This invention relates to razors, and more particularly to razors for wet shaving that include a battery-powered functionality.
In many small battery-operated devices, the batteries are replaceable by the user, and are inserted and removed from a battery compartment through an opening in a housing having a cover. It is necessary to mechanically secure the cover in place via a closing system so that the batteries do not fall out and the cover is not lost during use. Also, in the case of water-tight devices, the closure system provides a seal between the cover and the housing. It is also necessary to make electrical contact between the batteries and the electrical circuitry within the device, and to hold the batteries in place within the device. For many small battery-operated devices the closure system comprises a threaded connection. Since many small battery devices are made of plastic, the threaded connection is also plastic and can be somewhat fragile. As a result, the threaded closure system is subject to damage through repeated fastening and unfastening or if the connection is over torqued during tightening which a user may have a tendency to do since operation of the device is dependent on the connection. Therefore, there is a need for a closure system providing a mechanically secure connection on small battery-operated devices that signals the user when the closure system is adequately secure.
The present invention provides a simple, efficient mechanism for both securing a battery cover to the handle of a razor and at the same time providing a high reliability electrical contact between the battery and electronics of the razor. Preferred closing systems include very few parts and thus are easy and economical to manufacture and assemble. Moreover, some preferred closing systems are suitable for use with small, space saving handle designs and/or designs that includes seam lines between the battery cover and handle.
In one aspect, the invention features a battery operated razor comprising a housing including a grip portion (grip tube), a battery cover or shell and a closing system for fastening the battery cover to the grip tube. The grip tube is cylindrical and has an exterior wall defining a chamber having an interior wall and an open end. The battery cover is also cylindrical and has an exterior wall defining a cavity having an interior wall and an open end. The battery cover is removably mounted on the grip tube via the closing system and the grip tube chamber and battery cover cavity are configured to contain one or more batteries. The closing system comprises a first threaded portion at the grip tube chamber open end and a second threaded portion at the battery cover cavity open end mating with the first threaded portion. The closing system includes a first conductive component and a second conductive component. The first conductive component is slidably attached to the interior wall of the battery cover cavity and biased toward a predetermined axial position. The second conductive component is secured to the interior wall of the grip tube chamber;
The first conductive component comprises a contact surface facing and extending circumferentially about the battery cover cavity open end. The first conductive component contact surface comprises a first end and a second end opposite the first end and a kinked portion proximate the second end extending from the contact surface.
The second conductive component comprises a contact surface facing and extending circumferentially about the grip tube chamber open end. The second conductive component contact surface comprises a first end and a second end opposite the first end and a protrusion proximate the second end extending from the contact surface. As the first threaded portion at the grip tube chamber open end fastens to second threaded portion at the battery cover cavity open end during attachment of the battery cover to the grip tube, the first conductive component contact surface interfaces with the second conductive component contact surface such that the kinked portion of the first conductive component contact surface interferes with the second conductive component contact surface. The kinked portion slides circumferentially along the second conductive component contact surface deflecting the first conductive component axially. Once the kinked portion slides over the protuberance on the second conductive component contact surface an audible click is produced indicating that the attachment is complete.
In an alternate embodiment, the first conductive component comprises an L-shaped member extending circumferentially about the interior wall of the battery cover cavity proximate the battery cover open end providing a contact surface facing the open end. The first conductive component L-shaped member comprises a first end and a second end opposite the first end. The first end includes a vertical leg extending axially from the contact surface toward the open end of the cavity forming a first conductive component end stop and the second end includes a kinked portion proximate the second end extending axially away from the contact surface toward the battery cover open end. Similarly, the second conductive component comprises an L-shaped member extending circumferentially about the interior wall of the grip tube chamber and providing a contact surface facing the grip tube chamber open end. The L-shaped member comprises a first end and a second end opposite the first end. The first end includes a vertical leg extending axially from the contact surface away from the grip tube chamber open end forming a second conductive component end stop. The second end includes a protrusion proximate the second end extending from the contact surface, toward the grip tube chamber open end.
During attachment of the battery cover to the grip tube, the first conductive component contact surface interfaces with the second conductive component contact surface such that the kinked portion of the first conductive component contact surface interferes with the second conductive component contact surface. As the battery cover rotates relative to the grip tube, the kinked portion slides circumferentially along the second conductive component contact surface deflecting the first conductive component axially. Eventually the kinked portion slides over the protuberance on the second conductive component contact surface producing an audible click indicating that the attachment is complete. Either simultaneous with or shortly after the audible click, first conductive component end stop mates with the second conductive component end stop preventing further attachment of the cover to the grip tube.
