Battery pack assembly having a status indicator for use during mechanical ventilation

Information

  • Patent Grant
  • 9364626
  • Patent Number
    9,364,626
  • Date Filed
    Tuesday, August 20, 2013
    11 years ago
  • Date Issued
    Tuesday, June 14, 2016
    8 years ago
Abstract
This disclosure describes methods and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation. Embodiments described herein seek to provide methods for indicating battery cell status on the exposed exterior of a battery assembly pack both when the battery is in use and when the battery is not in use during mechanical ventilation. Embodiments utilize power from the ventilator as well as power from the battery pack itself to light the indicators during periods of battery use and non-use, respectively. Embodiments described herein further seek to provide an apparatus indicating battery cell status on the exposed exterior of the battery pack assembly during mechanical ventilation. Embodiments described herein further seek to provide an apparatus for a battery pack assembly used during mechanical ventilation. Embodiments described herein seek to provide a system for a ventilation system with an inserted battery pack assembly.
Description
INTRODUCTION

A ventilator is a device that mechanically helps patients breathe by replacing some or all of the muscular effort required to inflate and deflate the lungs. Some ventilators are designed as transportable instruments that can provide ventilation to a patient while the patient is being transported between locations. As a transportable instrument, a ventilator needs constant power to provide ventilatory assistance both when the ventilator is stationary and when the ventilator is mobile. Ventilators typically achieve a constant power supply by employing an external power source or outlet when the ventilator is stationary and battery power when the ventilator is mobile.


One problem with powering a transportable ventilator is monitoring the charge on batteries used as a power source when the ventilator is mobile. Some batteries used in ventilators attempt to alleviate this concern by providing indicators on the outside of the battery. These indicators display the remaining charge in a given battery. The indicators, however, are typically located on a side of the battery that is not visible to the user when the battery is inserted into the ventilator. In other words, the user needs to remove the battery from the ventilator to view its remaining charge. Removing a battery pack when the ventilator is relying on battery power can risk the operation of the ventilator as well as the ultimate health of the ventilatory patient.


Apparatus and System for a Battery Pack Assembly Used During Mechanical Ventilation

This disclosure relates to an apparatus, method, and system for indicating battery cell status on a battery pack assembly used during mechanical ventilation. The battery cell status is displayed on the exposed exterior of the battery pack assembly so that a user can view battery cell status without removing the battery from the ventilator.


Embodiments described herein seek to provide methods for indicating battery cell status on the exposed exterior of a battery assembly pack both when the battery is in use and when the battery is not in use during mechanical ventilation. Embodiments utilize power from the ventilator as well as power from the battery pack itself to light the indicators during periods when the battery pack assembly is supplying power to the host and when the battery pack assembly is receiving power from a host.


Embodiments described herein seek to provide an apparatus indicating battery cell status on the exposed exterior of the battery pack assembly during mechanical ventilation.


Embodiments described herein seek to provide an apparatus for a battery pack assembly used during mechanical ventilation.


Embodiments described herein seek to provide a system for a ventilation system with an inserted battery pack assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 is a diagram illustrating a representative ventilator system utilizing an endotracheal tube for air delivery to a patient's lungs.



FIG. 2A is an illustration of the exterior of a battery pack assembly that can be used during mechanical ventilation from the LED end.



FIG. 2B is an illustration of the exterior of a battery pack assembly that can be used during mechanical ventilation from the connector end.



FIG. 3 is an illustration of a connector of a battery pack assembly that can be used during mechanical ventilation.



FIG. 4 is an illustration of a battery pack assembly that can be used during mechanical ventilation.



FIG. 5 is an illustration of a stand alone battery pack assembly that can be used during mechanical ventilation.



FIG. 6 is an illustration of a battery pack assembly that can be used during mechanical ventilation inserted in a host unit.



FIG. 7 is a flow chart of a method for indicating battery cell status on a battery pack assembly used during mechanical ventilation.



FIG. 8 illustrates a flow chart of a method for indicating battery cell status.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of devices, the present disclosure will discuss the implementation of these techniques for use in a mechanical ventilator system. The reader will understand that the battery pack assembly could be implemented in other technologies providing power by both one or more battery pack assemblies and a separate power supply.


The disclosure describes methods and apparatus for indicating battery cell status on the exterior of a battery pack assembly. The disclosure further describes a battery pack assembly used during mechanical ventilation. The disclosure discusses scenarios when the battery pack assembly is “in use” and when the battery pack assembly is “not in use.” Describing a battery pack assembly as “in use” means that the battery pack assembly inserted into a host is the source of power for the host, such as a ventilator. Describing a battery pack assembly as “not in use” means that a battery pack assembly inserted into a host is not the source of power for the host. When the battery pack assembly is “not in use”, the host is receiving power from another source (i.e. external power source or plug) or is off. During times when the battery pack assembly is “not in use” but the ventilator is receiving power from another source the battery pack assembly may or may not be being charged by the power supplied by the ventilator's power source.



