The invention relates to a cordless (i.e, battery-operated) device such as a power tool or kitchen appliance. More particularly, the present invention relates to a battery pack and receptacle for mounting the pack in the device.
For the consumer market, most cordless devices have a battery pack made integrally in the device housing because of reduced cost, increased end user convenience and sturdiness. However, because of the desire to provide consumer devices with detachable packs simplifying the recycling of the packs and the desire to provide a family of cordless devices using an interchangeable pack and a single charger, there is strong commercial interest in developing a sturdy, convenient, low cost, compact and easily automated battery pack. Of course, these design goals are not unique to consumer devices but also are equally desirable for professional cordless devices in which detachable packs have been the standard for many years.
Accordingly, a primary object of the present invention is to provide an improved battery pack and receptacle for mounting the pack in a cordless device embodying the foregoing design objectives.
In accordance with one aspect of the invention, a battery pack comprises an elongated cylindrical casing with a longitudinal axis of symmetry, a plurality of cells in the casing and first and second pack terminals having opposite polarities, coaxial with the casing axis and located adjacent to the casing forward end. The pack terminals are electrically connectable in a cordless device regardless of the angular orientation of the pack about the casing axis. Such a pack provides greater end user convenience.
Preferably the casing is metal, is electrically connected to a first cell terminal of a rear cell in the pack and constitutes the first pack terminal. The second pack terminal is preferably a top disposed across the casing forward end. To provide shielding for the pack terminals, the top preferably defines a cavity in the casing forward end and has a forwardly projecting nipple fully recessed within the casing cavity.
Alternatively, the second pack terminal may be formed by a button terminal of a forward cell exposed at the casing forward end.
Alternatively, the second pack terminal may be formed by a shielded female barrel-shaped terminal fully recessed within the casing cavity.
To provide a pack with multiple output voltages, a third pack terminal may be located in the casing cavity coaxially of the casing axis, have a polarity the same as the second pack terminal and be electrically connected to a first cell terminal of a forward cell in the pack thereby electrically by passing the forward cell.
In accordance with a second aspect of the invention, a battery pack comprises a tubular metal casing, a metal base cap closing the rear end, and a fixed abutment formed in and closing the casing forward end. A plurality of electrically connected, mechanically disconnected cells are disposed end to end in the casing. The metal base cap is electrically connected to and mechanically disconnected from an adjacent rear cell and forms with the casing a first pack terminal. A second pack terminal is located at the casing forward and is electrically connected to an adjacent forward cell. A spring engages one of the cells and biases the cells tightly together in compression to form good electrical contact between adjacent cells and pack terminals to permit high current discharge rates. Such a pack has no welded connections and is, therefore, more reliable and lower in cost.
The abutment preferably is a lip formed at the forward end of the casing to terminate the casing and retain the cells and pack terminals in compression. To provide a pack with multiple output voltages, a third pack terminal is preferably compressed between the casing lip and a forward cell. The third terminal may be formed as a sleeve having (a) axial fingers engaging the forward cell can and (b) transverse fingers overlapping and helping to secure the top.
Alternatively, the abutment may be formed by an annular bead formed in the casing slightly forwardly of the forward cell.
The second pack terminal is preferably a metal top closing the casing forward end electrically connected to and mechanically disconnected from a button terminal of the forward cell. Alternatively, the second pack terminal may be constituted by the button terminal of the forward cell exposed at the casing forward end. Alternatively, the second pack terminal may be formed by a shielded female barrel-shaped terminal fully recessed within the casing cavity.
The spring is preferably formed integrally in the base cap but may also be a separate component.
In accordance with a third aspect of the invention, battery packs in accordance with either the first or the second aspect of the invention described above may include an integral plastic plug containing the second and third pack terminals separated by an insulating wall. The second terminal is preferably a tubular nipple filled with plastic and further preferably covered by a plastic projection extending forwardly from the forward end of the nipple.
In accordance with a fourth aspect of the invention, a cordless device comprises a cavity, a receptacle in the cavity and a battery pack in accordance with either the first, second or third aspect of the invention described above. The pack is electrically connectable in the receptacle regardless of the angular orientation of the pack about the casing axis.
The receptacle preferably comprises a housing defining a cavity having a longitudinal axis coaxial to the casing axis when the pack is mounted in the receptacle. The receptacle further includes an appropriate number of receptacle terminals for mating with a pack having either two or three pack terminals.
The receptacle terminals are preferably coaxially located about the receptacle cavity axis.
Additional objects and advantages of the invention will be apparent from the detailed description of the preferred embodiment, the appended claims and the accompanying drawings or may be learned by practice of the invention.
