The present invention relates to a battery pack including multiple battery modules each housing a stacked body in which multiple secondary batteries are stacked, and a method of manufacturing the battery pack.
Japanese Patent Application Publication 2007-59088 discloses the following battery pack as a battery pack formed by combining multiple battery modules each housing multiple secondary batteries. In the battery pack, a voltage detection line is connected to an electrode tab of each of the secondary batteries housed in each of the battery modules forming the battery pack. The battery pack detects the voltages of the secondary batteries via the voltage detection wires, and controls charging and discharging of the secondary batteries housed in the battery modules forming the battery pack on the basis of the detected voltages.
However, in the battery pack described above, the voltage detection wires are connected respectively to the electrode tabs of the secondary batteries housed in the battery modules forming the battery pack. Thus, the number of voltage detection wires is large, and wiring work of the voltage detection wires is thereby cumbersome. Particularly, in a battery pack using flat-shaped secondary batteries, the number of secondary batteries forming the battery pack is generally increased. Thus, the number of voltage detection wires is further increased, and wiring work of the voltage detection wires is thereby cumbersome.
An object of the present invention is to provide a battery pack having multiple battery modules each housing a stacked body in which multiple secondary batteries are stacked, and a method of manufacturing such a battery pack, which are capable of reducing the number of voltage detection wires for detecting voltages of the respective secondary batteries housed in the battery modules forming the battery pack.
A first aspect of the present invention is a battery pack including: multiple battery modules each including a stacked body in which multiple secondary batteries are stacked, a pair of output terminals, and a voltage detection terminal which is used to detect terminal voltages of the respective secondary batteries and which has a rated current equal to or larger than a rated current of the pair of output terminals; and a bus bar electrically connecting the voltage detection terminals of the multiple battery modules to each other.
In addition, a second aspect of the present invention is a method of manufacturing a battery pack including multiple battery modules including: stacking multiple secondary batteries; obtaining a cell unit by electrically connecting electrode tabs of each of the multiple stacked secondary batteries respectively to a voltage detection terminal and a pair of output terminals, in conformity with an electrical circuit of the multiple battery modules, the voltage detection terminal used to detect terminal voltages of the respective secondary batteries and having a rated current equal to or larger than a rated current of the pair of output terminals; obtaining each of the multiple battery modules by housing the cell unit in a case; and stacking the multiple battery modules and electrically connecting the voltage detection terminals of the multiple battery modules to each other with a bus bar.
Specific embodiments to which the present invention is applied are described below in detail with reference to the drawings.
As shown in
As shown in
As shown in
The external member 31 of each single cell 30 is formed of, for example, a laminated film formed by laminating synthetic resin layers on both faces of a metal foil. Four sides of the external member 31 are thermal-fusion-bonded to form a flange 32 with the power generation element housed in the external member 31. Thus, the external member 31 houses the power generation element therein in a sealed manner.
Moreover, the positive plates and the negative plates forming the power generation element described above are connected to a positive tab 34 and a negative tab 35 led out to the outside from the external member 31, respectively, in the external member 31. The positive tab 34 and the negative tab 35 are both led out to the outside from a short side of the external member 31 on one end side in a longitudinal direction. Fixing holes 33 to which fixing pins of the spacers to be described later are respectively inserted are formed in short sides of the flange 32 which are on both end sides in the longitudinal direction.
In the cell unit 20, the four single cells 30A to 30D form a stacked body in which the four single cells 30A to 30D are stacked to be in direct contact with one another on main surfaces thereof. Moreover, the electrode tabs 34, 35 of the respective single cells 30A to 30D extend outward in a same direction orthogonal to the stacked direction (Z direction) of the single cells 30A to 30D. As shown in
The flange 32 of the first single cell 30A of the lowest stage is positioned between the first spacer 41 and the second spacer 42. Moreover, the flange 32 of the second single cell 30B is positioned between the second spacer 42 and the third spacer 43, and the flange 32 of the third single cell 30C is positioned between the third spacer 43 and the fourth spacer 44. Furthermore, the flange 32 of the fourth single cell 30D is positioned between the fourth spacer 44 and the fifth spacer 45. Note that, although not particularly illustrated, five spacers are fitted to end portions of the four single cells 30A to 30D where no electrode tabs 34, 35 are led out.
