This application claims the benefit under 35 USC § 119(a) of Korean Patent Application No. 10-2018-0101023, filed on Aug. 28, 2018, in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference for all purposes.
The following description relates to a battery management system.
As an example, a typical battery management system may include a voltage sensor, a current sensor, and a temperature sensor, and may also include sensing wires or a wire harness.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In one general aspect, a battery management apparatus includes a first contact member, a second contact member, and a processor. The first contact member is located on one side of a board. The second contact member is located on another side of a board. The processor is configured to collect sensing data of a battery cell through the first contact member and the second contact member. The first contact member and the second contact member are configured to contact a connection element connected to the battery cell.
The first contact member may be configured to contact a first connection element connected to a positive electrode of the battery cell, and the second contact member may be configured to contact a second connection element connected to a negative electrode of the battery cell.
The connection element may include a first busbar connected to a positive electrode of the battery cell and a second busbar connected to a negative electrode of the battery cell.
The first contact member may be located adjacent an area corresponding to one of electrodes of the battery cell on the board, and the second contact member may be located adjacent an area corresponding to another one of the electrodes of the battery cell on the board.
The battery management apparatus may further include a temperature sensor configured to sense a temperature of the connection element.
Each of the first contact member and the second contact member may be a biasing member.
The board may be configured to pass-through electrodes and a vent of the battery cell.
In another general aspect, a battery module includes battery management apparatuses and a battery cell corresponding to each of the battery management apparatuses. Each of the battery management cells includes a first contact member located on one side of a board; a second contact member located on another side of a board; and a processor configured to collect sensing data of a corresponding battery cell through the first contact member and the second contact member. The first contact member and the second contact member are configured to contact a connection element connected to the corresponding battery cell.
The first contact member may be configured to contact a first connection element that is electrically connected to a positive electrode of the corresponding battery cell and the second contact member may be configured to contact a second connection element connected to a negative electrode of the corresponding battery cell.
The connection element may include a first busbar connected to a positive electrode of the corresponding battery cell; and a second busbar connected to a negative electrode of the corresponding battery cell.
The first contact member may be located adjacent an area corresponding to one of electrodes of the corresponding battery cell on the board and the second contact member may be located adjacent an area corresponding to another one of the electrodes of the corresponding battery cell on the board.
Each of the battery management apparatuses may further include a temperature sensor configured to sense a temperature of the connection element.
Each of the first contact member and the second contact member may include a biasing member.
The board may be configured to pass-through electrodes and a vent of the battery cell.
In another general aspect, a battery pack includes slave battery management apparatuses, a master battery management apparatus configured to communicate with the slave battery management apparatuses, and a battery cell corresponding to each of the slave battery management apparatuses. Each of the slave battery management cells includes a first contact member located on one side of a board, a second contact member located on another side of a board, and a processor configured to collect sensing data of a corresponding battery cell through the first contact member and the second contact member. The first contact member and the second contact member are configured to contact a connection element connected to the corresponding battery cell.
The first contact member may be configured to contact a first connection element connected to a positive electrode of the corresponding battery cell and the second contact member may be configured to contact a second connection element connected to a negative electrode of the corresponding battery cell.
The connection element may include a first busbar connected to a positive electrode of the corresponding battery cell; and a second busbar connected to a negative electrode of the corresponding battery cell.
The first contact member may be located adjacent an area corresponding to one of electrodes of the corresponding battery cell on the board and the second contact member may be located adjacent an area corresponding to another one of the electrodes of the corresponding battery cell on the board.
Each of the slave battery management apparatuses may further include a temperature sensor configured to sense a temperature of the connection element.
Each of the first contact member and the second contact member may include a biasing member.
Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
Throughout the drawings and the detailed description, unless otherwise described or provided, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The drawings may not be to scale, and the relative size, proportions, and depiction of elements in the drawings may be exaggerated for clarity, illustration, and convenience.
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. However, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be apparent after an understanding of the disclosure of this application. For example, the sequences of operations described herein are merely examples, and are not limited to those set forth herein, but may be changed as will be apparent after an understanding of the disclosure of this application, with the exception of operations necessarily occurring in a certain order. Also, descriptions of features that are known in the art may be omitted for increased clarity and conciseness.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided merely to illustrate some of the many possible ways of implementing the methods, apparatuses, and/or systems described herein that will be apparent after an understanding of the disclosure of this application.
