The present disclosure relates to battery modules including a plurality of cells.
In recent years, battery modules in each of which a plurality of batteries are housed in a case so as to output a predetermined voltage and have a predetermined capacity have been widely used as power sources for, for example, various equipment and vehicles. For these batteries modules, there is a newly employed technique of connecting general-purpose batteries in parallel or in series to form modules of battery assemblies each outputting a predetermined voltage and having a predetermined capacity and of variously combining such battery modules to comply with various applications. This module technique enables reduction in size and weight of battery modules by enhancing performance of batteries housed in the battery modules, and therefore, has advantages such as high flexibility in installing the battery modules in limited space of vehicles or the like (see, for example, Patent Document 1).
[Patent Document 1] Japanese Patent Publication No. H10-106521
However, with enhanced performance of batteries housed in battery modules, a short circuit occurring in one battery causes generation of heat and smoke, for example, in the battery and, when the influence of the generation of heat and smoke reaches other batteries in the same battery module, heat and smoke are generated in the entire battery module. The short circuit is considered to be caused in, for example, the following situation. A collision of a vehicle installed with a battery module or a fall of equipment installed with a battery module causes a sharp conductive material such as a nail or a conductive member constituting the battery module is pressed by the battery (where this situation will be hereinafter referred to as an external factor), thereby electrically connecting a positive electrode and a negative electrode to each other in the battery.
It is therefore an object of the present disclosure to provide a battery module with enhanced safety.
To achieve the object, a battery module according to the present disclosure has a configuration in which a holder for housing cells has an electric potential opposite to that of cell cases of the cells.
Specifically, a battery module according to the present disclosure is a battery module including: a plurality of batteries (where batteries used for the battery module will be hereinafter referred to as “cells”) connected in parallel; and a holder configured to house the cells, wherein in each of the cells, an electrode group including a positive electrode, a negative electrode, and a separator is housed in a cell case, the cell case is electrically connected to one of the positive electrode or the negative electrode to have a first electric potential, the holder includes a plurality of housings each housing an associated one of the cells, and has a second electric potential opposite to the first electric potential, and the cells are housed in the housings with the cell cases being insulated from the holder.
In this battery module, the cell case has a first electric potential, and the holder has a second electric potential opposite to the first electric potential. Accordingly, even when an internal short circuit occurs in a cell housed in the holder due to an external factor, an external short circuit occurs between the holder outside the cell and the surface of the cell, thereby causing charge current in the cell to be discharged outside the cell. Consequently, a short circuit current in the cell can be reduced, resulting in that heat generation is reduced and smoke or the like is hardly generated. In this manner, the safety can be enhanced.
In a battery module according to the present disclosure, even at an occurrence of a short circuit in a cell due to an external factor, generation of heat and smoke hardly occurs in the cell, thereby enhancing the safety.
a) is a cross-sectional view illustrating a state in which a sharp conductive material such as a nail penetrates a battery module in which a holder does not have an electric potential opposite to that of a cell case.
a) is a cross-sectional view illustrating a state in which a sharp conductive material such as a nail penetrates the battery module of the embodiment.
An embodiment of the present disclosure will be described in detail hereinafter with reference to the drawings. The present disclosure is not limited to the following embodiment. Various changes and modifications may be made without departing from the scope of the invention.
First, a cell for use in a battery module according to this embodiment will be described with reference to
As illustrated in
In this embodiment, the type of the cell 10 is not specifically limited, and may be a secondary battery such as a lithium ion battery or a nickel-metal hydride battery. The cell 10 is not limited to a cylindrical battery, and may have a square shape, for example.
Referring now to
As illustrated in
The holder 20 is preferably made of a thermally conductive material such as aluminium. Then, heat generated in the cells 10 can be quickly dissipated toward the holder 20, thereby effectively reducing a temperature rise of the cells 10.
In each of the cells 10, a positive electrode current collector plate (a second current collector plate) 30 for electrically connecting a positive electrode terminal 11 (a second electrode terminal) having a positive electric potential (a second electric potential) is provided at the positive electrode terminal 11, and a negative electrode current collector plate (a first current collector plate) 40 for electrically connecting a negative electrode terminal 12 (a first electrode terminal) having a negative electric potential (a first electric potential) is provided at the negative electrode terminal 12. The positive electrode current collector plate 30 is closely in contact with the cell 10 with a positive electrode holder 31 of, e.g., resin sandwiched therebetween. A flat-plate spacer 50 made of an elastic member is provided between the holder 20 and the negative electrode current collector plate 40. The positive electrode current collector plate 30 is provided with an external terminal (not shown) of one electrode (i.e., the positive electrode in this case) of the battery module 100. The negative electrode current collector plate 40 is provided with an external terminal (not shown) of the other electrode (i.e., the negative electrode in this case).
In a configuration in which the cells 10 are arranged with their polarities oriented in the same direction as described in this embodiment, the positive electrode current collector plate 30 is a positive electrode bus bar made of a conductive flat plate, thereby easily achieving parallel connection. Likewise, the negative electrode current collector plate 40 is a negative electrode bus bar made of a conductive flat plate, thereby easily achieving parallel connection. Each of the positive electrode current collector plate 30 and the negative electrode current collector plate 40 may be a circuit board having a wiring pattern which electrically connects the cells 10.
The case 60 has an exhaust chamber 70 as an internal space between the positive electrode current collector plate 30 and the case 60. The case 60 also has an outlet 61 through which the exhaust chamber 70 communicates with the outside. In this configuration, each of the positive electrode current collector plate 30 has a through hole in which the positive electrode terminal 11 of an associated one of the cells 10 is inserted so that the vent 8a communicates with the exhaust chamber 70. Then, gas from the cells 10 is released to outside the case 60 from the outlet 61 through the exhaust chamber 70.