The accompanying drawings which are incorporated in and constitute a part of, this specification illustrates eight embodiments to the present invention and together with the description serve to explain the principles of the invention. In the drawings, the same reference numerals indicate the same parts.
The preferred embodiment of the present invention is a cordless (i.e., battery operated) device such as a kitchen appliance or a power tool. One example of such a device is a cordless screwdriver 11 as shown in
As shown in
Pack 13 comprises an elongated cylindrical tubular metal casing 35 having opposed rear and forward ends 37, 39. A plurality of electrically connected, mechanically disconnected cells 41, 43 are disposed end to end in casing 35. For simplicity, pack 13 is illustrated in
A metal base cap 45 (
Through the Connection of metal base cap 45 to metal casing 35, any part of casing 35 may be utilized as the first cell terminal 46. One advantage of the present invention is that casing 35 is coaxial of the pack longitudinal axis 33 and a coaxial portion of casing 35 adjacent to casing forward end 39 may be utilized as the first pack terminal 46. In prior art packs, a strap is usually welded between a forwardly located terminal and the rearmost cell of the pack. In the present invention, because casing 35 forms pack terminal 46, a welded strap is not required.
A metal top 53 closes the casing forward end 39, is electrically connected to button terminal 43b and forms a second pack terminal 54. Top 53 is radially symmetrical about casing axis 33 and defines a cavity 55 in the casing forward end 39. A forwardly projecting nipple 57 formed on top 53 is fully recessed within casing cavity 55 and terminates rearwardly of a forward edge 59 of casing 35. Top 53 is electrically connected to and mechanically disconnected from forward cell 43 through engagement with button terminal 43b.
As will be appreciated, first and second pack terminals 46, 54 have opposite polarities (preferably, negative and positive, respectively), are coaxial with the casing axis 33 and are located adjacent to the casing forward end 39. And, for those reasons, pack 13 is easily connectable in cordless device 11 regardless of the angular orientation of pack 13 about pack axis 33.
In accordance with another feature of the present invention, the first, second and a third coaxial pack terminals 46, 54, 61 (
For a two cell pack as depicted in
As shown in
In accordance with another aspect of the present invention, cells 41, 43, metal base cap 45 constituting the first pack terminal 46 and metal top 53 constituting the second pack terminal 54 are electrically connected but mechanically disconnected. Good electrical contact between adjacent cells 41, 43 and terminals 46, 54 for low resistance, high current discharge rates is achieved through a string 73 engaging one of the cells 41 and biasing the cells 41, 43 tightly together in compression in metal casing 35.
A fixed abutment 75 is formed in casing forward end 39, extends inwardly of the periphery of forward cell 43 and retains cells 41, 43 in compression in casing 35.
For the present invention, a high discharge rate is defined as between about 5 to 30 amps. A low resistance is defined as less than one milliohm. To achieve a suitable low resistance of less than one milliohm, a force of at least 10 to 15 pounds is required to be established by spring 73.
As embodied herein, fixed abutment 75 is constituted by a lip 75 formed at the forward end 43 of casing 35. Third pack terminal 61 is compressed between casing lip 75 and forward cell 43 to provide good electrical contact to one terminal of forward cell 43. Thus, pack 13 has no welded connections and, therefore, has a lower cost compared to other battery packs particularly suited for high discharge rate applications.
Spring 73 is preferably integrally formed in base cap 45 and has a plurality of transverse arms 74 engaging rear cell can 41a. Alternatively, as shown in
To electrically insulate each cell 41, 43 from casing 35, each cell 41, 43 is enclosed within an electrically insulating sleeve 77, 79. Because cell 41 is at the same potential as casing 35, insulating sleeve 77 serves only to provide a uniform outer cell diameter for mechanically locating cells 41, 43 in casing 35. Alternatively, as shown in
As shown in
To electrically connect first, second and third receptacle terminals 91, 93, 95 in a motor control circuit (not-shown) of device 11, each terminal 91, 93, 95 has respectively an integrally formed blade 111, 113, 115 extending through an end wall 109 of housing 85.
Pack 21 comprises an elongated cylindrical casing 131 having longitudinal axis of symmetry 127 and having opposed rear and forward ends 133, 129. In this embodiment, casing 131 is preferably constructed of plastic molded in a clam shell configuration with a parting line (not shown) lying in an axially extending plane. A plurality of cells 135, 137 are mounted in casing 131. Cells 135, 137 are preferably identical to cells 41, 43. The first pack terminal 123 is formed as a sleeve 139 located in a casing cavity 141. A first or positive cell terminal 143 is electrically connected to pack terminal 123 through a metal strap 145 spot welded to cell terminal 143 at one end and to pack terminal 123 at the other. Strap 145 lies in an axially extending channel 146 in casing 131. Channel 146 opens externally of casing 131 and electrically insulates strap from cells 135, 137.