FIG. 1 illustrates an embodiment of a ventilator 100 connected to a human patient 150. Ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient to the pneumatic system via an invasive patient interface 152.


Ventilation may be achieved by invasive or non-invasive means. Invasive ventilation, such as invasive patient interface 152, utilizes a breathing tube, particularly an endotracheal tube (ET tube) or a tracheostomy tube (trach tube), inserted into the patient's trachea in order to deliver air to the lungs. Non-invasive ventilation may utilize a mask or other device placed over the patient's nose and mouth. For the purposes of this disclosure, an invasive patient interface 152 is shown and described, although the reader will understand that the technology described herein is equally applicable to any invasive or non-invasive patient interface.


Airflow is provided via ventilation tubing circuit 130 and invasive patient interface 152. Ventilation tubing circuit 130 may be a dual-limb (shown) or a single-limb circuit for carrying gas to and from the patient 150. In a dual-limb embodiment as shown, a “wye fitting” 170 may be provided to couple the patient interface 154 to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing circuit 130.


Pneumatic system 102 may be configured in a variety of ways. In the present example, system 102 includes an expiratory module 110 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. Compressor 106 or another source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 to provide a gas source for ventilatory support via inspiratory limb 132.


One or more battery pack assemblies 110 may also be inserted into the ventilator at one or more locations. A battery pack assembly 110 inserted into the backplane of the compressor 106, so that the battery pack assembly 110 is communicatively connected with the compressor 106, can be used as an internal source of power for the ventilator. A battery pack assembly 110 inserted into the side of the ventilator can be used as a back-up battery pack assembly 110. In one embodiment, one or more battery pack assemblies 110 are inserted into the backplane of the compressor 106 and one or more battery pack assemblies are inserted into the side of the ventilator.


The pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 112 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 may be provided to enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). Controller 112 may include memory 114, one or more processors 118, storage 116, and/or other components of the type commonly found in command and control computing devices.


The memory 114 is computer-readable storage media that stores software that is executed by the processor 118 and which controls the operation of the ventilator 100. In an embodiment, the memory 114 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 114 may be mass storage connected to the processor 118 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 118. Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


The controller 112 issues commands to pneumatic system 102 in order to control the breathing assistance provided to the patient by the ventilator. The specific commands may be based on inputs received from patient 150, pneumatic system 102 and sensors, operator interface 120 and/or other components of the ventilator. In the depicted example, operator interface includes a display 122 that is touch-sensitive, enabling the display to serve both as an input and output device. The display 122 is configured to display information received from the battery pack assembly 110.


The controller 112 may also control the operation of battery pack assembly 110 provided with the pneumatic system 102. For example, in an embodiment the controller 112 may control the charging of the battery pack assemblies when they are not in use. Such control may include sensing the current charge state or states associated with the battery packs and charging them as needed based on the charge state and type of battery technology used (e.g., trickle charging or periodic charging as appropriate for the battery chemistry). Control may also include managing the transition between using power from the battery pack assemblies and other sources of power so that the ventilation of the patient is not interrupted or adversely affected.


In yet another embodiment, control may include monitoring and issuing alarms related to battery cell status. This may include issuing alarms or status notifications through the system's display 122 in addition to any information provided via the battery pack assemblies themselves. Such monitoring may also include communication between the battery pack assemblies and the controller 112. For example, the controller 112 may provide power and/or commands to the battery pack assembly 110 in addition to receiving information from the battery pack assemblies.


In yet another embodiment, control of ventilatory functions can be allocated between multiple controllers. For example, one controller could operate breathing assistance (not shown). Another controller could operate ventilatory battery charging and selection (not shown). Another controller could operate compressor charging and selection (not shown). Another controller could operate the displays (not shown).



FIG. 2A-2B provide views of the battery pack assembly from the Battery Pack Status Indicator Panel end and from the connector end, respectively.



FIG. 2A illustrates a view of a battery pack assembly from the Battery Pack Assembly Status Indicator Panel end. The battery pack assembly is enclosed by a battery enclosure 202. The battery enclosure 202 surrounds the battery pack assembly and protects the internal circuitry. At one end of the battery pack assembly is the Battery Pack Assembly Status Indicator Panel 204. As discussed herein, the Battery Pack Assembly Status Indicator Panel 204 is visible to the user without requiring the user to remove the inserted battery pack assembly to view the information displayed on the Battery Pack Assembly Status Indicator Panel 204.



FIG. 2B illustrates a view of a battery pack assembly from the connector end. The battery pack assembly is enclosed by a battery enclosure 210. The battery enclosure 210 surrounds the battery pack assembly and protects internal circuitry. At the other end of the battery pack assembly is the connector 208. The connector 208 is situated within a notch 212 of the of the battery enclosure 210. The notch 212 is designed to fit into a mating connector at the ventilator or at the compressor. As discussed herein, the connector 208 is communicatively coupled with the mating connector at the ventilator or at compressor 106. The connector 208 is slid into the mating connector on the compressor 106 when the battery pack is installed as the internal battery. The connector 208 is slid into the mating connector on the side of the ventilator when installed as an external backup battery.



