This application relates to a battery module and a method for cooling the battery module.
In a typical air-cooled battery pack, ambient air from ambient atmosphere is directed across battery cells in the battery pack and is subsequently exhausted from the battery pack. However, the typical air-cooled battery pack has a major challenge in maintaining a temperature of the battery pack within a desired temperature range.
In particular, a maximum operating temperature of the battery cells can often be less than a temperature of ambient air utilized to cool the batteries. In this situation, it is impossible to maintain the battery cells within a desired temperature range in an air-cooled battery pack.
Accordingly, the inventors herein have recognized a need for an improved battery module and a method for cooling the battery module that minimizes and/or eliminates the above-mentioned deficiency.
A battery module in accordance with an exemplary embodiment is provided. The battery module includes a housing having an electrically non-conductive oil disposed therein. The battery module further includes a battery cell disposed in the housing that contacts the electrically non-conductive oil. The battery module further includes first and second heat conductive fins disposed in the housing that contacts the electrically non-conductive oil. The first and second heat conductive fins are configured to extract heat energy from the electrically non-conductive oil. The battery module further includes first and second conduits extending through the first and second heat conductive fins, respectively. The first and second conduits are configured to receive first and second portions of a fluid, respectively, therethrough and to conduct heat energy from the first and second heat conductive fins, respectively, into the fluid to cool the battery cell.
A method for cooling a battery module in accordance with another exemplary embodiment is provided. The battery module has a housing, a battery cell, first and second heat conductive fins, and first and second conduits extending through the first and second heat conductive fins, respectively. The method includes conducting heat energy from the battery cell into an electrically non-conductive oil disposed in the housing. The method further includes conducting heat energy from the electrically non-conductive oil into the first and second heat conductive fins disposed in the housing. The method further includes receiving first and second portions of a fluid in the first and second conduits, respectively, and conducting heat energy from the first and second heat conductive fins, respectively, into the fluid to cool the battery cell in the housing.
Referring to
For purposes of understanding, the term “fluid” means either a liquid or a gas. For example, a fluid can comprise either a coolant or a refrigerant. Exemplary coolants include ethylene glycol and propylene glycol. Exemplary refrigerants include R-11, R-12, R-22, R-134A, R-407C and R-410A.
Referring to
Referring to
Referring to
Referring to
Referring to
The combination of the heat conductive fins 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244 and the conduit 250, and the combination of the heat conductive fins 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344 and the conduit 350 can maintain the battery cells within a desired temperature range, and in particular can maintain the battery cells at a temperature less than a threshold temperature level. In one exemplary embodiment, the desired temperature range is 15° Celsius −35° Celsius. In another exemplary embodiment, the threshold temperature level is 40° Celsius.
Referring to
Referring again to
The condenser 24 is provided to extract heat energy from the refrigerant flowing therethrough to cool the refrigerant. As shown, a conduit 32 is fluidly coupled between the condenser 24 and the compressor 22. After exiting the condenser 24, the refrigerant is pumped through the conduit 32 to the compressor 22.
The temperature sensor 36 is provided to generate a signal indicative of a temperature level of the electrically non-conductive oil 360 disposed in the housing 60 that is received by the microprocessor 40. The signal from the temperature sensor 36 is further indicative of a temperature level of the battery cells.
The fan 38 is provided to urge air past the condenser 24 to cool the condenser 24 in response to a control signal from the microprocessor 40. As shown, the fan 38 is disposed proximate to the condenser 24.
The microprocessor 40 is provided to control operation of the battery system 10. In particular, the microprocessor 40 is configured to generate a control signal for inducing the compressor 22 to pump refrigerant through the battery module 20 when the signal from the temperature sensor 36 indicates a temperature level of the electrically non-conductive oil is greater than a predetermined temperature level. Further, the microprocessor 40 is configured to generate another control signal for inducing the fan 38 to blow air across the condenser 24 when the signal from the temperature sensor 36 indicates the temperature level of the electrically non-conductive oil is greater than the predetermined temperature level.
Referring to
At step 390, the heat energy from the battery cell 72 is conducted into the electrically non-conductive oil 360 disposed in the housing 60.
At step 392, the heat energy from the electrically non-conductive oil 360 is conducted into first and second heat conductive fins 170, 270 disposed in the housing 60.
At step 394, first and second conduits 250, 350 receive first and second portions of a fluid and conduct heat energy from the first and second heat conductive fins 250, 350, respectively, into the fluid to cool the battery cell 72 in the housing 60.
Referring to
The battery module 420 has an identical structure as the battery module 20 discussed above.
The pump 422 is configured to pump a coolant through the conduit 428 into the battery module 420 in response to a control signal from the microprocessor 440. As shown, the conduit 428 is fluidly coupled between the pump 422 and the battery module 420, and the conduit 430 is fluidly coupled between the battery module 420 and the heat exchanger 424. After exiting the battery module 420, the coolant is pumped through the conduit 430 to the heat exchanger 424.