Various modifications may be made to examples. However, it should be understood that these examples are not construed as limited to the illustrated forms and include all changes, equivalents or alternatives within the idea and the technical scope of this disclosure.
The terminology used herein is for the purpose of describing particular examples only and is not intended to be limiting of examples. As used herein, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. It should be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components or a combination thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined herein, all terms used herein including technical or scientific terms have the same meanings as those generally understood by one of ordinary skill in the art and in context of the disclosure of this application. Terms defined in dictionaries generally used should be construed to have meanings matching with contextual meanings in the related art and the disclosure of this application, and are not to be construed as an ideal or excessively formal meaning unless otherwise defined herein.
Regarding the reference numerals assigned to the elements in the drawings, it should be noted that the same elements will be designated by the same reference numerals, wherever possible, even though they are shown in different drawings. Also, in describing of examples, detailed description of well-known related structures or functions will be omitted when it is deemed that such description will cause ambiguous interpretation of the present disclosure.
Referring to
Returning to
The second contact member 112 may be located on another side of the board of the battery management apparatus 110. The second contact member 112 is conductive. The second contact member 112 may include at least one biasing member. Depending on the implementation, the second contact member 112 may include at least one contact pin.
The first contact member 111 and the second contact member 112 contact a connection element that is electrically connected to the battery cell 120. The connection element may include a first connection element and a second connection element. The first connection element may be, for example, a busbar electrically connected to a positive electrode of the battery cell 120. The second connection element may be, for example, another busbar electrically connected to a negative electrode of the battery cell 120. The first contact member 111 contacts the first connection element and the second contact member 112 contacts the second connection element.
The processor 113 is configured to collect sensing data of the battery cell 120 through the first contact member 111 and the second contact member 112. The sensing data includes, for example, either one or both of voltage data and current data of the battery cell 120. When the battery cell 120 outputs or receives a current through the connection element, the current may flow in the first contact member 111 and the second contact member 112 due to their conductivity. Through the first contact member 111 and the second contact member 112, the processor 113 collects the voltage data and/or the current data of the battery cell 120. In this example, a sensing wire, for example, a voltage measuring wire may not be required in the battery management apparatus 110, which simplifies the structure of the battery management apparatus 110.
As non-limiting example, biasing members 230 through 250 may be located around the first area 210, and biasing members 260 through 280 may be located around the second area 220. The biasing members 230 through 250 may correspond to, for example, a first contact member 111, e.g., of
One of the biasing members 230 through 250 contacts a first connection element that is electrically connected to the positive electrode of the battery cell 120 when coupled to the battery cell 120. One of the biasing members 260 through 280 contacts a second connection element that is electrically connected to the negative electrode of the battery cell 120 when coupled to the battery cell 120.
A processor, e.g., the processor 113 of
As noted above, though drawing descriptions subsequent to the description of
Referring to
Referring to
The biasing members 230 through 250 are located around the hole 410. The biasing members 260 through 280 are located around the hole 430.
One of the biasing members 230 through 250 contacts a first connection element and another one of the biasing members 260 through 280 contacts a second connection element in the process of fixing the first connection element and the second connection element to the battery management apparatus 110.
The biasing members 230 through 250 are configured to connectively contact the first connection element so as to form an electrical connection between the contacting biasing member and the first connection element.
The biasing members 260 through 280 are configured to connectively contact the second connection element so as to form an electrical connection between the contacting biasing member and the second connection element.
The first connection element and the second connection element may be fixed to the battery management apparatus 110 by welding or fastening, for example. In an example, the first connection element and the second connection element may each be a busbar.
Referring to
In a top view of
The processor 113 collects voltage data of the battery cell 120 through the biasing member 250 and the biasing member 280. For example, when current flows in the battery cell 120 via the busbar 510 and the busbar 520, the current may also flow through the biasing member 250 and the biasing member 280. The processor 113 may use the biasing member 250 and the biasing member 280 to measure a voltage between the positive terminal and the negative terminal of the battery cell 120.
Although not shown in
Although
Referring to
The battery cells are electrically connected to each other through busbars. As illustrated in
In the example of
A biasing member 250-1 of the battery management apparatus 110-1 contacts a busbar 611. A biasing member 280-1 of the battery management apparatus 110-1 contacts the busbar 610. A processor 113-1 uses the biasing member 250-1 and the biasing member 280-1 to measure a voltage of the corresponding battery cell of the battery management apparatus 110-1.