Moreover, as shown in
The external output positive terminal 60, the external output negative terminal 70, and the voltage detection terminal 80 are fixed to the first to fifth spacers 41 to 45 fitted to the end portions of the single cells 30A to 30D (specifically, to the flanges 32 on the one end side in the longitudinal direction). Thus, external forces inputted from the terminals 60, 70, 80 are not transmitted to the positive tabs 34 and the negative tabs 35 of the respective cells via the internal bus bars 61, 71, 81.
The electrode tabs 34, 35 of the single cells 30A to 30D are connected to the external output positive terminal 60, the external output negative terminal 70, and the voltage detection terminal 80 via the internal bus bars 61, 71, 81, and thus the single cells 30A to 30D form a connection configuration of two parallel two series as shown in
As shown in
It is desirable that the external output positive terminal 60, the external output negative terminal 70, and the voltage detection terminal 80 are formed of terminals through which currents corresponding to battery capacities of the respective single cells 30 housed in the battery module 10 can flow. Particularly, the embodiment uses, as the voltage detection terminal 80, a terminal having a rated current equal to or larger than those of the external output positive terminal 60 and the external output negative terminal 70 (or a terminal having a maximum allowable current equal to or larger than those of the external output positive terminal 60 and the external output negative terminal 70, the maximum allowable current being the maximum value of a current allowed to flow through the terminal). Although any terminal having a rated current equal to or larger than those of the external output positive terminal 60 and the external output negative terminal 70 can be used as the voltage detection terminal 80, manufacturing steps of the battery module 10 can be made simple by using the same terminal as the external output positive terminal 60 and the external output negative terminal 70 (i.e. a terminal having a rated current equal to those of the external output positive terminal 60 and the external output negative terminal 70).
The first spacer 41 is an almost-plate-shaped member made of a material having an excellent electric insulating property, such as a synthetic resin. As shown in
Moreover, each of the second to fourth spacers 42 to 44 shown in
Returning to
As shown in
As shown in
Moreover, in the embodiment, two battery modules 10 of the embodiment which are configured as described above can be combined as shown in
As shown in
Note that, in the embodiment, each of the external bus bars 910, 920, 930 is desirably made of such a material and in such a shape (cross-sectional shape, particularly) that currents corresponding to battery capacities of the single cells 30 housed in the battery modules 10A, 10B can flow therethrough. In the embodiment, the external bus bars 910, 920, 930 are configured such that a current equal to or larger than rated currents (or the maximum allowable current) of the external output positive terminals 60A, 60B, the external output negative terminals 70A 70B, and the voltage detection teuninals 80A, 80B can flow therethrough without causing defects such as heat generation. Specifically, as shown in
Moreover, as shown in
As shown in
Then, the voltage detection wire 911 connected to the external bus bar 910 and the voltage detection wire 931 connected to the external bus bar 930 are connected to the voltage sensor (not illustrated), and thus the voltages of the single cells 30E, 30F, 30I. 30J can be detected. Similarly, the voltage detection wire 921 connected to the external bus bar 920 and the voltage detection wire 931 connected to the external bus bar 930 are connected to the voltage sensor (not illustrated), and thus the voltages of the single cells 30G, 30H, 30K, 30L can be detected.
As described above, in the embodiment, the battery modules 10A, 10B forming the battery pack 90 are configured to include the voltage detection terminals 80A, 80B for voltage detection which has a rated currents equal to or larger than those of the external output positive terminals 60A, 60B and the external output negative terminals 70A, 70B, and the voltage detection terminals 80A, 80B of the battery module 10A, 10B are electrically connected to each other by the external bus bar 930. Thus, in the embodiment, the number of voltage detection wires for detecting the terminal voltages of the single cells 30E to 30H and the single cells 30I to 30L forming the battery modules 10A, 10B forming the battery pack 90 can be reduced to three (can be reduced to the minimum), which are the voltage detection wires 911, 921, 931. Thus, wiring work of the voltage detection wires can be made simple. In addition, since the number of voltage detection wires are reduced, the number of pins in a control substrate can be reduced and so on, thus achieving reduction in cost and space.