The heat exchanger 424 is provided to extract heat energy from the coolant flowing therethrough to cool the coolant. As shown, a conduit 431 is fluidly coupled between the heat exchanger 424 and the cold plate 425. After exiting the heat exchanger 424, the coolant is pumped through the conduit 431 to the cold plate 425.
The fan 437 is provided to urge air past the heat exchanger 424 to cool the heat exchanger 424 in response to a control signal from the microprocessor 440. As shown, the fan 437 is disposed proximate to the heat exchanger 424.
The cold plate 425 is provided to extract heat energy from the coolant flowing therethrough to further cool the coolant. As shown, a conduit 422 is fluidly coupled between the cold plate 425 and the reservoir 426. After exiting the cold plate 425, the coolant is pumped through the conduit 432 to the reservoir 426.
The reservoir 426 is provided to store at least a portion of the coolant therein. As shown, a conduit 434 is fluidly coupled between the reservoir 426 and the pump 422. After exiting the reservoir 426, the coolant is pumped through the conduit 434 to the pump 422.
The temperature sensor 436 is provided to generate a signal indicative of a temperature level of the electrically non-conductive oil, which is also indicative of the temperature level of the battery module 420, that is received by the microprocessor 440.
The refrigerant system 438 is provided to cool the heat exchanger 424 in response to a control signal from the microprocessor 440. As shown, the refrigerant system 438 is operably coupled to the cold plate 425.
The microprocessor 440 is provided to control operation of the battery system 410. In particular, the microprocessor 440 is configured to generate a control signal for inducing the pump 422 to pump refrigerant through the battery module 420 when the signal from the temperature sensor 436 indicates a temperature level of the electrically non-conductive oil is greater than a predetermined temperature level. Further, the microprocessor 440 is configured to generate another control signal for inducing the fan 437 to blow air across the heat exchanger 424 when the signal from the temperature sensor 436 indicates the temperature level of the electrically non-conductive oil is greater than the predetermined temperature level. Further, the microprocessor 440 is configured to generate another control signal for inducing the refrigerant system 438 to cool the cold plate 425 when the signal from the temperature sensor 436 indicates the temperature level of the electrically non-conductive oil is greater than the predetermined temperature level.
The battery module and the method for cooling the battery module provide a substantial advantage over other modules and methods. In particular, the battery module and the method provide a technical effect of cooling a battery cell in the battery module utilizing a non-conductive oil that contacts the battery cell in conjunction with a cooling manifold that cools the non-conductive oil.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof Therefore, it is intended that the invention not be limited to the particular embodiments disclosed for carrying this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms, first, second, etc. are used to distinguish one element from another. Further, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Number | Name | Date | Kind |
---|---|---|---|
3579163 | Cronin | May 1971 | A |
4390841 | Martin et al. | Jun 1983 | A |
5578393 | Haskins | Nov 1996 | A |
5582929 | Dechovich | Dec 1996 | A |
5606242 | Hull et al. | Feb 1997 | A |
5652502 | Van Phuoc et al. | Jul 1997 | A |
5658682 | Usuda et al. | Aug 1997 | A |
5796239 | Van Phuoc et al. | Aug 1998 | A |
5825155 | Ito et al. | Oct 1998 | A |
5982403 | Inagaki | Nov 1999 | A |
6016047 | Notten et al. | Jan 2000 | A |
6106972 | Kokubo et al. | Aug 2000 | A |
6353815 | Vilim et al. | Mar 2002 | B1 |
6362598 | Laig-Horstebrock et al. | Mar 2002 | B2 |
6441586 | Tate, Jr. et al. | Aug 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6515454 | Schoch | Feb 2003 | B2 |
6534954 | Plett | Mar 2003 | B1 |
6563318 | Kawakami et al. | May 2003 | B2 |
6724172 | Koo | Apr 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6829562 | Sarfert | Dec 2004 | B2 |
6832171 | Barsoukov et al. | Dec 2004 | B2 |
6876175 | Schoch | Apr 2005 | B2 |
6892148 | Barsoukov et al. | May 2005 | B2 |
6927554 | Tate, Jr. et al. | Aug 2005 | B2 |
