having a small degree of degradation (the performance is not so reduced).
Subsequently, a new assembled battery is manufactured (rebuilt) using the used battery 9 whose performance has been recovered by the performance recovery step (S5). The used battery 9 used for rebuilding the battery pack is basically a used battery 9 whose performance is recovered through a performance recovery step, but may include a used battery 9 in which the performance recovery step is omitted, or may include a new battery (a new module). Thereafter, the battery pack is sold and shipped to the sales destination 3 (S6).
As a result of the degradation evaluation test, when it is determined that reuse is impossible (NO in S3), the used battery 9 is transported to the recycling plant 4 (S7). In the recycling plant 4, the used batteries 9 are disassembled and re-resourced.
As described above, the used battery 9 is stored in the battery cellar 2 until it is recovered by the recoverer 1 and transferred to the sales destination 3 or the recycling plant 4, during which the degradation evaluation test is performed. When measuring electrical characteristics such as full charge capacity of the used battery 9 in the degradation evaluation test, the used battery 9 is charged and discharged. In the present embodiment, electric power transmitted and received between the battery cellar 2 (and DER 6) and the electric power system 5 is used for the charging and discharging. Thus, the battery cellar 2 functions as a VPP (or one of DERs) and contributes to load leveling of the electric power system 5. More specifically, during a time period during which the electric power system 5 has a supply excess with respect to demand, the battery cellar 2 absorbs the power excess by charging the used battery 9 with the excess power. On the other hand, when a shortage of power is generated in the electric power system 5 in response to demand, the battery cellar 2 discharges the shortage of power from the used battery 9, thereby reducing the shortage of power.
However, the battery cellar 2 may not be configured to contribute to both the absorption of the excess power and the mitigation of the shortage of the power in the electric power system 5. The battery cellar 2 may be configured to contribute to only one of the absorption of power excess and the mitigation of power deficiency. For example, the battery cellar 2 may charge the used battery 9 with the excess electric power in the electric power system 5, and may not include the electric power system 5 at the discharge destination from the used battery 9. The discharge destination from the used battery 9 may be, for example, only the DER 6.
<System Configuration of Battery Cellar>
The storage unit 21 stores a plurality of used batteries 9. Although the plurality of used batteries 9 are connected in parallel to each other in
The voltage sensor 211 detects the voltage VB of the used battery 9, and outputs the detected value to the server 20. The current sensor 212 detects the current IB charged and discharged to and from the used battery 9, and outputs the detected value to the server 20. When the temperature is used for the degradation evaluation of the used battery 9, the storage unit 21 may further include a temperature sensor (not shown). Each sensor may be a sensor provided in the used battery 9.
The relay 213 includes, for example, a first relay electrically connected to the positive electrode side of the used battery 9 and a second relay electrically connected to the negative electrode side of the used battery 9. The relay 213 is configured to switch between electrical connection and disconnection between the used battery 9 and the electric power system 5. Thus, an arbitrary used battery 9 can be electrically disconnected even during charging and discharging of another used battery 9, and the used battery 9 can be taken out of the storage unit 21. The relay 213 corresponds to the “switching device” according to the present disclosure.
The AC/DC converter 22 is electrically connected between the electric power system 5 and the DC/DC converter 23. The AC/DC converter 22 is configured to be able to perform a bidirectional power conversion operation for charging and discharging the used battery 9 stored in the storage unit in accordance with a control command (charging and discharging command) from the server 20. More specifically, the AC/DC converter 22 converts AC power supplied from the electric power system 5 into DC power for charging the used battery 9. The AC/DC converter 22 converts DC power discharged from the used battery 9 into AC power to be supplied to the electric power system 5.
The DC/DC converter 23 is electrically connected between the AC/DC converter 22 and the storage unit 21, and is electrically connected between the DER 6 and the storage unit 21. Like the AC/DC converter 22, the DC/DC converter 23 is configured to be able to perform bidirectional power conversion operation in accordance with a control command (charge/discharge command) from the server 20. The DC/DC converter 23 charges the used battery 9 with DC power from the AC/DC converter 22 and/or the DER 6, and discharges DC power stored in the used battery 9 to the AC/DC converter 22 and/or the DER 6.
