This application claims the benefit of priority to Korean Patent Application No. 2020-0157817 filed on Nov. 23, 2020, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to a battery pack including a thermal spread inhibition structure. More particularly, the present invention relates to a battery pack including a thermal spread inhibition structure capable of spraying a coolant to a battery module having an ignited battery cell in order to prevent spread of flames of the ignited battery cell in the battery pack.
As the result of continuous research and development of a lithium secondary battery, it has been possible to manufacture and commercialize a lithium secondary battery having increased capacity and improved output. In addition, demand for the lithium secondary battery as an energy source replaceable fossil fuels, which cause environmental pollution, has increased.
Accordingly, application of the lithium secondary battery to various devices has increased. For example, the lithium secondary battery has been widely used as an energy source for wireless mobile devices, which are small multifunctional products, and wearable devices, which are worn on the body, and has also been used as an energy source for electric vehicles and hybrid electric vehicles presented as alternatives to existing gasoline and diesel vehicles or as an energy storage system (ESS).
As the lithium secondary battery is used as a large-capacity, high-output energy source, as described above, securing safety of the lithium secondary battery becomes an important subject of interest.
Generally, in the case in which fire breaks out in a battery cell received in the energy storage system, a method of injecting water into a battery module or a battery pack through a separate watering device is used.
In this case, however, facilities and space for the watering device are required, and the fire may spread due to a time difference between sensing time of gas discharged due to venting of the battery cell and watering time.
Alternatively, a method of disposing an insulating material or a fire extinguishing agent inside or outside the battery module or the battery pack in order to interrupt heat transfer between battery cells or to cool the ignited battery cell may be used.
In the case in which the insulating material is used, however, a fire extinguishing function is not performed although propagation of flames is interrupted. In the case in which the fire extinguishing agent is used, the fire extinguishing agent is not exactly spread to the point at which fire breaks out, since the fire extinguishing agent is disposed in an empty space in the battery pack in consideration of energy density.
As technology for preventing thermal runaway of the battery pack, Patent Document 1 discloses an apparatus configured such that a bag containing water is located above a battery, the bag is made of a material that has a relatively low melting point, and when the temperature of the battery is increased, the bag is melted and the water in the bag is discharged to the battery.
In Patent Document 1, the entirety of the bag is made of material that has a low melting point. When the temperature of the battery is increased, therefore, the water is not discharged from a specific portion of the bag but the entirety of the water in the bag is discharged while the bag is melted.
In the case in which the bag is disposed so as to be located under the battery cell, therefore, the water cannot be injected into the battery cell, whereby it is not possible to exhibit a fire extinguishing function. Consequently, there is a limitation in that the bag must be used only in a specific direction such that the bag is disposed above the battery cell.
Patent Document 2 is configured such that a middle case and an inner case are received in an outer case, a plurality of cells is received in the middle case, a fire extinguishing agent is received in the inner case, and when the cells generate heat to an upper limit temperature or higher, the fire extinguishing agent is introduced into the middle case through an injection pipe. When the cells generate heat to an upper limit temperature or higher, the injection pipe is opened, whereby the fire extinguishing agent received in the inner case is injected into the middle case.
In Patent Document 2, compressed gas for spraying the fire extinguishing agent, a nozzle used as the injection pipe, and the inner case configured to receive the fire extinguishing agent are included, whereby an additional space therefor is necessary, and expense necessary to purchase the fire extinguishing agent and the compressed gas is also further incurred.
Therefore, there is a high necessary for technology capable of minimizing spread of flames and preventing a decrease in energy density without needing an additional space when fire breaks out in a battery cell received in a battery pack.
(Patent Document 1) Japanese Patent Application Publication No. 2014-523622 (2014 Sep. 11)
(Patent Document 2) Japanese Patent Application Publication No. 2012-252909 (2012 Dec. 20)
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a battery pack including a thermal spread inhibition structure capable of preventing thermal spread between a plurality of battery modules constituting the battery pack when a battery cell catches fire or explodes in the battery pack.
A battery pack according to the present invention to accomplish the above object includes a battery module housing configured to receive a plurality of battery cells; a battery pack case configured to receive one or more of battery module housings; and a water tank located on one surface of each of the battery module housings, the water tank being configured to receive a coolant, wherein the battery module housing is configured to wrap outer surfaces of the plurality of battery cells.
In the battery pack according to the present invention, the water tank may be integrated with a heat sink, and a flow path configured to guide flow of the coolant introduced into and discharged from the water tank may be formed in the water tank.
In the battery pack according to the present invention, the water tank may be configured to have a size that covers upper surfaces of all of the battery module housings.
