The described embodiments relate generally to a battery pack system. More particularly, the present embodiments relate to improvements in packaging lithium-ion battery packs used in electronic devices to reduce the battery pack size and to improve system performance.
Recent advances in portable computing have utilized lithium-ion batteries to provide power to laptops computers, portable media players, personal digital assistants (PDAs), cell phones, tablets and other electronic equipment. Lithium-ion batteries are favored because, pound for pound, they are some of the most energetic rechargeable batteries available. They have a number of important advantages over competing technologies. They are generally much lighter than other types of rechargeable batteries of the same size because the electrodes of a lithium-ion battery are made of lightweight lithium and carbon.
In addition to consumer electronics, lithium-ion batteries are also popular for use in military, electric vehicle and aerospace applications. Lithium-ion batteries may be used in place of lead acid batteries in golf carts and utility vehicles. Lithium-ion batteries provide similar voltage levels as lead acid batteries so no modification of the vehicle's drive system is needed. The batteries could also be used for electric tools, medical equipment and other uses.
Lithium is a highly reactive element, meaning that a lot of energy can be stored in its atomic bonds. This translates into a very high energy density for lithium-ion batteries. For example, a typical lithium-ion battery can store 150 watt-hours of electricity in 1 kilogram of battery. A NiMH (nickel-metal hydride) battery pack can store perhaps 100 watt-hours per kilogram, although 60 to 70 watt-hours might be more typical. A lead-acid battery can store only 25 watt-hours per kilogram. Using lead-acid technology, it takes 6 kilograms to store the same amount of energy that a 1 kilogram lithium-ion battery can handle. For lightweight electronic devices, this is a significant advantage.
In addition to being lightweight, a lithium-ion battery pack may lose only about 5 percent of its charge per month, compared to a 20 percent loss per month for NiMH batteries. Lithium-ion battery packs have no memory effect, which means that a user does not have to completely discharge them before recharging, as with some other battery types. Lithium-ion batteries can also be recharged hundreds of times while other battery types may have more limited useful lives.
While lithium-ion batteries have many positive advantages, there are some disadvantages also. For example, lithium-ion battery packs require that a protection circuit be included to maintain voltage and current within safe limits. It is possible that failure of the battery pack due to overheating could cause harm to the accompanying electronic device, possibly even melting the device housing in certain instances. In order to avoid such situations, a protection circuit is generally included in a lithium-ion battery pack. Built into each pack, the protection circuit limits the peak voltage of each cell during charge and prevents the cell voltage from dropping too low on discharge. In addition, the cell temperature is monitored to prevent temperature extremes. With these precautions in place, the possibility of metallic lithium plating occurring due to overcharge may be greatly reduced.
However, while the protection circuits are included for safety reasons they tend to make the battery packs relatively more expensive and the inclusion of protection circuits make the battery pack larger than it would otherwise be. This increase in size may ameliorate some of the advantages discussed above as electronic devices become increasingly smaller and more compact.
A jelly roll design is the design used in many rechargeable batteries, and often for those batteries used in portable electronic devices. In this design, an insulating sheet is laid down, then a thin layer of an anode material is laid down, a separator layer is applied, and a cathode material is layered on top. This sandwich is then rolled up and inserted into a hollow casing. The battery, once wrapped, may be sealed in a flexible container. The container may have a tail or seam where the flexible material seals to itself in order to encompass the battery. Electrodes may extend through the tail in order to provide an electrical connection between the battery and internal components. The electrodes may exit the flexible container, bend, and be electrically connected to various components as desired.
Therefore, it would be desirable to have a battery pack for an electronic device which is more compact, while still including the safety features associated with a protection circuit built into the battery pack.
A battery pack includes a power control module to protect the battery from being overcharged or improperly discharged. The power control module is located on the battery pack in a location that permits the space for the battery portion itself to be utilized to maximum efficiency. By locating the power control module on the side of the battery pack housing opposite to the battery portion, improved overall power performance of the system may be achieved. In some embodiments, increased battery performance and power may be achieved without increasing the overall size of the battery pack. In another embodiment the overall battery pack size may be reduced while maintaining the same power performance as with the conventionally sized battery pack.
A system including an electronic device which utilizes various embodiments of the battery back is disclosed. The electronic device may be a laptop computer, tablet, smartphone or the like and the power needs of the device may be met in a more efficient manner utilizing disclosed embodiments. The battery pack may be made smaller thus reducing the amount of space which must be allocated in the electronic device for the battery pack. In another embodiment, increased battery size may be achieved while maintain the size of the allocated space for the battery pack. By reducing required space or increasing the amount of power supplied to the electronic device from the battery pack for a given size, improved efficiency and performance as well as increased convenience to a user of the electronic device may be achieved with disclosed embodiments.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
The following disclosure relates to a battery pack which may be used in conjunction with an electronic device such as a laptop computer, portable media player, personal digital assistant (PDA), cell phone, tablet or other electronic equipment. In a particular embodiment, the battery pack includes a lithium-ion battery and a power control module or safety circuit which is included to maintain voltage and current within safe limits. Built into each pack, the protection circuit limits the peak voltage of each cell during charge and prevents the cell voltage from dropping too low on discharge. In addition, the cell temperature may be monitored to prevent temperature extremes which could damage the battery or the electronic device.