The server 20 includes a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and input/output ports (none of which are shown) through which various signals are input/output. The server 20 performs various controls based on signals received from the sensors and programs and maps stored in the memory. The server 20 includes a battery data storage unit 201, a degradation evaluation unit 202, a power adjustment unit 203, a timing adjustment unit 204, and a display unit 205.
The battery data storage unit 201 stores battery data used for managing the used batteries 9 in the battery cellar 2.
Referring again to
The power adjustment unit 203 adjusts the power between the battery cellar 2 (and DER 6) and the electric power system 5. More specifically, the server 20 selects the used battery 9 to be charged and discharged in order to respond to a demand response (DR) request from the company server 50 (see
The timing adjustment unit 204 adjusts the timing of the degradation evaluation test of the used battery 9 by the degradation evaluation unit 202 and the timing of the power adjustment between the battery cellar 2 and the electric power system 5 by the power adjustment unit 203. More specifically, the timing adjustment unit 204 performs the timing adjustment so that the degradation evaluation test of the used battery 9 is performed in synchronization with the timing at which the battery cellar 2 performs DR in response to the DR request from the company server 50. It should be noted that the operation performed in accordance with the DR of the battery cellar 2 is not limited to the degradation evaluation test of the used battery 9. In addition to the degradation evaluation test, performance recovery processing (see S4 in
The display unit 205 displays battery data (see
The server 20 corresponds to the “control device” according to the present disclosure. The AC/DC converter 22 and the DC/DC converter 23 correspond to the “power converter” according to the present disclosure.
<Inventory Reservation>
The required rank varies depending on the application of reuse or the like. Therefore, there is a possibility that a rank having a relatively high demand exists while a rank having a relatively low demand exists. It is desirable that a number of used batteries 9 corresponding to the demand for reuse be secured as inventory in the battery cellar 2 for each rank. On the other hand, the battery cellar 2 cannot adjust the rank of the used batteries 9 to be recovered from the market. In addition, degradation of the used batteries 9 progresses even during the storage period in the battery cellar 2, which may lower the rank. In particular, in the battery cellar 2, since the used batteries 9 are repeatedly charged and discharged in order to adjust the power to and from the electric power system 5, degradation of the used batteries 9 tends to progress.
Therefore, in the present embodiment, the server 20 suppresses charging and discharging of the used batteries 9 of a rank having a relatively small degree of degradation compared to charging and discharging of the used batteries 9 of a rank having a relatively large degree of degradation. As a result, the rank of the used batteries 9 having a small degree of degradation is maintained as compared with the used batteries 9 having a large degree of degradation. As a result, the stock of the used batteries 9 of high rank can be secured.
As shown in
<Suppression Flow of Charge and Discharge>
In S12, the server 20 calculates the amount of electric power required to adjust the electric power between the battery cellar 2 and the electric power system 5 using the battery cellar 2. This amount of electric power is hereinafter referred to as battery cellar adjustment amount, and is also referred to as kWh (bat). An example of a method of calculating the battery cellar adjustment amount kWh (bat) will be described in detail with reference to
In S13, the server 20 determines whether or not there is a margin in the total amount of electric power that can be charged and discharged using all the used batteries 9 with respect to the battery cellar adjustment amount kWh (bat). When there is no margin, that is, when the battery cellar adjustment amount kWh (bat) is equal to or larger than the amount of electric power that can be charged and discharged using all the used batteries 9 (NO in S13), it is required to charge and discharge all the used batteries 9 in order to approximate the amount of electric power that is charged and discharged by the battery cellar 2 to the battery cellar adjustment amount ΔkWh (bat). Accordingly, the server 20 charges and discharges all the used batteries 9 (S19).
On the other hand, when there is a margin, that is, when the battery cellar adjustment amount kWh (bat) is smaller than the amount of electric power that can be charged and discharged using all the used batteries 9 (YES in S13), the battery cellar adjustment amount ΔkWh (bat) can be satisfied without charging and discharging all the used batteries 9. In this case, the server 20 determines the charge/discharge amount and the charge/discharge frequency of each used battery 9 in accordance with the rank (S14). Specifically, the server 20 determines the charge/discharge amount of the used battery 9 of the rank (S, A rank in the example of
As described above, with respect to the used batteries 9 of a rank having a relatively small degree of degradation, degradation due to charging and discharging can be suppressed by reducing the amount of charge and discharge for power adjustment and decreasing the frequency of charge and discharge as compared with the used batteries 9 of a rank having a relatively large degree of degradation. As a result, the rank of the used batteries 9 having a small degree of degradation is maintained as compared with the used batteries 9 having a large degree of degradation. As a result, the inventory of the high-rank used batteries 9 can be sufficiently secured.