In the battery pack according to the present invention, the water tank may be attached to the inside of an upper surface of the battery pack case.
In the battery pack according to the present invention, the battery pack case may be configured to have a structure in which an upper part of the battery pack case is open, and the water tank may be coupled to the battery pack case so as to cover the open upper surface of the battery pack case.
In the battery pack according to the present invention, a through-hole may be formed in one surface of the water tank that faces the battery module housing, and a sealing member may be added to the through-hole.
In the battery pack according to the present invention, the sealing member may be made of a material that is melted by high-temperature gas or sparks discharged from the battery cell.
In the battery pack according to the present invention, the through-hole may be opened as the result of melting of the sealing member, and the coolant received in the water tank may be sprayed to an outer surface of the battery module housing through the through-hole.
In the battery pack according to the present invention, the through-hole may be configured to have a structure in which a plurality of holes is formed in one surface of the water tank so as to be uniformly dispersed.
In the battery pack according to the present invention, a partition wall may be added between the battery module housings.
In the battery pack according to the present invention, the through-hole may be filled with the sealing member, and the sealing member may include an extension portion further extending outwards from an outer surface of the water tank than the circumference of the through-hole.
In the battery pack according to the present invention, each of the battery cells may be a pouch-shaped battery cell, a prismatic battery cell, or a cylindrical battery cell.
As is apparent from the above description, a battery pack according to the present invention has a water tank disposed therein, whereby it is possible to rapidly cool a battery module including an ignited battery cell without increasing the external size of the battery pack, and therefore it is possible to prevent thermal spread to a battery module adjacent thereto.
In addition, a sealing member is added to one surface of the water tank that faces battery module housings. When the sealing member is removed as the result of melting, it is possible to spray a coolant toward a battery module housing including an ignited battery cell irrespective of the position or orientation of the battery pack.
In addition, a through-hole is formed in one surface of the water tank, and the through-hole is filled with the sealing member, whereby it is possible to minimize an increase in weight of the battery pack due to addition of the sealing member.
In addition, even if fire breaks out in any one of a plurality of battery modules, it is possible to exactly inject the coolant into the battery module housing thereof. Even when the present invention is applied to a large-capacity battery pack, therefore, it is possible to obtain a thermal spread interruption effect.
Also, in the case in which water is used instead of a fire extinguishing agent, it is possible to reduce production cost.
Now, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings such that the preferred embodiments of the present invention can be easily implemented by a person having ordinary skill in the art to which the present invention pertains. In describing the principle of operation of the preferred embodiments of the present invention in detail, however, a detailed description of known functions and configurations incorporated herein will be omitted when the same may obscure the subject matter of the present invention.
In addition, the same reference numbers will be used throughout the drawings to refer to parts that perform similar functions or operations. In the case in which one part is said to be connected to another part throughout the specification, not only may the one part be directly connected to the other part, but also, the one part may be indirectly connected to the other part via a further part. In addition, that a certain element is included does not mean that other elements are excluded, but means that such elements may be further included unless mentioned otherwise.
In addition, a description to embody elements through limitation or addition may be applied to all inventions, unless particularly restricted, and does not limit a specific invention.
Also, in the description of the invention and the claims of the present application, singular forms are intended to include plural forms unless mentioned otherwise.
Also, in the description of the invention and the claims of the present application, “or” includes “and” unless mentioned otherwise. Therefore, “including A or B” means three cases, namely, the case including A, the case including B, and the case including A and B.
In addition, all numeric ranges include the lowest value, the highest value, and all intermediate values therebetween unless the context clearly indicates otherwise.
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Referring to
A through-hole is formed in the lower surface of the water tank. A sealing member 320 is added to the through-hole in order to prevent discharge of the coolant through the through-hole when the battery pack is in a normal state. Since the sealing member 320 is added to the lower surface of the water tank, the sealing member is not visible from outside of the battery pack. For the convenience of description, however, the sealing member 320 is shown with a solid line in
In a concrete example, each of the plurality of battery cells 220 may be a pouch-shaped battery cell, and the bottoms of electrode assembly receiving portions are disposed so as to be perpendicular to the ground in the state in which the pouch-shaped battery cells are stacked such that the electrode assembly receiving portions are in tight contact with each other.
The pouch-shaped battery cell may be a bidirectional battery cell having a positive electrode lead and a negative electrode lead protruding in opposite directions or a unidirectional battery cell having a positive electrode lead and a negative electrode lead protruding in the same direction.