Pack terminal 125 is preferably formed as a narrow tubular pin 147 spot welded to the second or negative can terminal 149 of cell 137. A cylindrical wall 151 is located between terminals 123, 125 and reduces the likelihood of shorting terminals 123, 125. Furthermore, wall 151 may be used to actuate a shutter or shield for preventing inadvertent contact with the terminals of a battery charger for pack 121.
Pack 21 may be used with a receptacle similar to that shown in
The second pack terminal 157 is constituted by a button terminal 163 of a forward cell 165 adjacent casing forward end 167.
The third pack terminal 159 is electrically connected to first or can terminal 169 of the forward cell 165 and is, in turn, electrically connected to a second button terminal of a rear cell (not shown) thereby electrically bypassing forward cell 165 and providing an output voltage (relative to the first pack terminal 155) which is less than the output voltage between first and second pack terminals 155, 157. Third pack terminal 159 is preferably formed as a sleeve located in a casing cavity 171 and is compressed between casing lip 173 and forward cell 165 to provide good electrical contact to first can terminal 169 of forward cell 165.
Pack 22 may be used with a receptacle (not shown) identical to that shown in
Second pack terminal 181 is constructed identically to second pack terminal 157 of pack 22 (
By omission of a third pack terminal in pack 24, the cells 189 are biased tightly together in compression in metal casing 191 between a base cap (not shown) and an annular bead 193. Bead 193 is formed in casing 191 slightly forwardly of forward cell 189, extends radially inwardly of the periphery of cell 189 and serves as a fixed abutment for retaining the cells in compression.
Pack 24 may be used with a receptacle similar to that shown in
The second pack terminal 197 is constituted by a female, open ended, barrel-shaped, axially slotted terminal 197 that is press fitted on a button terminal 205 of a forward cell 207 adjacent casing forward end 209. To provide increased resistance to inadvertent short circuiting between second pack terminal 197 and either third pack terminal 199 or first pack terminal 195, insulator 203 (which electrically insulates the second and third pack terminals 197, 199) completely surrounds an outer wall 211 and a forward edge 213 of barrel terminal 197. Also, insulator 204 surrounds the inner edge of casing forward end 209 to enhance the shielding between pack terminals 195, 199.
Pack 26 may be used with a receptacle (not shown) identical to that shown in
The second pack terminal 221 is constituted by a metal top 231 terminating in a forwardly projecting, open ended, tubular nipple 233. Top 231 is press fitted on a button terminal 235 of a forward cell 237 adjacent casing forward end 239. To provide increased resistance to inadvertent short circuiting between second pack terminal 221 and either third pack terminal 223 or first pack terminal 219, annular insulating wall 229 surrounds nipple 233 and separates third terminal sleeve 223 and nipple 233. The top 231, sleeve 223 and insulating wall 229 are integrally molded to form plug 227 in accordance with conventional plastic injection insert molding techniques. Plug 227 is compressed between the casing abutment 241 at the forward end of plug 227 and button terminal 231 and cell can 243 of forward cell 237 at the rear end of plug 227.
To further enhance the resistance to short circuiting, nipple 233 is filled with plastic and has a plastic projection 245 that extends forwardly from and covers the top of nipple 233.
Pack 28 may be used with a receptacle (not shown) substantially identical to that shown in
In accordance with the present invention, the disclosed pack terminals and receptacle terminals and their variants suitable for providing the universal angular orientation of the pack and receptacle may be defined as terminal means for electrically connecting the pack and receptacle together regardless of the angular orientation, relative to the receptacle, of the pack about the casing axis. It will be recognized that there are a number of suitable variants. For example, to accomplish the universal angular orientation, preferably, (a) the pack terminals are coaxial about the pack axis, (b) the receptacle terminals are coaxial about the receptacle axis and (c) when the pack is inserted in the receptacle, the pack axis and receptacle axis are coaxial. However, only one of the sets of terminals (the pack terminals constituting one set and the receptacle terminals constituting the second set) must be coaxial. For example, each receptacle terminal may be constituted by a flat blade positioned to be resiliently engageable with a mating pack terminal of a coaxial set of pack terminals Thus, in this example, the pack terminals are coaxial about a longitudinal pack axis and the receptacle terminals are not coaxial about a longitudinal receptacle axis. Furthermore, continuous annular members are used to form the coaxial pack terminals in packs 13, 21, 22, 24, 26, 28 and discontinuous annular members are used to form the receptacle terminals. Alternatively, discontinuous annular members may be used to form the pack terminals and continuous annular members may be used to form the receptacle terminals. In accordance with the present invention, all of these terminal configurations are included in the definition of the terminal means.