Next, a method for connecting the holder 20 and the positive electrode current collector plate 30 will be described with reference to
As illustrated in
On the other hand, the flat-plate spacer 50 of an elastic member is provided between the holder 20 and the negative electrode current collector plate 40 as described above, resulting in that the holder 20 and the negative electrode current collector plate 40 are insulated from each other.
Now, advantages of the foregoing configuration will be described with reference to
As illustrated in
Advantages of the above external short circuit will be more specifically described with reference to
As illustrated in
On the other hand, in this embodiment, as illustrated in
In this embodiment, the holder 20, which is a necessary constituent of the battery module, has an electric potential opposite to that of the cell cases 7 of the cells 10. Thus, charge current in the cells 10 can be dominantly discharged to outside the cells 10 without providing an additional member. In addition, the use of the holder 20 made of a thermally conductive metal such as an aluminium block can enhance heat dissipation, thereby reducing the possibility of generation of smoke and combustion of the cells.
As described above, since the holder 20 has an electric potential opposite to that of the side surfaces of the cell cases 7, the safety of the battery module 100 can be enhanced.
In the foregoing description of this embodiment, the cell cases 7 of the cells 10 have a negative electric potential. Alternatively, the cell cases 7 may have a positive electric potential. In this case, by providing the holder 20 with a negative electric potential, advantages similar to those described above can be achieved. A method for providing the holder 20 with a negative electric potential may be a method of electrically connecting the negative electrode current collector plate 40 and the holder 20 to each other with a conductive screw or the like in the same manner described with reference to
In the battery module 100 of this embodiment, the cells 10 are connected in parallel. Thus, when the conductive material 90 penetrates one of the cells 10 so that a short circuit occurs between the holder 20 and the short circuit cell 10a as described above, an external short circuit occurs in the other cells 10b. Specifically, current from the other cells 10b collected in the positive electrode current collector plate 30 is not output from the external terminal (not shown) at the positive electrode of the battery module 100, but flows in the generated short circuit. That is, current from the other cells 10b returns to the cells 10 where the current originally flow, by way of the positive electrode current collector plate 30, the holder 20, the conductive material 90, the cell case 7 of the short circuit cell 10a, and the negative electrode current collector plate 40. In this manner, if the battery module 100 is left while being penetrated by the conductive material 90, no current is output from the external terminal at the positive electrode of the battery module 100 although the other cells 10b themselves are in normal conditions. Accordingly, the battery module 100 loses its function, and it becomes difficult to use a vehicle or equipment installed with the battery module 100.
A battery module having a configuration for solving such problems will be described with reference to
As illustrated in
In the manner described above, even if the conductive material 90 penetrates the cell 10 to cause a short circuit, current from the other cells 10b collected in the positive electrode current collector plate 30 temporarily flows in this short circuit, but a flow of current with a predetermined value or more causes the current limiter 91 to limit or block electrical conduction, resulting in that current from the other cells 10b collected in the positive electrode current collector plate 30 is output again from the external terminal at the positive electrode. Accordingly, even when the conductive material 90 penetrates the cell 10, the battery module 100 maintains its normal function, and a vehicle or equipment installed with the battery module 100 can be used. The current limiter 91 may be a rectifier such as a diode or a fuse, for example. The current limiter 91 only needs to be placed at a position where the current limiter 91 can limit or block electrical connection between the negative electrode terminal 12 and the negative electrode current collector plate 40, and may be placed in the negative electrode current collector plate 40 or the cells 10. In this embodiment, the current limiter 91 is located at the negative electrode, but may be located at the positive electrode. Specifically, the current limiter 91 may be placed at a position where the current limiter 91 can block electrical connection between the positive electrode terminal 11 and the positive electrode current collector plate 30. Even in this case, a flow of current with a predetermined value or more causes the current limiter 91 to block electrical conduction, and thereby, current from the other cells 10b collected in the positive electrode current collector plate 30 is output again from the external terminal at the positive electrode.
The present disclosure has been described based on the foregoing preferred embodiment. This embodiment do not limit the present disclosure, and may be variously changed or modified. For example, the holder 20 may electrically connect the positive electrode terminals 11 or the negative electrode terminals 12 together without providing the positive electrode current collector plate 30 or the negative electrode current collector plate 40. Specifically, the holder 20 may electrically connect the positive electrode terminals 11 of the cells 10 together. Then, the holder is provided with a positive electric potential without providing a connection member such as the screw 80a.
A battery module according to the present disclosure can have enhanced safety, and is useful for power sources for driving vehicles such as automobiles and electric motorcycles, mobile electronic equipment, and mobile communication equipment.
1 positive electrode (sheet)
2 negative electrode (sheet)
3 separator
4 electrode group
5 positive electrode lead
6 negative electrode lead
7 cell case
7
a resin film
8 sealing plate
8
a vent
9 gasket
10 cell
10
a short circuit cell
10
b other cells
11 positive electrode terminal (second electrode terminal)
12 negative electrode terminal (first electrode terminal)
20 holder
20
a end of holder
21 housing
30 positive electrode current collector plate (second current collector plate)
31 positive electrode holder
40 negative electrode current collector plate (first current collector plate)
50 spacer
60 case
61 outlet
70 exhaust chamber
80
a screw
90 conductive material
91 current limiter
92 internal short circuit
93 external short circuit
94 internal short circuit
100 battery module
Number | Date | Country | Kind |
---|---|---|---|
2011-001004 | Jan 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/007228 | 12/22/2011 | WO | 00 | 8/16/2012 |