In S34, it is determined whether the SOC of each used battery 9 of the S and A ranks having a relatively small degree of degradation is within a predetermined SOC range. The SOC range is a range in which degradation of the used battery 9 progresses moderately, and is determined in advance according to the characteristics of the used battery 9. Generally, when the SOC of the secondary battery is excessively high (for example, more than 80%) or excessively low (for example, less than 20%), degradation of the secondary battery tends to progress. Therefore, the SOC range is preferably an intermediate SOC range (for example, an SOC range of 40% to 60%).
When the SOC of a certain used battery 9 among the used batteries 9 of the S and A ranks whose degree of degradation is relatively small is within the range of the SOC in which the progress of degradation is moderate (YES in S34), the server 20 opens the relay 213 corresponding to the used battery 9 so that the used battery 9 is electrically disconnected from the electric power system 5 (S35).
If the number of used batteries 9 electrically disconnected from the electric power system 5 is too large, the amount of power charged and discharged from the battery cellar 2 may be insufficient with respect to the battery cellar adjustment amount kWh (bat). Therefore, the server 20 desirably considers the battery cellar adjustment amount kWh (bat) when controlling the relay 213. That is, the server 20 preferably adjusts the number of used batteries 9 electrically disconnected from the electric power system 5 so that the number of used batteries 9 required to satisfy the battery cellar adjustment amount kWh (bat) remains electrically connected to the electric power system 5.
In S36, the server 20 performs power adjustment with respect to the electric power system 5 by charging and discharging the remaining used batteries 9 in which the relay 213 is closed, that is, the used batteries 9 in the S and A ranks having a relatively small degree of degradation (the used batteries 9 in which the SOC is outside the moderate SOC range in which the progress of degradation is gentle), and the used batteries 9 in the B and C ranks having a relatively large degree of degradation among the used batteries 9 in the S and A ranks having a relatively small degree of degradation. The higher the temperature of the used battery 9, the more likely the used battery 9 is degraded. Accordingly, the server 20 may impose a certain limit on the charging/discharging current so that the used battery 9 does not become excessively high in temperature due to heat generated by charging/discharging.
In this way, the used battery 9 electrically disconnected from the electric power system 5 by opening the relay 213 is not used for charging and discharging for power adjustment, so that degradation due to charging and discharging can be suppressed. In addition, the SOC of the used battery 9 electrically disconnected from the electric power system 5 is maintained within the SOC range in which the progress of degradation is moderate. Thus, degradation during storage (so-called aging degradation or material degradation) which is not caused by charging and discharging can also be suppressed.
The process of S34 can also be applied to the flowchart of
In any of the examples shown in
<Degradation Evaluation>
Based on the current IB detected by the current sensor 212, the current integration unit 71 calculates an integrated value (current integrated amount) ΔAh (unit: Ah) of the current charged and discharged to and from the used battery 9 during a period from when the start condition of current integration is satisfied to when the end condition is satisfied. In the present embodiment, as described above, charging and discharging of the used battery 9 is performed in response to the DR request from the company server 50, and the current flowing during the DR is integrated. More specifically, when the increase DR (power demand increase request) is performed, the used battery 9 is charged in order to increase the power demand of the battery cellar 2, and the charging current at that time is integrated. On the other hand, when the reduction DR is performed, the used battery 9 is discharged in order to reduce the power demand of the battery cellar 2, and the discharge current at that time is integrated. The current integration unit 71 outputs the calculated current integration amount ΔAh to the full charge capacity calculation unit 74.
The OCV calculation unit 72 calculates the OCV of the used battery 9 at the start of current integration and the OCV of the used battery 9 at the end of current integration. The OCV can be calculated, for example, according to the following equation (1).