As will be appreciated by those skilled in the art, a number of advantages flow from the present invention. Namely, packs 13, 21, 22, 24, 26, 28 have two or more coaxial terminals permitting the packs to be connected in a cordless device regardless of the angular orientation of the pack about its axis. As a result, packs 13, 21, 22, 24, 26, 28 are easier to use particularly under adverse conditions for loading the pack in a cordless device or charger. Additionally, because packs 13, 21, 22, 24, 26, 28 have no preferred angular orientation, the packs are particularly suited for complete enclosure within a cordless device. This is particularly desirable, for example, in certain household appliances where the requirement of an exposed battery pack limits industrial design freedom.
Secondly, packs 13, 22, 24, 26, 28 provide a lower cost, more reliable battery pack particularly suited for high discharge rate applications through the elimination of the welded connections between adjacent cells and pack terminals. In prior art packs, welded connections are a common source of pack failure. Packs 13, 22, 24, 26, 28 also potentially have a lower cost than prior art packs because the enclosure of the cells within a metal casing which is sealed by a rolled over lip 75 or bead 193 permits the manufacturing process to be easily varied to accommodate packs having different lengths based on the number of cells in the pack.
Finally, the three coaxial pack terminals 46, 54, 61; 155, 157, 159 permit the selective and easy connection of different numbers of cells in the motor control circuit of a cordless device. Thus, packs 13, 22 are particularly suited for applications requiring multiple power settings. Other advantages will be apparent to those skilled in the art.
It will be apparent to those skilled in the art that various modifications and variations can be made in the cordless device and battery pack of the present invention without departing from the scope or spirit of the invention. Thus, it is intended that the present invention cover these modifications and variations provided they come within scope of the appended claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 09/281,870, filed on Mar. 31, 1999, now U.S. Pat. No. 6,602,634, which in turn is a continuation of U.S. patent application Ser. No. 08/985,000, filed on Dec. 4, 1997, now U.S. Pat. No. 5,919,585, which in turn is a continuation of U.S. patent application Ser. No. 08/883,759, filed on Jun. 27, 1997, now U.S. Pat. No. 5,789,101, which in turn is a continuation of U.S. patent application Ser. No. 08/766,926, filed on Dec. 13, 1996, now abandoned, which in turn is a continuation of U.S. patent application Ser. No. 08/486,666, filed on Jun. 7, 1995, now U.S. Pat. No. 5,620,808, which in turn is a continuation of U.S. patent application Ser. No. 08/239,437, filed on May 6, 1994, now U.S. Pat. No. 5,489,484, which in turn is a continuation of U.S. patent application Ser. No. 08/065,736, filed on May 21, 1993, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 08/042,937, filed on Apr. 5, 1993, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3332805 | Thompson | Jul 1967 | A |
3806724 | Tanner et al. | Apr 1974 | A |
3864172 | Marks | Feb 1975 | A |
4041304 | Spector | Aug 1977 | A |
4544078 | Arenas et al. | Oct 1985 | A |
4804593 | Hara et al. | Feb 1989 | A |
5092799 | Kimura | Mar 1992 | A |
5104752 | Baughman et al. | Apr 1992 | A |
5108847 | Edwards et al. | Apr 1992 | A |
5122427 | Flowers et al. | Jun 1992 | A |
5368954 | Bruns | Nov 1994 | A |
5489484 | Wheeler et al. | Feb 1996 | A |
5505632 | Hayashi et al. | Apr 1996 | A |
5637977 | Saito et al. | Jun 1997 | A |
6075341 | White et al. | Jun 2000 | A |
6504341 | Brotto | Jan 2003 | B2 |
6924620 | Santana, Jr. | Aug 2005 | B2 |
20050264259 | Santana, Jr. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
4116604 | Nov 1992 | DE |
Number | Date | Country | |
---|---|---|---|
20030224247 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09281870 | Mar 1999 | US |
Child | 10449314 | US | |
Parent | 08985000 | Dec 1997 | US |
Child | 09281870 | US | |
Parent | 08883759 | Jun 1997 | US |
Child | 08985000 | US | |
Parent | 08766926 | Dec 1996 | US |
Child | 08883759 | US | |
Parent | 08486666 | Jun 1995 | US |
Child | 08766926 | US | |
Parent | 08239437 | May 1994 | US |
Child | 08486666 | US | |
Parent | 08065736 | May 1993 | US |
Child | 08239437 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08042937 | Apr 1993 | US |
Child | 08065736 | US |