A biasing member 280-2 of the battery management apparatus 110-2 contacts the busbar 611. A biasing member 250-2 of the battery management apparatus 110-2 contacts a busbar 612. A processor 113-2 uses the biasing member 280-2 and the biasing member 250-2 to measure a voltage of a battery cell corresponding to the battery management apparatus 110-2. Likewise, a processor 113-3 uses a biasing member 280-3 and a biasing member 250-3 to measure a voltage of a battery cell corresponding to the battery management apparatus 110-3, and a processor 113-12 uses a biasing member 280-12 and a biasing member 250-12 to measure a voltage of the corresponding battery cell of the battery management apparatus 110-12.
Although not shown in
In the battery module 600, the battery cells are arranged physically in parallel but not limited thereto. Battery cells may be arranged in various forms. For example, as illustrated in
A typical battery module includes wires used for sensing the voltage and the temperature of each battery cell. For example, a battery module including 12 battery cells includes 13 wires for measuring a voltage. Rather, and while such numbered sensing wires are also available, in one or more examples, the aforementioned process of fixing a busbar, a biasing member corresponding to each electrode of a battery cell contacts the busbar and maybe a temperature sensor connected to or contacting the respective busbar, which may result in the example battery modules 600 or 700 not including such typical voltage measuring wires and/or temperature sensing wires including a fewer number of such sensing wires. Such a reduction in the number of sensing wires may simplify and/or reduce manufacturing costs for the battery modules 600 or 700 compared to such typical many sensing or temperature sensor wiring approaches.
Referring to
Each of the battery modules 820-1 through 820-m includes at least one battery cell and at least one slave battery management apparatus. Here, the slave battery management apparatus corresponds to the battery management apparatus 110.
The battery modules 820-1 through 820-m are electrically connected in series.
The master battery management apparatus 810 communicates with at least one slave battery management apparatus included in each of the battery modules 820-1 through 820-m. For example, the master battery management apparatus 810 transmits a sensing command to each of slave battery management apparatuses. Each of the slave battery management apparatuses senses a corresponding battery cell and transmits sensing data of the corresponding battery cell to the master battery management apparatus 810.
The master battery management apparatus 810 determines state information of each battery cell in the battery pack 800. The state information includes, for example, a state of charge (SOC) and/or a state of health (SOH). For example, the master battery management apparatus 810 determines state information of the corresponding battery cell of each of the slave battery management apparatuses based on the sensing data of the corresponding battery cell of each of the slave battery management apparatuses. Also, the master battery management apparatus 810 determines a maximum value or a minimum value of the state information of the corresponding battery cell of each of the slave battery management apparatuses, to be state information of the battery pack 800.
As noted above, because the description of
In the example of
A typical battery pack may include wires used for sensing a temperature and a voltage of each battery cell. For example, a typical battery pack including 96 battery cells may include 104 wires for sensing voltages and 32 wires for sensing temperatures. Alternatively, a typical battery pack may include a wire harness. Rather, and while such numbered sensing wires are also available, in one or more examples the aforementioned process of fixing a busbar, a biasing member corresponding to each electrode of a battery cell contacts the busbar. Also, a temperature sensor may be connected to or contacts the busbar. In this example, the battery module 800 or 900 may not include voltage measuring wires and/or temperature sensing wires. A reduction in the number of sensing wires may, which may simplify and/or reduce manufacturing costs for the battery modules 800 or 900 compared to a typical sensing or temperature sensor wiring approaches may be attained to reduce manufacturing costs for the battery pack 800 or 900.
Referring to
The master battery management apparatus 810 in the battery pack 800 or 900 determines state information of the battery pack 800 or 900 and transmits the state information to an electronic control unit (ECU) or a vehicle control unit (VCU) of the vehicle 1000. The ECU or the VCU, as illustrated in
In an example implementation, the ECU or the VCU is configured to transmit the state information of the battery pack 800 or 900 to a terminal of a user through a wireless communication interface of the vehicle 1000. Through this, the user may check the state information of the battery pack 800 or 900 outside the vehicle 1000.