6943528 | Scoch | Sep 2005 | B2 |
6967466 | Koch | Nov 2005 | B2 |
7012434 | Koch | Mar 2006 | B2 |
7039534 | Ryno et al. | May 2006 | B1 |
7061246 | Dougherty et al. | Jun 2006 | B2 |
7072871 | Tinnemeyer | Jul 2006 | B1 |
7098665 | Laig-Hoerstebrock | Aug 2006 | B2 |
7109685 | Tate, Jr. et al. | Sep 2006 | B2 |
7126312 | Moore | Oct 2006 | B2 |
7147045 | Quisenberry et al. | Dec 2006 | B2 |
7197487 | Hansen et al. | Mar 2007 | B2 |
7199557 | Anbuky et al. | Apr 2007 | B2 |
7250741 | Koo et al. | Jul 2007 | B2 |
7251889 | Kroliczek et al. | Aug 2007 | B2 |
7253587 | Meissner | Aug 2007 | B2 |
7315789 | Plett | Jan 2008 | B2 |
7321220 | Plett | Jan 2008 | B2 |
7327147 | Koch | Feb 2008 | B2 |
20010035739 | Laig-Horstebrock et al. | Nov 2001 | A1 |
20020130637 | Schoch | Sep 2002 | A1 |
20020169581 | Sarfert | Nov 2002 | A1 |
20030052690 | Schoch | Mar 2003 | A1 |
20030184307 | Kozlowski et al. | Oct 2003 | A1 |
20030232239 | Gow et al. | Dec 2003 | A1 |
20040000892 | Jae-Seung | Jan 2004 | A1 |
20040032264 | Schoch | Feb 2004 | A1 |
20040189257 | Dougherty et al. | Sep 2004 | A1 |
20050001627 | Anbuky et al. | Jan 2005 | A1 |
20050035742 | Koo et al. | Feb 2005 | A1 |
20050046388 | Tate, Jr. et al. | Mar 2005 | A1 |
20050100786 | Ryu et al. | May 2005 | A1 |
20050127874 | Lim et al. | Jun 2005 | A1 |
20050194936 | Cho | Sep 2005 | A1 |
20060097698 | Plett | May 2006 | A1 |
20060100833 | Plett | May 2006 | A1 |
20060111854 | Plett | May 2006 | A1 |
20060111870 | Plett | May 2006 | A1 |
20070035307 | Scoch | Feb 2007 | A1 |
20070046292 | Plett | Mar 2007 | A1 |
20070103120 | Plett | May 2007 | A1 |
20070120533 | Plett | May 2007 | A1 |
20070188143 | Plett | Aug 2007 | A1 |
20070236182 | Plett | Oct 2007 | A1 |
20080090137 | Buck et al. | Apr 2008 | A1 |
20080094035 | Plett | Apr 2008 | A1 |
20090029239 | Koetting et al. | Jan 2009 | A1 |
20090186265 | Koetting et al. | Jul 2009 | A1 |
20100104935 | Hermann et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2426779 | Mar 2012 | EP |
58084882 | May 1983 | JP |
H10223263 | Aug 1998 | JP |
H1126031 | Jan 1999 | JP |
11307139 | Nov 1999 | JP |
2000348781 | Dec 2000 | JP |
2001060466 | Mar 2001 | JP |
2007012486 | Jan 2007 | JP |
2008204761 | Sep 2008 | JP |
2009009853 | Jan 2009 | JP |
2009009889 | Jan 2009 | JP |
2009009889 | Jan 2009 | JP |
2009037934 | Feb 2009 | JP |
2009037934 | Feb 2009 | JP |
2009054297 | Mar 2009 | JP |
2009134936 | Jun 2009 | JP |
2009170258 | Jul 2009 | JP |
2010062130 | Mar 2010 | JP |
Entry |
---|
JP 2009009889 A English machine translation. |
U.S. Appl. No. 12/511,530, filed Jul. 29, 2009 entitled Battery Module and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/549,766, filed Aug. 28, 2009 entitled Battery Module and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/165,100, filed Jun. 30, 2008 entitled Battery Cell Assembly Having Heat Exchanger with Serpentine Flow Path. |
U.S. Appl. No. 12/164,780, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assembly with Heat Exchanger. |
U.S. Appl. No. 12/164,627, filed Jun. 30, 2008 entitled Liquid Cooled Battery Manifold Assembly with Flow Balancing Feature. |
U.S. Appl. No. 12/246,073, filed Oct. 6, 2008 entitled Battery Cell Carrier That Engages Side Walls of Active Cell. |
U.S. Appl. No. 12/164,445, filed Jun. 30, 2008 entitled Battery Module Having a Rubber Cooling Manifold. |
U.S. Appl. No. 12/258,696, filed Oct. 27, 2008 entitled Battery Module Having Cooling Manifold with Ported Screws and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/433,155, filed Apr. 30, 2009 entitled Cooling System for a Battery and a Method for Cooling the Battery System. |
U.S. Appl. No. 12/433,427, filed Apr. 30, 2009 entitled Cooling Manifold and Method for Manufacturing the Cooling Manifold. |
U.S. Appl. No. 12/433,534, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module. |
U.S. Appl. No. 12/433,397, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module. |
U.S. Appl. No. 12/164,741, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assemblies with Alignment-Coupling Features. |
U.S. Appl. No. 12/433,485, filed Apr. 30, 2009 entitled Battery Systems, Battery Module and Method for Cooling the Battery Module. |
U.S. Appl. No. 12/426,795, filed Apr. 20, 2009 entitled Frame Member, Frame Assembly and Battery Cell Assembly Made Therefrom and Methods of Making the Same. |
Number | Date | Country | |
---|---|---|---|
20110027625 A1 | Feb 2011 | US |