FIG. 3 provides a more detailed view of the connector 208. The connector 300 is surrounded by a protective shroud 302. The shroud 302 protects the pins 304 and blades 306 of the connector 208. The blades 306 provide a mating cavity for a mating connector at the ventilator or at the compressor. The pins 304 receive analog input and provide for serial communication, temperature monitoring, external lamp control, and Vcc standby current between the connector 208 and the mating connector at the ventilator or at the compressor. The pins 304 include + and − power pins. The + and − power pins are capable of accepting charge provided by a mating connector or driving a load.



FIG. 4 illustrates another embodiment of a battery pack assembly 400. The battery pack assembly 400 includes a battery pack 406. In one embodiment, the battery pack 406 contains battery cells that are wired to produce a nominal cell voltage that may deviate based on the state-of-charge and temperature of the battery cells. The battery cells in the battery pack 406 can be composed of any suitable material/battery chemistry including but not limited to lithium ion manganese.


The battery pack assembly 400 also includes a connector 404 such as the connector 300 described in FIG. 3. The connector 404 is communicatively coupled to the mating connector 410 at the ventilator or at the compressor. As discussed above, the connector 404 contains return and signal pins for communication with the mating connector 410. The connector 404 communicates battery cell status information to electronics 430 of the ventilator through a mating connector 410 at the ventilator or at the compressor. In one embodiment, electronics 430 of the ventilator include a two wire system management bus. The electronics 430 of the ventilator is further configured to interrogate the fuel gauge electronics 414 about the battery cell status information through the connector 404. Battery cell status information can include state-of charge, battery current, voltage, assembly number, revision, number of discharges, and number of charges. The connector 404 contains individual pins 304 each of which correspond to each indicator 416, 418, 420, 422, 424, and 426 contained in the Battery Pack Assembly Status Indicator Panel 408. The individual pins 304 allows the ventilator to control and/or directly power the indicators 416, 418, 420, 422, 424, and 426 when the battery pack assembly 400 is inserted into the ventilator and is not use.


In one embodiment, the battery pack assembly 400 is “hot-swappable” meaning that a battery pack assembly may be removed or inserted at any time without adversely affecting the operation of the ventilator. In one embodiment of a “hot-swappable” battery pack assembly, the pins in the mating connector 410 are different lengths so that some pins are short pins. When the battery pack assembly 400 is removed, the mating connector 410 disconnects from the connector 404 first at the connections between the short pins of the mating connector 430 and the pins of the connector 404. Disconnecting the short pins of the mating connector 430 from the connector 404 sends a signal to the ventilator controller indicating impending pack removal. The controller can react by disconnecting power from the exiting battery and reconnecting or to another battery. Disconnecting power on other pins of the battery connector is important to protect from arcing currents, potentially damaging to the contacts. This signal may also be used to disable other pins of the connector to protect against any electrical interference that could be caused during the making/breaking of contact between the pins of the connectors. A similar signal may be generated when detecting the insertion of a battery pack assembly into the ventilator.


The battery pack assembly 400 also includes electronics 402. The electronics 402 are controlled by circuits. In one embodiment, the circuits are fuel gage and safety integrated circuit devices manufactured by Texas Instruments. The electronics 402 further include safety electronics 412 and fuel gauge electronics 414.


The fuel gauge electronics 414 are configured to monitor the state of charge of the battery pack 406. The fuel gauge electronics 414 receive information about battery charge from the battery pack 406. When the battery pack assembly 400 is not in use by the ventilator, the fuel gauge electronics determine which of the charge indicators 418, 420, 422, and 424 are lit in response to a depressed test switch 428.


As described with reference to FIG. 8 below, the fuel gage electronics 414 also protect the battery pack 406 against over-discharge. The fuel gage electronics 414 send the battery pack cell status to the electronics 430 of the ventilator through the connector 404. If the electronics 430 of the ventilator detects a low voltage, the electronics 430 of the ventilator disconnects the ventilator from the battery pack assembly 400 and connects to a different battery pack assembly. If the battery pack 406 were somehow discharged further, the battery pack assembly 400 will disconnect.


The fuel gage electronics 414 also monitor the charge of the battery pack 406 so that, if the charge exceeds an unsafe level the battery pack 406 will disconnect from any charging source. In one embodiment, the battery pack 406 is charged to an amount of about 100 Watts/hrs. Furthermore, the battery pack 406 may have a back up detection of failure and a fuse may be permanently opened if the charge goes beyond the amount.