These and other embodiments are discussed below with reference to
Referring to
Referring to
The power control module 23 shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As discussed above, (for example with respect to
Referring to
It can be appreciated from the above description that moving power control module 23 on a lithium-ion or other battery type, may result in improved efficiencies to battery packs and to the electronic or other devices that utilize them. By improving such efficiencies, greater performance and convenience may be provided to a user of electronic devices. However, embodiments disclosed herein could be used in other than electronic devices. For example, electric powered automobiles or other electric powered forms of transportation such as utility vehicles utilize battery packs and may benefit from implementation of the embodiments disclosed herein. In addition, electric tools, medical equipment and other uses may benefit from these embodiments.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not target to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a continuation of U.S. patent application Ser. No. 14/199,943, filed Mar. 6, 2014, which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2798895 | Nowotny | Jul 1957 | A |
2798896 | Bly | Jul 1957 | A |
4152825 | Bruneau | May 1979 | A |
4344603 | Hozumi et al. | Aug 1982 | A |
4455026 | Pinkus et al. | Jun 1984 | A |
5238222 | Sumida et al. | Aug 1993 | A |
5580676 | Honda et al. | Dec 1996 | A |
6106973 | Sonozaki et al. | Aug 2000 | A |
6174164 | Masjedi | Jan 2001 | B1 |
6225778 | Hayama | May 2001 | B1 |
6358644 | Shibata et al. | Mar 2002 | B1 |
6368744 | Hatazawa et al. | Apr 2002 | B1 |
6528204 | Hikmet et al. | Mar 2003 | B1 |
6549756 | Engstrom | Apr 2003 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6924551 | Rumer et al. | Aug 2005 | B2 |
7103407 | Hjelt et al. | Sep 2006 | B2 |
7270910 | Yahnker et al. | Sep 2007 | B2 |
7288340 | Iwamoto | Oct 2007 | B2 |
7356923 | Honer | Apr 2008 | B2 |
7622895 | Griffin | Nov 2009 | B1 |
7663064 | Dutta et al. | Feb 2010 | B2 |
7714542 | Lee et al. | May 2010 | B2 |
7887948 | Jang et al. | Feb 2011 | B2 |
7910243 | Koh et al. | Mar 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7972721 | Kozu et al. | Jul 2011 | B2 |
7976981 | Lee | Jul 2011 | B2 |
8031122 | Jang et al. | Oct 2011 | B2 |
8034477 | Yamada | Oct 2011 | B2 |
8119278 | Bailey et al. | Feb 2012 | B2 |
8124269 | Takahashi et al. | Feb 2012 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8241786 | Taniguchi et al. | Aug 2012 | B2 |
8259013 | Jang et al. | Sep 2012 | B2 |
8260371 | Kawata et al. | Sep 2012 | B2 |
8293402 | Lee | Oct 2012 | B2 |
8427825 | Szczypinski | Apr 2013 | B2 |
8445125 | Baek | May 2013 | B2 |
8518569 | Murphy et al. | Aug 2013 | B2 |
8526998 | Koide et al. | Sep 2013 | B2 |
8558509 | He et al. | Oct 2013 | B2 |
8603670 | Taniguchi et al. | Dec 2013 | B2 |
8629652 | Partovi et al. | Jan 2014 | B2 |
8629654 | Partovi et al. | Jan 2014 | B2 |
8679674 | Liang et al. | Mar 2014 | B2 |
8778529 | Seo | Jul 2014 | B2 |
8890470 | Partovi | Nov 2014 | B2 |
8896264 | Partovi | Nov 2014 | B2 |
8901881 | Partovi | Dec 2014 | B2 |
8942409 | Kantor et al. | Jan 2015 | B2 |
8947047 | Partovi et al. | Feb 2015 | B2 |
8999566 | Chung et al. | Apr 2015 | B2 |
9106083 | Partovi | Aug 2015 | B2 |
9112362 | Partovi | Aug 2015 | B2 |
9112363 | Partovi | Aug 2015 | B2 |
9112364 | Partovi | Aug 2015 | B2 |
9178369 | Partovi | Nov 2015 | B2 |
9301034 | Kantor et al. | Mar 2016 | B2 |
20020094475 | Aoyama | Jul 2002 | A1 |
20030129483 | Gross | Jul 2003 | A1 |
20050142439 | Lee et al. | Jun 2005 | A1 |