The water tank 300 is integrated with a heat sink. A flow path 310 configured to guide flow of the coolant introduced into and discharged from the water tank is formed in the water tank 300, and the temperature of the coolant introduced into and discharged from the water tank 300 may be maintained at a predetermined level.
The water tank 300 is formed in a rectangular parallelepiped shape in which the lower surface of the water tank that faces the battery module housings 210 and the upper surface of the water tank, which is opposite the lower surface, are wide, and the area of each of the upper surface and the lower surface has a size that covers the upper surfaces of all of the plurality of battery module housings 210 received in the battery pack case 100.
In a concrete example, the battery pack case 100 may be a rectangular parallelepiped box from which an upper surface is removed such that an upper part of the battery pack case is open, and the water tank 300 may be coupled to the battery pack case 100 so as to cover the open upper surface of the battery pack case 100.
That is, the water tank 200 is disposed at the upper surfaces of the battery module housings 110, and therefore the water tank may serve as a cover of the battery pack case having the open upper surface.
In another concrete example, the battery pack case 100 may be a structure including a rectangular parallelepiped case body from which an upper surface is removed such that an upper part of the battery pack case is open and a top plate coupled to the open upper surface. At this time, the water tank may be coupled to the top plate. That is, the water tank may be attached to the inside of the upper surface of the battery pack case.
Alternatively, the top plate may be the upper surface of the water tank, and the water tank may be integrated with the top plate.
The battery module housing 210 may be configured to wrap opposite side surfaces of a battery cell stack, in which the bottoms of the electrode assembly receiving portions of the pouch-shaped battery cells are disposed so as to be perpendicular to the ground, parallel to the bottoms of the electrode assembly receiving portions and to wrap the upper surface and the lower surface of the battery cell stack.
During repeated charging and discharging of the battery cell 220, the electrode assembly is expanded and contracted, and gas is generated as a byproduct of charging and discharging. As a result, the battery module housing may swell. A partition wall 110 may be added between one battery module housing 210 and another battery module housing 210 in order to minimize the effect of swelling of one battery module housing 210 on battery module housings adjacent thereto and to fix and support the battery module housings 210.
Referring to
A through-hole is formed in one surface of the water tank 300 that faces the battery module housings 210, and a sealing member 320 is added to the through-hole in order to hermetically seal the through-hole. The sealing member 320 is made of a material that is melted by high-temperature gas or sparks discharged from the battery cell 220. That is, when the battery cell 220 is in a normal state, the state in which the through-hole is hermetically sealed by the sealing member 320 is maintained. As the temperature of an ignited battery cell, e.g. a battery cell 220′, is increased, however, the temperature of the battery module housing 210 that wraps the battery cell 220′ may exceed the melting temperature of the sealing member. At this time, the sealing member 320 adjacent to the high-temperature battery module housing is melted, whereby the through-hole 330 is opened.
The coolant received in the water tank 200 is evaporated due to an increase in temperature of the battery module housing, whereby the volume of the coolant is increased and thus the coolant is transformed into a high pressure state. When the through-hole 330 is opened, therefore, the coolant may be sprayed toward the battery module housing.
The battery module housing according to the present invention is a closed type battery module housing, from which no battery cells are exposed. Consequently, the coolant cannot be directly introduced into an ignited battery cell but can be sprayed to the outer surface of the battery module housing 210 having the ignited battery cell. As described above, the coolant is sprayed to the outer surface of the battery module housing 210 to lower the temperature of the high-temperature battery module housing 210, whereby it is possible to prevent or delay thermal spread to battery modules adjacent thereto.
The sealing member may be made of a thermoplastic polymer resin having a melting point of about 200° C. or less. For example, a material having a melting point of about 100° C. to about 200° C., such as polyethylene or polypropylene, may be used as the thermoplastic polymer resin.
The through-hole is filled with the sealing member 320, and the sealing member may include an extension portion 325 further extending outwards from the outer surface of the water tank than the circumference of the through-hole. The extension portion 325 is a portion that further extends from the outer surface of the water tank. In a normal state, the extension portion may increase the force of coupling between the water tank and the sealing member 320. When fire breaks out in the battery cell, the extension portion and the sealing member may be sequentially melted as the result of temperature rise, whereby the through-hole may be opened.
When a battery cell constituted by a lithium secondary battery is defective, overcharged, or overheated, a thermal runaway phenomenon occurs in the battery cell. When the battery cell is in a thermal runaway state, the temperature of the battery cell may rise up to a temperature at which gas venting occurs, e.g. about 260° C. In addition, the temperature of the battery cell may be continuously increased while gas venting occurs.