The fuel gage electronics 414 are further configured to alert a user when the battery pack assembly 400 has undergone fault. Fault can occur as a result of change in battery temperature, voltage, discharge, charge, or current. By means of example and not limitation, a thermistor can be used to detect increased temperature in the battery pack assembly 400 and can communicate an increased temperature fault to the fuel gage electronics 414. The fuel gage electronics 414 then communicate the fault to the electronics 430 of the ventilator through the connector 404 and the mating connector 404. The electronics of the ventilator 430 provide charge to light a fault indicator 426 on the LED fuel gauge 408 on the battery pack assembly 400.


The safety electronics 412 protect the internal circuitry and cells of the Battery Pack 406. The safety electronics 412 are wired with protection circuitry to prevent over-charge and over-discharge of the battery pack 406.


The battery pack assembly 400 further includes a Battery Pack Assembly Status Indicator Panel 408. The Battery Pack Assembly Status Indicator panel 408 includes indicators 416, 418, 420, 422, 424, and 426 and test switch 428. The indicators 416, 418, 420, 422, 424, and 426 and test switch 428 are located on the exposed exterior of the battery pack assembly 400 so that the indicators 416, 418, 420, 422, 424, and 426 and test switch 428 are visible to a user without requiring the user to disconnect the battery pack assembly 400 from the host. In one embodiment, the capacity indicators 418, 420, 422, 424 display approximate charge of the battery pack 406 and the fact that the battery pack 406 is being charged. While four rectangular indicators are illustrated in this example, any number of capacity indicators of any shape can be used. The capacity indicators 418, 420, 422, 424 continuously display available charge of the battery pack 406 in green when the battery pack assembly 400 is in use by the ventilator. While the color green is used in this example any color may be used to display battery charge. Furthermore, if a different type of display is used, such as an alpha-numeric display, the display may be, for example, numeric to correspond with the type of display. When the battery pack assembly 400 is not in use by the ventilator, the available charge may be displayed in response to a user depressing a test switch 428.


In an embodiment, each of the capacity indicators 418, 420, 422, 424 represents a percentage of full capacity of battery charge. The percentage may be based on the absolute capacity or based on an effective or usable capacity range noting that in some battery chemistries it is desirable to maintain the battery within a range (e.g., between 30% and 95% of absolute charge). In one embodiment, each of the capacity indicators 418, 420, 422, 424 represents a quarter of the full (or effective) capacity of battery charge, although any percentage of charge can be used. The bottom capacity indicator 424 does not light until battery charge has reached 25%, the second capacity indicator 422 does not light until the battery charge has reached 50%, and the third capacity indicator 420 does not light until the battery charge has reached 75%. The top capacity indicator 418 represents 100% charge and so it does not light until charging is complete and the battery has reported end of charge state. While the present embodiment contemplates lighting the capacity indicators 418, 420, 422, 424 from bottom to top during charge, any sequence of lighting the capacity indicators is contemplated in the scope of the invention.


A battery pack can be charged by either a ventilator when inserted into the ventilator or an external charger when not inserted into the ventilator. The following example discusses charge by a ventilator when the battery pack is inserted into the ventilator. Similar mechanisms can be utilized by an external charger charging a stand alone battery pack assembly. In an embodiment, certain indicators may be used to indicate when a battery pack assembly is charging. For example, during charge, the two capacity indicators that would indicate a cumulative 50% charge level are constantly lit. In one embodiment, the two capacity indicators that indicate a cumulative 50% charge are the two bottom capacity indicators 424 and 422. The remaining capacity indicators 418 and 420 are under control of the ventilator during charge and flash to indicate charging activity. For example, charging from 60% charge upwards would have the bottom two capacity indicators 424 and 422 constantly lit and the two above capacity indicators 418 and 420 would flash in sequence from 420 to 418. As discussed above, if the capacity indicators are instead configured to light from top to bottom, this sequence would be reversed so that the top two capacity indicators 418 and 420 would be constantly lit during charge and the bottom two capacity indicators 422 and 424 would flash in sequence from 422 to 424.


The Battery Pack Assembly Status Indicator Panel 408 also includes an in-use indicator 416. The in-use indicator 416 is lit when the battery pack assembly 400 is in use by the ventilator. When the battery pack assembly 400 is in use, the electronics of the battery pack assembly 400 provide current 404 to light the in-use indicator 416. For example, the in-use indicator 416 may be lit to white when the battery pack assembly 400 is in use. However, any lighting color contemplated may be used. Furthermore, the in-use indicator 416 can be any shape or size.


The Battery Pack Assembly Status Indicator Panel 408 also includes a fault indicator 426. As discussed above, the fault indicator 426 is lit when the battery pack assembly 400 undergoes fault. Fault can occur when an out-of-bounds condition results, for example, and is not limited to the following parameters: change in battery temperature, voltage, discharge, charge, or current. When a fault occurs, the safety electronics 412 communicate the fault to the electronics 430 of the ventilator through the connector 404 and the mating connector 404. The electronics of the ventilator 430 provide the power necessary to light a fault indicator 426 on the Battery Pack Status Indicator Panel 408. The fault indicator 426 can be lit to any color and can be of any shape or size.