In an alternate embodiment, the first conductive component comprises a first end, a second end and an elongate middle section therebetween, the elongate middle section is slidably attached to the interior wall of the battery cover. The first end comprises the L-shaped member previously described and the second end forms a U-shaped portion. The U-shaped portion has a first leg extending radially away from the elongate middle section to a bend and a second leg extending from the bend parallel to the first leg, back towards the elongate middle section. The second leg is attached to the interior surface of the battery cover allowing the first leg to deflect axially and to bias the first conductive component as it moves axially within the battery cover. The second leg includes a surface opposite the first leg providing a spring holder. The spring holder secures a spring for biasing the one or more batteries in grip tube chamber and battery cover cavity.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
a is a top view of a razor handle according to one embodiment.
b is a bottom view of the razor handle of
a is a perspective view of the grip tube of the razor handle of
b is a perspective view of the battery cover of the razor handle of
a is a perspective view of the subassembly of the electrical components contained in the grip tube.
b is a perspective view of the second conductive component.
c is a perspective view of the printed circuit board (PCB) and PCB carrier.
a, 6b, and 6c are different perspective views of the first conductive component removed from the battery cover.
Overall Razor Structure
Referring to
As shown in
The interface between the battery cover 16 and grip tube is sealed, e.g., by an O-ring, providing a water-tight assembly to protect the battery and electronics within the razor. The O-ring is generally mounted in groove 21 (
Modular Grip Tube Structure
As discussed above, the grip tube 14 (shown in detail in
This in turn simplifies manufacturing of “families” of products with different heads but the same battery-powered functionality. The grip tube is water-tight except for the opening 25 at the end to which the battery cover 16 is attached, and is preferably a single, unitary part. Thus, the only seal that is required to ensure water-tightness of the razor handle 10 is the seal between the grip tube 14 and the battery cover 16 provided by the O-ring. This single-seal configuration minimizes the risk of water or moisture infiltrating the razor handle and damaging the electrical components.
The grip tube 14 contains a subassembly 26, shown in
During assembly of the subassembly 26 shown in
The subassembly 26 is then installed into the grip tube chamber 11 so that it will be permanently retained therein. For example, the elongate section 84 of the second conductive component 80 may include protrusions or arms that engage corresponding recesses in the inner wall 13 of the grip tube 14 in an interference fit. In addition, the L-shaped member 88 of the second conductive component 80 is attached at the open end 25 of the grip tube 14 such that the second conductive component 80 contact surface 92 faces the opening 25 as shown in
The grip tube 14 also includes an actuator button 22. When the actuator button 22 is depressed, the underlying electronic switch 29 is contacted, which activates the circuitry of the PCB 30. Activation may be by a “push and release” on/off action or other desired action, e.g., push on/push off. The electronic switch 29 makes an audible “click” when actuated, giving the user feedback that the device has been correctly turned on. The switch is preferably configured to require a relatively high actuation force applied over a small distance (e.g., at least 4 N applied over about a 0.25 mm displacement). This switch arrangement, combined with the recessed, low profile geometry of button 22, tends to prevent the razor from being accidentally turned on during travel, or inadvertently turned off during shaving. Moreover, the structure of the switch/membrane/actuator member assembly provides the user with good tactile feedback.
Battery Cover Attachment
As discussed above, the battery cover 16 is removably attached to the grip tube 14 via the threaded connection 40 shown in
The grip tube 14 and the battery cover 16 are both made of plastic while the first and second conductive components 50, 80 respectively, are made of a conductive material such as metal. As shown in
The first conductive component 50 shown in
The second end 56 of the first conductive component 50 forms a U-shaped portion 70 shown in
During attachment of the battery cover 16 to the grip tube 14 as shown in
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
For example, while the razors described above include a vibration motor and provide a vibrating functionality, other types of battery-operated functionality may be provided, such as heating.
In some implementations, other types of battery shell attachment may be used. For example, the male and female threaded portions of the battery cover and grip tube may be reversed, so that the battery cover carries the male threaded portion and the grip tube carries the female threaded portion.
Some implementations include some of the features described above, but do not include some or all of the electronic components discussed herein. For example, in some cases the electronic switch may be replaced by a mechanical switch, and the printed circuit board may be omitted.
Accordingly, other embodiments are within the scope of the following claims.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2012/083919 | Nov 2012 | CN | national |