Since the description of
The battery management apparatus 110, the processor 113, and the master battery management apparatus 810 that perform the operations described in this application are implemented by hardware components configured to perform the operations described in this application that are performed by the hardware components. Examples of hardware components that may be used to perform the operations described in this application where appropriate include controllers, sensors, generators, drivers, memories, comparators, arithmetic logic units, adders, subtractors, multipliers, dividers, integrators, and any other electronic components configured to perform the operations described in this application. In other examples, one or more of the hardware components that perform the operations described in this application are implemented by computing hardware, for example, by one or more processors or computers. A processor or computer may be implemented by one or more processing elements, such as an array of logic gates, a controller and an arithmetic logic unit, a digital signal processor, a microcomputer, a programmable logic controller, a field-programmable gate array, a programmable logic array, a microprocessor, or any other device or combination of devices that is configured to respond to and execute instructions in a defined manner to achieve a desired result. In one example, a processor or computer includes, or is connected to, one or more memories storing instructions or software that are executed by the processor or computer. Hardware components implemented by a processor or computer may execute instructions or software, such as an operating system (OS) and one or more software applications that run on the OS, to perform the operations described in this application. The hardware components may also access, manipulate, process, create, and store data in response to execution of the instructions or software. For simplicity, the singular term “processor” or “computer” may be used in the description of the examples described in this application, but in other examples multiple processors or computers may be used, or a processor or computer may include multiple processing elements, or multiple types of processing elements, or both. For example, a single hardware component or two or more hardware components may be implemented by a single processor, or two or more processors, or a processor and a controller. One or more hardware components may be implemented by one or more processors, or a processor and a controller, and one or more other hardware components may be implemented by one or more other processors, or another processor and another controller. One or more processors, or a processor and a controller, may implement a single hardware component, or two or more hardware components. A hardware component may have any one or more of different processing configurations, examples of which include a single processor, independent processors, parallel processors, single-instruction single-data (SISD) multiprocessing, single-instruction multiple-data (SIMD) multiprocessing, multiple-instruction single-data (MISD) multiprocessing, and multiple-instruction multiple-data (MIMD) multiprocessing.
Instructions or software to control computing hardware, for example, one or more processors or computers, to implement the hardware components and perform the methods as described above may be written as computer programs, code segments, instructions or any combination thereof, for individually or collectively instructing or configuring the one or more processors or computers to operate as a machine or special-purpose computer to perform the operations that are performed by the hardware components and the methods as described above. In one example, the instructions or software include machine code that is directly executed by the one or more processors or computers, such as machine code produced by a compiler. In another example, the instructions or software includes higher-level code that is executed by the one or more processors or computer using an interpreter. The instructions or software may be written using any programming language based on the block diagrams and the flow charts illustrated in the drawings and the corresponding descriptions in the specification, which disclose algorithms for performing the operations that are performed by the hardware components and the methods as described above.
The instructions or software to control computing hardware, for example, one or more processors or computers, to implement the hardware components and perform the methods as described above, and any associated data, data files, and data structures, may be recorded, stored, or fixed in or on one or more non-transitory computer-readable storage media. Examples of a non-transitory computer-readable storage medium include read-only memory (ROM), random-access memory (RAM), flash memory, CD-ROMs, CD-Rs, CD+Rs, CD-RWs, CD+RWs, DVD-ROMs, DVD-Rs, DVD+Rs, DVD-RWs, DVD+RWs, DVD-RAMs, BD-ROMs, BD-Rs, BD-R LTHs, BD-REs, magnetic tapes, floppy disks, magneto-optical data storage devices, optical data storage devices, hard disks, solid-state disks, and any other device that is configured to store the instructions or software and any associated data, data files, and data structures in a non-transitory manner and provide the instructions or software and any associated data, data files, and data structures to one or more processors or computers so that the one or more processors or computers can execute the instructions. In one example, the instructions or software and any associated data, data files, and data structures are distributed over network-coupled computer systems so that the instructions and software and any associated data, data files, and data structures are stored, accessed, and executed in a distributed fashion by the one or more processors or computers.
While this disclosure includes specific examples, it will be apparent after an understanding of the disclosure of this application that various changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents. The examples described herein are to be considered in a descriptive sense only, and not for purposes of limitation. Descriptions of features or aspects in each example are to be considered as being applicable to similar features or aspects in other examples. Suitable results may be achieved if the described techniques are performed in a different order, and/or if components in a described system, architecture, device, or circuit are combined in a different manner, and/or replaced or supplemented by other components or their equivalents. Therefore, the scope of the disclosure is defined not by the detailed description, but by the claims and their equivalents, and all variations within the scope of the claims and their equivalents are to be construed as being included in the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0101023 | Aug 2018 | KR | national |