The Battery Pack Status Indicator Panel 408 also includes a test switch 428. The test switch 428 allows a user to view the remaining charge of a battery pack assembly 400 when the battery pack assembly 400 is not inserted into the ventilator 400. In other words, the test switch 428 allows a user to view the remaining charge of a stand alone battery pack assembly. When the test switch 428 is depressed, the electronics 402 of the battery pack assembly 400 momentarily activate the indicators 418, 420, 422, 424, and 426 to display the battery cell status information.



FIG. 5 illustrates an embodiment of a stand alone battery pack assembly 500. A stand alone battery pack assembly 500 is a battery pack assembly that is not inserted into a host, such as a ventilator. The stand alone battery pack assembly 500 can be charged by inserting the battery pack assembly 500 into a host or by inserting the battery pack assembly 500 into an external charger.


The stand alone battery pack assembly 500 depicts an in-use indicator 502 such as the in-use indicator described in FIG. 4. As discussed above, the in-use indicator is lit when the stand alone battery pack assembly 500 is inserted in and being used as a power source by a host (i.e. ventilator).


The stand alone battery pack assembly 500 also includes capacity indicators 504. The capacity indicators 504 display the battery charge as described in FIG. 4. The capacity indicators 504 are located on the exterior of the stand alone battery pack assembly 500. Displaying the capacity indicators on the exterior of the stand alone battery pack assembly 500 allows the indicators to remain visible to a user if the stand alone battery pack assembly 500 is installed into a host without requiring the user to remove the battery pack assembly 500 from the host. The capacity indicators can utilize any display technology such as LED bar indicators, alpha-numeric display, or any other display technology. Furthermore, the stand alone battery pack assembly 500 can include any number of capacity indicators 504 and the capacity indicators 504 can be any shape or size.


The stand alone battery pack assembly 500 also includes a fault indicator 506. The fault indicator 506 is lit when the battery has undergone fault as discussed with regard to FIG. 4.


The stand alone battery pack assembly 500 also includes a test switch 508. The test switch 508 allows a user to test the capacity of the battery pack assembly 500 when the battery pack assembly 500 is not in use by the ventilator. The test switch 528 can be any type of switch including but not limited to a mechanical snap-action switch or a membrane switch. When the user depresses the test switch 528, the capacity indicators 504 are momentarily lit as described with regard to FIG. 4.



FIG. 6 depicts a battery pack assembly 500 installed in a host unit 600. In one embodiment, the host unit is a ventilator. The ventilator is a transportable instrument 600 and, as a transportable unit, relies on power provided by one or more battery pack assemblies 606 inserted into the host unit when the host unit is not connected to wall power. In one embodiment, the battery pack assemblies 606 are inserted into both the ventilator subsystem 602 and the compressor option subsystem 604. The one or more battery pack assemblies 606 inserted into the ventilator subsystem 602 are inserted so that the connector 404 of the battery pack assembly 400 connects with a mating connector 410 at the ventilator. The one or more battery pack assemblies 606 inserted into the compressor option subsystem 604 are inserted so that the connector 404 of the battery pack assembly 400 connects with a mating connector 410 communicatively coupled to the compressor 106.


The one or more inserted battery pack assemblies 606 include an in-use indicator 502, capacity indicators 504, a fault indicator 506, and a test switch 508 that are visible to a user of the ventilator without requiring the user the remove the battery pack assembly 500 to view the display. Multiple battery pack assemblies 606 allow a user to view the battery cell status information of different battery pack assemblies and, consequentially, have more options in powering the ventilator. In one embodiment, three battery pack assemblies 606 are inserted into the ventilator subsystem as back-up battery pack assemblies and three battery pack assemblies 606 are inserted into the compressor option subsystem 604 as the internal power source.



FIG. 7 illustrates a flow chart of a method for indicating battery cell status. At step 700 information about battery cell status is determined by the fuel-gage received from the battery pack at the electronics of the battery pack. As discussed above, information about battery cell status can include state of charge, battery current, voltage, assembly number, revision, number of discharges, number of charges, date, in-use status, and fault.


At step 702 a determination is made whether the battery pack assembly is receiving power from a host, such as a ventilator. A battery pack assembly is receiving power from a ventilator when the battery pack assembly is inserted into the ventilator and the ventilator is connected to wall both turned on and receiving power from an external power source. A battery pack assembly is not receiving power from a ventilator when the battery pack assembly is in use providing power to the ventilator. A battery pack assembly is also not receiving power from a ventilator when the battery pack assembly is not inserted into the ventilator. This can occur when the battery pack assembly is a stand alone battery pack assembly 500 or when the battery pack assembly is being charged by an external charger.


At step 704 the battery cell status information is sent to the electronics, e.g., the controller, of the ventilator if the battery pack assembly is receiving power from the ventilator. As discussed above, the battery cell status information is sent to the electronics of the ventilator through a connector communicatively coupled to a mating connector at the ventilator or at the compressor.