OCV=VB−ΔVp−IB×R (1)
In Expression (1), the internal resistance of the used battery 9 is described as R, and the polarization voltage is described as Vp. At the start of current integration (immediately before the start of charging and discharging), current IB=0. Further, when the used battery 9 is left uncharged and discharged before the current integration is started, the polarization voltage Vp can be approximated to 0. Therefore, the OCV at the start of current integration can be calculated based on the voltage VB detected by the voltage sensor 211. On the other hand, the internal resistance R can be specified from the relationship (ohm's law) between the voltage VB and the current IB. When the charge/discharge of the used battery 9 is performed at a constant current, the polarization voltage Vp can also be specified from the current IB detected by the current sensor 212 by measuring the relationship between the current and the polarization voltage Vp in advance. Therefore, the OCV of the used battery 9 at the end of the current integration can also be calculated based on the voltage VB and the current IB. The OCV calculation unit 72 outputs the calculated two OCVs to the SOC change amount calculation unit 73.
The SOC change amount calculation unit 73 calculates the SOC change amount ΔSOC of the used battery 9 from the start of the current integration to the end of the current integration based on the two OCVs. The SOC change amount calculation unit 73 has a characteristic curve (OCV-SOC curve) indicating SOC dependence of OCV in advance. Accordingly, the SOC change amount calculation unit 73 can read the SOC corresponding to the OCV at the start of current integration and the SOC corresponding to the OCV at the end of current integration by referring to the OCV-SOC curve, and calculate the difference between these SOCs as ΔSOC. The SOC change amount calculation unit 73 outputs the calculated ΔSOC to the full charge capacity calculation unit 74.
Full charge capacity calculation unit 74 calculates full charge capacity C of used battery 9 based on ΔAh from current integration unit 71 and ΔSOC from SOC change amount calculation unit 73. More specifically, the full charge capacity C of the used battery 9 can be calculated according to the following expression (2) where the ratio of ΔAh to ΔSOC is equal to the ratio of ΔSOC=100% to the full charge capacity C. Since the full charge capacity C0 in the initial state is known from the specifications of the used battery 9, the full charge capacity calculation unit 74 may further calculate the capacity maintenance ratio Q from the full charge capacity C (Q=C/C0). Full charge capacity calculation unit 74 outputs calculated full charge capacity C to ranking unit 75.
C=Ah/ΔSOC×100 (2)
The ranking unit 75 ranks the used batteries 9 according to the full charge capacity C. The ranking unit 75 can record the date and time of ranking as the degradation evaluation date and time in the battery data (see
The rank of the used battery 9 is displayed on the display unit 205 together with the battery ID and the storage position of the used battery 9. As a result, when a request to purchase the used battery 9 is received from the sales destination 3, the worker working on the battery cellar 2 can take out the used battery 9 having a rank corresponding to the request of the sales destination 3 from the storage position. By appropriately taking out the used batteries to be sold from the storage unit 21, it is possible to suppress a situation in which the storage unit 21 is free from space.
The method of calculating the full charge capacity C is merely an example. Any method can be employed for calculating the full charge capacity C as long as the method uses the voltage VB and the current IB detected along with the charging and discharging of the used battery 9. The ranking unit 75 may determine the rank of the used battery 9 based on another characteristic (The internal resistance R of the used battery 9, the index/D indicating the deviation of the electrolytic solution concentration in the lithium ion battery, and the like) instead of or in addition to the full charge capacity C. The ranking unit 75 may determine the rank of the used battery 9 in accordance with the length of time during which the used battery 9 is charged and discharged and/or the number of times the used battery 9 is charged and discharged. The ranking unit 75 may determine the rank of the used battery 9 in accordance with the elapsed time since the manufacture of the used battery 9, although the accuracy may decrease to some extent. The ranking unit 75 may determine the rank of the used battery 9 by combining the above elements (Full charge capacity C, internal resistance R, index/D, charge/discharge time, number of times of charge/discharge, elapsed time from manufacture, etc.).
<Power Modulation>
Upon receipt of the DR request from the company server 50, the overall adjustment amount calculation unit 81 calculates an overall power amount that requires power adjustment during a predetermined period of time (for example, 30 minutes) using the battery cellar 2 and the DER 6. This amount of power is hereinafter referred to as an overall adjustment amount, and is also referred to as kWh (total). The overall adjustment amount calculation unit 81 outputs the calculated kWh (total) to the battery cellar adjustment amount calculation unit 83.
The DER adjustment amount calculation unit 82 acquires the operating state of each DER 6 (more specifically, the expected power amount generated by each DER 6 during a predetermined period) by communicating with the DER 6. This amount of power is hereinafter referred to as a DER adjustment amount, and is also referred to as kWh (DER). The DER adjustment amount calculation unit 82 outputs the acquired kWh (DER) to the battery cellar adjustment amount calculation unit 83.