Furthermore, in the embodiment, the voltage detection terminals 80A, 80B are each formed of a terminal having a rated current equal to or larger than those of the external output positive terminals 60A, 60B and the external output negative terminals 70A, 70B (or having a maximum allowable current equal to or larger than those of the external output positive terminals 60A, 60B and the external output negative terminals 70A, 70B). Thus, the following effects can be obtained. Assume a case where there is a failure in one of the single cells forming, for example, the battery module 10A (or 10B) among the single cells 30E to 30H forming the battery module 10A and the single cells 30I to 30L forming the battery module 10B, and this failure causes increase in the amount of currents flowing to the working single cells, particularly to the single cells forming the other battery module 10B (or 10A). Even in such a case, troubles such as heat generation and breakage of the voltage detection terminal 80B (or 80A) of the other battery module 10B (or 10A) can be effectively prevented from occurring. Particularly, when the single cell forming the battery modules 10A, 10B fails due to a short circuit, an electric power charged in the failed single cell is outputted, and this causes a relatively large current to flow instantaneously. Even in such a case also, troubles such as heat generation and breakage of the voltage detection terminal 80 can be effectively prevented from occurring.
Moreover, in the embodiment, the external bus bar 930 electrically connecting the voltage detection terminals 80A, 80B to each other are configured such that a current equal to or larger than the rated current (or the maximum allowable current) of the voltage detection terminals 80A, 80B can flow therethrough. Accordingly, as described above, even when there is a failure in one of the single cells forming the battery modules 10A, 10B, troubles such as heat generation, breakage, and disconnection of the external bus bar 930 can be effectively prevented from occurring.
Furthermore, in the embodiment, the external output positive terminals 60A, 60B, the external output negative terminals 70A, 70B and the voltage detection terminals 80A, 80B are connected to each other by the external bus bars 910, 920, 930 by using the fixing bolts. Thus, the terminals 60A, 60B, 70A, 70B, 80A, 80B can be electrically connected to each other more easily.
Note that, in the embodiment described above, the single cells 30 correspond to secondary batteries of the present invention, the external output positive terminals 60, 60A, 60B and the external output negative terminals 70, 70A, 70B correspond to output terminals of the present invention, and the external bus bars 910, 920, 930 correspond to bus bars of the present invention.
The embodiment of the present invention has been described above. However, the embodiment is merely an example described to facilitate the understanding of the present invention, and the present invention is not limited to the embodiment. The elements disclosed in the embodiment described above are intended to include any types of design modifications and equivalents pertaining to the technical scope of the invention.
For example, in the embodiment described above, the battery module 10 having the two parallel two series connection configuration is used, and the battery pack 90 configured by combining the two battery modules 10 to have the connection configuration of four parallel two series is given as an example. However, the connection configuration of the battery modules forming the battery pack and the number of battery modules forming the battery pack are not particularly limited, and can be set as appropriate. For example, a configuration as shown in
Note that, for example, when the number of single cells 30 forming the battery module 10 which are connected in series is three in the embodiment described above, the number of voltage detection terminals 80 to be formed in the battery module 10 is set to a number corresponding to the number of single cells 30 connected in series. For example, when the number of single cells 30 connected in series is N (N is an integer equal to or larger than three), the number of voltage detection terminals 80 in the battery module 10 is N−1. Here, each battery module 10 has a connection configuration of L parallel N series, and when the number of battery modules forming the stacked body of the battery pack is K (K is an integer equal to or larger than two), the battery pack has a connection configuration of K×L parallel N series.
The present application claims the priority based on Japanese Patent Application No. 2009-197734 filed on Aug. 28, 2009, and the entire contents of this application is incorporated in the present application by reference.
The invention can reduce the number of voltage detection wires for detecting voltages of secondary batteries housed in multiple battery modules forming a battery pack, by electrically connecting voltage detection terminals of the battery modules by a bus bar.
Number | Date | Country | Kind |
---|---|---|---|
2009-197734 | Aug 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/061914 | 7/14/2010 | WO | 00 | 2/13/2012 |