At step 706 the electronics of the ventilator provide continuous power to the LED indicators. This continuous charge allows the LED indicators to remain lit while the battery pack assembly is receiving power from the ventilator.


At step 708 the method proceeds from step 700 in a situation where the battery pack assembly is not receiving power from the ventilator. At step 708 the electronics of the battery pack assembly provide power to the LED indicators so that they display the current charge state of the battery pack assemblies. In one embodiment, the charge is provided in response to a depressed test switch when the battery pack assembly is a stand alone battery pack assembly. When the test switch is depressed, the electronics of the battery pack assembly provide a momentary charge that light up the LED indicators. The momentary charge allows a user to view the battery cell status information displayed by the indicators without significantly draining the battery by requiring continuous charge. In another embodiment, the battery pack assembly is in use and the charge is provided on a continual basis.


At step 710, the method concludes when the LED indicators are lit to reflect the battery cell status information. Specifically, the in-use indicator will be lit when the battery pack assembly is being used by the ventilator as a source of power. The in-use indicators, as well as the other indicators, will be continuously lit when the battery pack assembly is in use. The indicators will be visible to a user without requiring the user to remove the battery pack assembly from the host. In another embodiment, when the battery pack assembly is not in use and is receiving power from the ventilator, the capacity indicators will continuously light to reflect the amount of charge remaining in the battery pack. The fault indicator will light if the battery has undergone a fault. The in-use indicator, however, will not be lit. As is the case when the battery pack assembly is in use, when the battery pack assembly is not in use and is receiving power from the ventilator, the indicators are visible to a user without requiring the user to remove the battery pack assembly from the host. In another embodiment, when the battery pack assembly is a stand alone battery pack assembly, the capacity indicators only light temporarily in response to a depressed test switch.



FIG. 8 illustrates a flow chart of a method for indicating battery cell status. At step 800 the electronics 430 of the ventilator detect a battery cell status of a battery pack assembly, such as voltage. As discussed above, information about battery cell status can include state of charge, battery current, voltage, assembly number, revision, number of discharges, number of charges, date, in-use status, and fault.


At step 802 a determination is made that the battery cell status indicates that the battery pack assembly has a low voltage.


At step 804, the ventilator disconnects from the first battery pack assembly.


At step 806, the ventilator connects to a second battery pack assembly.


It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible.


While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A method for maintaining charge to a ventilation system using more than one battery pack assemblies, the method comprising: receiving a first cell status for a first battery pack assembly, wherein the first cell status for the first battery pack assembly is displayed on a first status indicator on an exposed exterior of the first battery pack assembly, and wherein the first cell status indicates information about the first battery pack assembly;detecting low voltage information in the first cell status;disconnecting the ventilation system from the first battery pack assembly;connecting the ventilation system to a second battery pack assembly; anddisplaying a second cell status for the second battery pack assembly on a second status indicator, wherein the second cell status indicates information about the second battery pack assembly, and wherein the second cell status indicates different battery information than the first cell status.
  • 2. The method of claim 1, wherein a battery pack assembly includes one or more battery pack cells.
  • 3. The method of claim 1, wherein the first cell status includes information about at least one of: state of charge, battery current, voltage assembly number revision, number of discharges, number of charges, date, in-use status, and fault.
  • 4. The method of claim 1, wherein an in-use indicator on the first battery pack assembly indicates that the first battery pack assembly is in-use by the ventilation system.
  • 5. The method of claim 1, wherein a not-in-use indicator on the first battery pack assembly indicates that the first battery pack assembly is not-in-use by the ventilation system.
  • 6. The method of claim 1, wherein an in-use indicator on the second battery pack assembly indicates that the second battery pack assembly is in-use by the ventilation system.
  • 7. The method of claim 1, wherein a not-in-use indicator on the second battery pack assembly indicates that the second battery pack assembly is not-in-use by the ventilation system.
  • 8. The method of claim 5, wherein upon disconnecting the ventilation system from the first battery pack assembly, sending an indication to the not-in-use indicator on the first battery pack assembly to illuminate.
  • 9. The method of claim 4, wherein upon disconnecting the ventilation system from the first battery pack assembly, sending an indication to the in-use indicator on the first battery pack assembly to remove illumination.
  • 10. The method of claim 6, wherein upon connecting the ventilation system to a second battery pack cell, sending an indication to the in-use indicator on the second battery pack assembly to illuminate.
  • 11. The method of claim 7, wherein upon connecting the ventilation system to the second battery pack assembly, sending an indication to the not-in-use indicator on the second battery pack assembly to remove illumination.
  • 12. A system for mechanical ventilation, the system comprising one or more battery pack assemblies inserted into a ventilation system, the system further comprising: a pneumatic system for circulating breathing gases to and from a patient, the pneumatic system further comprising a compressor for pressurizing gases;a controller for controlling operation of the one or more inserted battery pack assemblies, wherein the controller is further configured to: receive a first cell status for a first battery pack assembly, wherein the first cell status for the first battery pack assembly is displayed on a first status indicator on an exposed exterior of the first battery pack assembly, and wherein the first cell status indicates information about the first battery pack assembly;receive low voltage information in the first cell status;disconnect the ventilation system from the first battery pack assembly;connect the ventilation system to a second battery pack assembly anddisplay a second cell status for the second battery pack assembly on a second status indicator, wherein the second cell status indicates information about the second battery pack assembly, and wherein the second cell status indicates different battery information than the first cell status.
  • 13. The system of claim 12, wherein a battery pack assembly includes one or more battery pack cells.
  • 14. The system of claim 12, wherein the first cell status includes information about at least one of: state of charge, current, voltage assembly number revision, number of discharges, number of charges, date, in-use status, and fault.
  • 15. The system of claim 12, wherein the first status indicator indicating the first cell status of the first battery pack assembly is on an LED fuel gauge.
  • 16. The system of claim 12, wherein the first status indicator indicating the first cell status of the first battery pack assembly is on an LED fuel gauge.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/757,124, filed Apr. 9, 2010, now issued U.S. Pat. No. 8,547,062, which claims the benefit of U.S. Provisional Application No. 61/266,012, filed Dec. 2, 2009, which applications are hereby incorporated by reference. This application claims the benefit of U.S. Provisional Application No. 61/266,008, filed Dec. 2, 2009, which application is hereby incorporated by reference.