In the case in which a plurality of battery cells is received in a battery pack case to manufacture a battery pack, when one battery cell is in a thermal runaway state, heat and flames may be transferred to a battery cell adjacent thereto, whereby the adjacent battery cell may be overheated and may thus be in a thermal runaway state. The battery cell in the thermal runaway state may heat another battery cell adjacent thereto, whereby a thermal runaway chain reaction may occur. When a battery cell in a thermal runaway state is present in the battery pack case, therefore, thermal runaway of a plurality of battery cells may occur, and this may spread more widely, whereby great damage may be caused. In the case in which a plurality of battery cells is in a thermal runaway state, the battery cells may reach a temperature of about 1000° C. or higher, and this temperature is maintained until the battery cells are completely destroyed by fire, whereby a user may be in danger.
Consequently, it is very important to extinguish the ignited battery cell before flames and heat of the ignited battery cell spread to a battery cell adjacent thereto.
In the battery pack according to the present invention, therefore, the water tank 300 containing the coolant is provided at a position adjacent to the upper parts of the battery module housings 210, and the through-hole, through which the coolant flows out, is hermetically sealed by the sealing member having a low melting point. When the sealing member 320 is melted by an ignited battery cell, therefore, the through-hole 330 is opened. Consequently, the coolant received in the water tank 300 is sprayed to the outer surface of the battery module housing 210 through the through-hole. The battery module housing according to the present invention is a closed type battery module housing configured such that the battery cells are not exposed to the coolant sprayed from the water tank. Consequently, the coolant is sprayed to the outer surface of the battery module housing, whereby it is possible to prevent or delay thermal spread to battery modules adjacent thereto.
It is possible to prevent flames generated by the overheated or ignited pouch-shaped battery cell from being spread between the battery modules through the above process, and therefore it is possible to secure time necessary to extinguish flames of the battery cell using a watering facility located at the outside.
In addition, when the battery pack according to the present invention is mounted at a position close to a user, e.g. in an electric vehicle, it is possible to delay spread of flames of the battery cell, and therefore it is possible to secure time for a user to safely evacuate.
The through-hole formed in the water tank 300 may be configured to have a structure in which a plurality of holes is formed in one surface of the water tank so as to be uniformly dispersed. Even though fire breaks out in a certain battery module, therefore, the coolant may be accurately sprayed to a battery module housing including an ignited battery cell. That is, the number of through-holes formed in the water tank may be set in consideration of the size and number of battery module housings and the shape, size, and number of battery cells disposed in the battery module housing.
Referring to
Each of the plurality of battery cells 220 is a prismatic battery cell that is generally configured to have a hexahedral structure and that has an electrode assembly received in a battery case made of a metal material, wherein a positive electrode terminal and a negative electrode terminal may protrude from the upper surface of the prismatic battery cell so as to face the water tank 300. The prismatic battery cells may be disposed in tight contact with each other such that relatively wide side surfaces of the prismatic battery cells are stacked so as to be adjacent to each other.
In addition, a through-hole is formed in one surface of the water tank 300 that faces the plurality of battery module housings, and a sealing member 320 made of a material that has a low melting point is added to the through-hole. When fire breaks out in the battery cell, the sealing member may be melted to open the through-hole, and the coolant received in the water tank may be sprayed to the outer surface of the battery module housing 210 through the through-hole.
In addition thereto, the description of the battery pack according to the first embodiment is equally applicable to the battery pack according to the second embodiment. In addition, the same components of the second embodiment as the first embodiment may be denoted by the same reference numerals.
Referring to
Each of the plurality of battery cells 220 is a cylindrical battery cell that is generally configured to have a cylindrical structure and that has an electrode assembly received in a battery case made of a metal material, wherein a positive electrode terminal may protrude upwards so as to face the water tank 230.
In addition, a through-hole is formed in one surface of the water tank 300 that faces the plurality of battery module housings, and a sealing member 320 made of a material that has a low melting point is added to the through-hole. When fire breaks out in the battery cell, the sealing member may be melted to open the through-hole, and the coolant received in the water tank may be sprayed to the outer surface of the battery module housing 210 through the through-hole.
In addition thereto, the description of the battery pack according to the first embodiment is equally applicable to the battery pack according to the third embodiment. In addition, the same components of the third embodiment as the first embodiment may be denoted by the same reference numerals.
Those skilled in the art to which the present invention pertains will appreciate that various applications and modifications are possible within the category of the present invention based on the above description.
100: Battery pack case
110: Partition wall
210: Battery module housing
220, 220′: Battery cells
300: Water tank
310: Flow path
320: Sealing member
325: Extension portion
330: Through-hole
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0157817 | Nov 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2021/016691 | 11/16/2021 | WO |