Based on kWh (total) from the overall adjustment amount calculation unit 81 and kWh (DER) from the DER adjustment amount calculation unit 82, the battery cellar adjustment amount calculation unit 83 calculates the amount of power required to adjust the power using the battery cellar 2. This amount of electric power is hereinafter referred to as battery cellar adjustment amount, and is also referred to as kWh (bat). The battery cellar adjustment amount calculation unit 83 can calculate, for example, ΔkWh=kWh (total)−kWh (DER), which is the difference between the two power amounts, as the battery cellar adjustment amount kWh (bat). The battery cellar adjustment amount calculation unit 83 outputs the calculated kWh (bat) to the used battery selection unit 84.
The used battery selection unit 84 grasps the amount of electric power that can be charged and discharged for each of the multiple used batteries 9 stored in the plurality of storage units 21 (see battery data in
The conversion calculation unit 85 calculates the power charged and discharged to and from the used battery 9 for each used battery 9 selected by the used battery selection unit 84. More specifically, the conversion calculation unit 85 converts the amount of electric power (unit: kWh) adjusted by the used battery 9 into electric power (unit: kW) for each used battery 9 using the remaining time of the electric power adjustment. For example, when the power adjustment amount assigned to a certain used battery 9 is 10 kWh and the remaining time of the power adjustment is 15 minutes, 10 kWh×(60 minutes/15 minutes)=40 kW can be calculated. The conversion calculation unit 85 outputs the power charged and discharged to each used battery 9 to the command generation unit 86.
The command generation unit 86 generates a charge/discharge command to the AC/DC converter 22 and the DC/DC converter 23 and generates an open/close command to the relay 213 based on the calculation result obtained by the conversion calculation unit 85. More specifically, the command generation unit 86 generates an open/close command such that the selected used battery 9 is electrically connected to the DC/DC converter 23 while the unselected used battery 9 is electrically disconnected from the DC/DC converter 23. The command generation unit 86 generates a charge/discharge command so that the total power assigned to the selected used battery 9 is charged/discharged.
Note that the power adjustment method shown in
As described above, in the present embodiment, the degree of degradation of each used battery 9 is evaluated in a state of being stored in the storage unit 21. Thus, the storage period of the used battery 9 can be effectively utilized in terms of time. Further, charging and discharging of the used battery 9 for evaluating the degree of degradation of the used battery 9 is basically performed in response to a DR request from the company server 50. When the number of used batteries 9 is large, large power is charged and discharged, and the large power is transmitted and received between the battery cellar 2 and the electric power system 5 in response to a DR request from the company server 50. As a result, since the management company of the battery cellar 2 can receive a payment of a price (incentive) from the power company, the price can be used as a running cost of the battery cellar 2. Alternatively, the management company of the battery cellar 2 can recover a part of the initial investment (initial cost) of the battery cellar 2. Thus, the storage period of the used battery 9 can be effectively utilized in a monetary manner.
Further, in the present embodiment, with respect to the used batteries 9 in the rank in which the degree of degradation is relatively small, charging and discharging are suppressed as compared with the used batteries 9 in the rank in which the degree of degradation is relatively large. As a result, it is possible to suppress a situation in which the used battery 9 having a rank with a relatively small degree of degradation is degraded due to charging and discharging, and therefore, it is possible to maintain the rank of the used battery 9 having a relatively small degree of degradation. Therefore, the inventory of the high-rank used batteries 9 can be sufficiently secured.
In the embodiments described above, ranks with relatively small degrees of degradation for suppressing charging and discharging are S and A ranks, and ranks with relatively large degrees of degradation different from ranks for suppressing charging and discharging are B and C ranks. However, the present invention is not limited to this, and a combination of a rank having a relatively small degree of degradation and a rank having a large degree of degradation for suppressing charging and discharging may be another combination. For example, a rank with a small degree of degradation may be the S rank, and a rank with a large degree of degradation may be the A to C rank. A rank with a small degree of degradation may be rank A, and a rank with a large degree of degradation may be rank B. The rank with the small degree of degradation may be the S, A, B rank, and the rank with the large degree of degradation may be the C rank.
Although the present disclosure has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the scope of the present disclosure being interpreted by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2021-048295 | Mar 2021 | JP | national |