US Referenced Citations (392)
Number Name Date Kind
3796951 Joseph Mar 1974 A
4497881 Bertolino Feb 1985 A
4559456 Yamamoto et al. Dec 1985 A
4662736 Taniguchi et al. May 1987 A
4752089 Carter Jun 1988 A
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4965462 Crawford Oct 1990 A
5015544 Burroughs et al. May 1991 A
5057822 Hoffman Oct 1991 A
5072737 Goulding Dec 1991 A
5118962 Ishii et al. Jun 1992 A
5149603 Fleming et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5153496 LaForge Oct 1992 A
5156931 Burroughs et al. Oct 1992 A
5159272 Rao et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5216371 Nagai Jun 1993 A
5237987 Anderson et al. Aug 1993 A
5244754 Bohmer et al. Sep 1993 A
5256500 Ishimoto Oct 1993 A
5258901 Fraidlin Nov 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5283137 Ching Feb 1994 A
5299568 Forare et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5306956 Ikeda et al. Apr 1994 A
5308715 Aronne May 1994 A
5315228 Hess et al. May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5348813 Bohmer et al. Sep 1994 A
5350640 Masui Sep 1994 A
5351522 Lura Oct 1994 A
5357946 Kee et al. Oct 1994 A
5368019 LaTorraca Nov 1994 A
5369802 Murray Nov 1994 A
5372898 Atwater et al. Dec 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5389470 Parker et al. Feb 1995 A
5390666 Kimm et al. Feb 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5418085 Huhndorff et al. May 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5448152 Albright Sep 1995 A
5449567 Yeh Sep 1995 A
5460901 Syrjala Oct 1995 A
5478665 Burroughs et al. Dec 1995 A
5496658 Hein et al. Mar 1996 A
5513631 McWilliams May 1996 A
5514946 Lin et al. May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5525439 Huhndorff et al. Jun 1996 A
5531221 Power Jul 1996 A
5542415 Brady Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5567541 Rouhani Oct 1996 A
5596278 Lin Jan 1997 A
5596984 O'Mahoney et al. Jan 1997 A
5610497 Croughwell Mar 1997 A
5630411 Holscher May 1997 A
5632270 O'Mahoney et al. May 1997 A
5635813 Shiga et al. Jun 1997 A
5640150 Atwater Jun 1997 A
5641587 Mitchell et al. Jun 1997 A
5645048 Brodsky et al. Jul 1997 A
5656919 Proctor et al. Aug 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5677077 Faulk Oct 1997 A
5715812 Deighan et al. Feb 1998 A
5738954 Latella et al. Apr 1998 A
5762480 Adahan Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5789100 Burroughs et al. Aug 1998 A
5791339 Winter Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5813399 Isaza et al. Sep 1998 A
5825100 Kim Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5861812 Mitchell et al. Jan 1999 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5867007 Kim Feb 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884623 Winter Mar 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5934274 Merrick et al. Aug 1999 A
5939799 Weinstein Aug 1999 A
5978236 Faberman et al. Nov 1999 A
6024089 Wallace et al. Feb 2000 A
6041780 Richard et al. Mar 2000 A
6045398 Narita et al. Apr 2000 A
6047860 Sanders Apr 2000 A
6054234 Weiss et al. Apr 2000 A
6076523 Jones et al. Jun 2000 A
6084380 Burton Jul 2000 A
6084382 Hite Jul 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6135106 Dirks et al. Oct 2000 A
6142150 O'Mahony et al. Nov 2000 A
6153947 Rockow et al. Nov 2000 A
6156450 Bailey Dec 2000 A
6161539 Winter Dec 2000 A
6184656 Karunasiri et al. Feb 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6232782 Kacprowicz et al. May 2001 B1
6259171 Cheng Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6304005 Aoki et al. Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6330176 Thrap et al. Dec 2001 B1
6357438 Hansen Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6366054 Hoenig et al. Apr 2002 B1
6369838 Wallace et al. Apr 2002 B1
6384491 O'Meara May 2002 B1
6412483 Jones et al. Jul 2002 B1
6439229 Du et al. Aug 2002 B1
6467478 Merrick et al. Oct 2002 B1