20060139859 | Wong | Jun 2006 | A1 |
20070154794 | Kim et al. | Jul 2007 | A1 |
20070260136 | Hunter et al. | Nov 2007 | A1 |
20070264535 | Lee et al. | Nov 2007 | A1 |
20080001573 | Carey | Jan 2008 | A1 |
20080286644 | Yeo | Nov 2008 | A1 |
20090246620 | Lee et al. | Oct 2009 | A1 |
20090317708 | Brandl et al. | Dec 2009 | A1 |
20100052603 | Bourilkov et al. | Mar 2010 | A1 |
20100081049 | Holl et al. | Apr 2010 | A1 |
20100178549 | Moom | Jul 2010 | A1 |
20100316911 | Tesson et al. | Dec 2010 | A1 |
20110014954 | Dossas et al. | Jan 2011 | A1 |
20110043309 | Wamala et al. | Feb 2011 | A1 |
20110050164 | Partovi et al. | Mar 2011 | A1 |
20110175569 | Austin | Jul 2011 | A1 |
20110215480 | Gorczyca et al. | Sep 2011 | A1 |
20110221385 | Partovi et al. | Sep 2011 | A1 |
20110223447 | Ignor et al. | Sep 2011 | A1 |
20110236727 | Jang | Sep 2011 | A1 |
20110287318 | Loveness et al. | Nov 2011 | A1 |
20110304984 | McClure et al. | Dec 2011 | A1 |
20120116176 | Moravec et al. | May 2012 | A1 |
20120121944 | Yamamoto et al. | May 2012 | A1 |
20120231299 | Dai | Sep 2012 | A1 |
20120305605 | Vassaux et al. | Dec 2012 | A1 |
20130034763 | Byun | Feb 2013 | A1 |
20130053110 | Pope et al. | Feb 2013 | A1 |
20130071696 | Kim et al. | Mar 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130099563 | Partovi et al. | Apr 2013 | A1 |
20130171490 | Rothkopf et al. | Jul 2013 | A1 |
20130249479 | Partovi | Sep 2013 | A1 |
20130260677 | Partovi | Oct 2013 | A1 |
20130271069 | Partovi | Oct 2013 | A1 |
20130285604 | Partovi | Oct 2013 | A1 |
20130285605 | Partovi | Oct 2013 | A1 |
20130300204 | Partovi | Nov 2013 | A1 |
20130323055 | Eden | Dec 2013 | A1 |
20140050948 | Hashimoto et al. | Feb 2014 | A1 |
20140065474 | Werner et al. | Mar 2014 | A1 |
20140103873 | Partovi et al. | Apr 2014 | A1 |
20140132210 | Partovi | May 2014 | A1 |
20140147703 | Werner et al. | May 2014 | A1 |
20140147730 | Werner | May 2014 | A1 |
20140191568 | Partovi | Jul 2014 | A1 |
20140306654 | Partovi | Oct 2014 | A1 |
20150043156 | Jain et al. | Feb 2015 | A1 |
20150130412 | Partovi | May 2015 | A1 |
20150145475 | Partovi et al. | May 2015 | A1 |
20150185055 | King | Jul 2015 | A1 |
20150220109 | Von Badinski et al. | Aug 2015 | A1 |
20150255776 | Dabov | Sep 2015 | A1 |
20150256007 | Zadesky et al. | Sep 2015 | A1 |
20160064780 | Jarvis et al. | Mar 2016 | A1 |
20160080614 | Hollinger | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101702412 | May 2010 | CN |
0792741 | Sep 1997 | EP |
1931010 | Jun 2008 | EP |
2540221 | Jan 2013 | EP |
2653053 | Oct 2013 | EP |
61032951 | Feb 1986 | JP |
63314770 | Dec 1988 | JP |
10012200 | Jan 1998 | JP |
2000058018 | Feb 2000 | JP |
2001118547 | Apr 2001 | JP |
2001250515 | Sep 2001 | JP |
2001250516 | Sep 2001 | JP |
2001332752 | Nov 2001 | JP |
2005108750 | Apr 2005 | JP |
2005129260 | May 2005 | JP |
2005268138 | Sep 2005 | JP |
2007048725 | Feb 2007 | JP |
2007165200 | Jun 2007 | JP |
2010021074 | Jan 2010 | JP |
20010007769 | Feb 2001 | KR |
20090075396 | Jul 2009 | KR |
0041252 | Jul 2000 | WO |
2008023199 | Feb 2008 | WO |
2011000239 | Jan 2011 | WO |
2011095758 | Aug 2011 | WO |
Entry |
---|
U.S. Appl. No. 14/199,943, Advisory Action dated Feb. 2, 2017, 4 pages. |
U.S. Appl. No. 14/199,943, Final Office Action dated Oct. 21, 2016, 14 pages. |
U.S. Appl. No. 14/199,943, Non-Final Office Action dated Mar. 11, 2016, 15 pages. |
U.S. Appl. No. 14/199,943, Restriction Requirement dated Nov. 25, 2015, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170194618 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14199943 | Mar 2014 | US |
Child | 15465477 | US |