6509657 Wong et al. Jan 2003 B1
6546930 Emerson et al. Apr 2003 B1
6553991 Isaza Apr 2003 B1
6557553 Borrello May 2003 B1
6571795 Bourdon Jun 2003 B2
6603273 Wickham et al. Aug 2003 B1
6621250 Ohkubo et al. Sep 2003 B1
6622726 Du Sep 2003 B1
6639385 Verbrugge et al. Oct 2003 B2
6644310 Delache et al. Nov 2003 B1
6668824 Isaza et al. Dec 2003 B1
6675801 Wallace et al. Jan 2004 B2
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6814074 Nadjafizadeh et al. Nov 2004 B1
6866040 Bourdon Mar 2005 B1
6891352 Miyazaki et al. May 2005 B2
6899103 Hood et al. May 2005 B1
6924567 Killian et al. Aug 2005 B2
6952084 Bruwer Oct 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6979502 Gartstein et al. Dec 2005 B1
7005835 Brooks et al. Feb 2006 B2
7009401 Kinoshita et al. Mar 2006 B2
7036504 Wallace et al. May 2006 B2
7077131 Hansen Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7117438 Wallace et al. Oct 2006 B2
RE39703 Burroughs et al. Jun 2007 E
7248020 Hidaka et al. Jul 2007 B2
7252088 Nieves Ramírez Aug 2007 B1
7268660 Bolda et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7320321 Pranger et al. Jan 2008 B2
7339350 Kubale et al. Mar 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7400113 Osborne Jul 2008 B2
RE40506 Burroughs et al. Sep 2008 E
7428902 Du et al. Sep 2008 B2
7460959 Jafari Dec 2008 B2
7482941 Bruce et al. Jan 2009 B2
7487773 Li Feb 2009 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7694677 Tang Apr 2010 B2
7717113 Andrieux May 2010 B2
7721736 Urias et al. May 2010 B2
D618356 Ross Jun 2010 S
7741815 Cassidy Jun 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7823588 Hansen Nov 2010 B2
7855716 McCreary et al. Dec 2010 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
D638852 Skidmore et al. May 2011 S
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8421465 Carter Apr 2013 B2
20010011845 Simonelli et al. Aug 2001 A1
20050039748 Andrieux Feb 2005 A1
20050052085 Chang et al. Mar 2005 A1
20050139212 Bourdon Jun 2005 A1
20060144396 DeVries et al. Jul 2006 A1
20060226806 Fan Oct 2006 A1
20070017515 Wallace et al. Jan 2007 A1
20070077200 Baker Apr 2007 A1
20070152630 Winkler et al. Jul 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070273216 Farbarik Nov 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080053441 Gottlib et al. Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080111427 Elder May 2008 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100104929 Schäfer et al. Apr 2010 A1
20100139660 Adahan Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100186744 Andrieux Jul 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100253288 Cassidy Oct 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20110011400 Gentner et al. Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110221384 Scheucher Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
20130192599 Nakai et al. Aug 2013 A1
Foreign Referenced Citations (2)
Number Date Country
WO 9617425 Aug 1996 WO
WO 9834314 Aug 1998 WO
Non-Patent Literature Citations (11)
Entry
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Covidien, “Puritan Bennett 540™ Ventilator,” undated, downloaded from internet website, 2 pages.
Covidien, “Puritan Bennett 540™ Ventilator,” undated, downloaded from internet website, 6 pages.
U.S. Appl. No. 12/757,124, Notice of Allowance mailed Oct. 3, 2012, 8 pgs.
U.S. Appl. No. 12/757,124, Notice of Allowance mailed May 24, 2013, 7 pgs.
U.S. Appl. No. 12/757,124, Office Action mailed Mar. 1, 2013, 6 pgs.
U.S. Appl. No. 12/757,131, Notice of Allowance mailed Dec. 17, 2012, 8 pgs.
U.S. Appl. No. 12/757,131, Notice of Allowance mailed Sep. 4, 2012, 9 pgs.
Related Publications (1)
Number Date Country
20130333697 A1 Dec 2013 US
Provisional Applications (2)
Number Date Country
61266012 Dec 2009 US
61266008 Dec 2009 US
Continuations (1)
Number Date Country
Parent 12757124 Apr 2010 US
Child 13971569 US