The present invention relates to a battery pack and, more particularly, to a battery pack capable of controlling the flow of a high-temperature gas generated from an electrolytic solution when a thin cell such as a lithium-ion battery undergoes abnormal heat generation.
With a recent increase in environmental awareness, an ESS (Energy Storage System) capable of achieving peak-cut of power consumption and capable of being also as a backup in the event of a power cut has drawn attention. The ESS is constituted by a battery pack having a structure in which a plurality of thin cells such as lithium-ion batteries are connected in series or in parallel.
The lithium-ion battery described in JP 2007-265725A has an outer case housing a thin cell and a gas valve provided in the outer case. When the inner pressure of the thin cell increases to a predetermined value or more, the gas valve automatically opens to lower the inner pressure.
The recent cases have shown that there is a possibility of abnormal heat generation in the lithium-ion battery. When the lithium-ion battery undergoes abnormal heat generation, a large amount of high-temperature gas is generated from an electrolytic solution included in the thin cell and ejected from the gas valve or from the peeled portion of a laminate film. When the ejected high-temperature gas is directly sprayed onto another thin cell, the cell may undergo abnormal heat generation, which may cause propagation of abnormal heat generation.
It is therefore an object of the present invention to provide a battery pack capable of controlling, even when a large amount of gas is generated from an electrolytic solution due to abnormal heat generation in a thin cell, the flow of the generated gas.
A battery pack according to the present invention includes: a thin cell having a laminated body including positive and negative electrodes facing each other through a separator, a laminate film housing the laminated body and an electrolytic solution, and first and second terminal electrodes protruding from the laminate film and connected respectively to the positive electrode and the negative electrode; and a cell housing body housing the thin cell and having a bus bar connected to the first and second terminal electrodes. The cell housing body has a first gas hole for releasing a gas generated from the electrolytic solution outside the cell housing body.
According to the present invention, the first gas hole is formed in the cell housing body, so that even if a certain thin cell undergoes abnormal heat generation to cause a large amount of high-temperature gas is generated from the electrolytic solution, the gas flows along the first gas hole. As a result, the flow of the gas can be controlled, thus preventing propagation of the abnormal heat generation to another thin cell.
The battery pack according to the present invention may further include a cover member fixed to the cell housing body and forming a gas diffusion space communicating with the first gas hole. Thus, a high-temperature gas ejected from the thin cell is cooled to some extent in the gas diffusion space, so that it is possible to reduce a risk of propagation of the abnormal heat generation.
In the present invention, the cell housing body may have a plurality of housings each housing the thin cell, the first gas hole may be provided for each one or more thin cells, and the gas diffusion space may communicate with all the first gas holes provided for each or two thin cells. With this configuration, it is possible to sufficiently ensure the volume of the gas diffusion space, allowing a high-temperature gas to be cooled efficiently. In this case, the volume of the gas diffusion space is preferably larger than the volume of one thin cell.
In the present invention, the cover member may have a second gas hole for externally releasing a gas filled in the gas diffusion space. With this configuration, it is possible to externally release a gas that has been cooled to some extent in the gas diffusion space. In this case, the second gas hole may be provided at a position not facing the first gas hole. This allows a high-temperature gas to be externally released after being cooled to some extent.
In the present invention, the second hole may be closed by a closing member which is opened when a gas is generated. This allows air tightness in a normal operating condition to be enhanced. In this case, the closing member may be a tubular resin film wrapping the thin cell, cell housing body, and cover member. With this configuration, when the thin cell undergoes abnormal heat generation, the resin film covering the second gas hole is naturally broken due to the heat of the gas, eliminating the need to use a gas valve or the like.
According to the present invention, even when a certain thin cell undergoes abnormal heat generation to generate a large amount of high-temperature gas from an electrolytic solution, the flow of the gas is controlled, thereby preventing propagation of the abnormal heat generation to another thin cell.
The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will be explained below in detail with reference to the accompanying drawings.
The ESS 10 illustrated in
Each battery pack 20 is connected to a battery management system 12 for control disposed on one end side in the y-direction of a space in the casing 11 through a not-shown wiring. The battery management system 12 includes a control circuit for controlling each battery pack 20 and performs charge/discharge control for each battery pack 20. A wiring board 13 is disposed on the side surface of the casing 11. The wiring board 13 includes a breaker and various terminals and is connected to the battery management system 12. The battery management system 12 is connected to a device (e.g., various electrical devices installed in a house) to be supplied with power and is connected also to an external computer (not illustrated) through the various terminals in the wiring board 13. The external computer plays a role of executing status monitoring and control of each battery pack 20 through the battery management system 12.
As illustrated in
As illustrated in
As illustrated in
The resin holder 7 is a rectangular parallelepiped member formed by, e.g., a plastic having a heat insulating property. Although it is not essential that the resin holder 7 has a heat insulating property, it preferably has a heat insulating property. Seven housings C are formed on each of the front and back of the resin holder 7. The housings C each have a recessed shape in which the thin cell 2 can be housed.
In each housing C, a heat insulating member 5 and the thin cell 2 are disposed in this order from the bottom surface side of the housing C. The heat insulating member 5 is a heat insulating sheet formed into a shape substantially the same as the xz plane shape of the thin cell 2 and is constituted by, e.g., a foamed plastic. As described later, the depth of each housing C is set to a value slightly smaller than the sum of the heights of the heat insulating member 5 and thin cell 2 so as to cause a predetermined pressure to be applied to the thin cell 2 when the heat conducting member 6 is screw-fixed to the resin holder 7. The heat insulating member 5, which is a foamed plastic, is deformed by absorbing the pressure, allowing the thin cell 2 to tightly adhere to both the heat conducting member 6 and heat insulating member 5.
The resin holder 7 has a porous space P between the housings C adjacent in the x-direction. The porous space P is formed by partitioning, using partition plates, a cavity provided between holes 8b and 9b (to be described later) formed in an area between the seven housings C adjacent in the x-direction. The porous space P can be formed into various shapes such as the shape of Chinese character “” or “” as viewed in the y-direction. The partition plates may be formed integrally with the resin holder 7 by being previously incorporated into a die for forming the resin holder 7 or may be inserted into the space after formation of the resin holder 7.
When the heat conductivity of the resin holder 7 is higher than that of air, the cavity is preferably formed in the area between the seven housings C adjacent in the x-direction in order to suppress heat conduction in the x-direction. However, when one large cavity is formed, air convection may occur inside the cavity, so that heat conduction between the thin cells 2 adjacent in the x-direction is enhanced rather than suppressed. Thus, by partitioning the cavity to form the porous space P, such air convection is prevented from occurring, so that it is possible to suppress heat conduction between the thin cells 2 adjacent in the x-direction.
The heat conducting member 6 is screw-fixed to the resin holder 7 using tapping screws 8, thereby forming the structural body Sa having a structure in which each of the plurality of thin cells 2 is sandwiched between the heat insulating member 5 and the heat conducting member 6. When the heat conducting member 6 is screw-fixed to the resin holder 7, the thin cell 2 is sandwiched between the resin holder 7 and the heat conducting member 6. The structural body Sa having such a structure and the structural body Sb having the same structure as the structural body Sa are fixed to each other by the bolts 9A and nuts 9B with the heat insulating member 1 sandwiched therebetween as illustrated in
Then, as illustrated in
The thin cell 2 employed in the present embodiment is a lithium-ion battery and has a laminated body 30 and a bag-like laminate film 40 housing the laminated body 30 together with a not-shown electrolytic solution. The first and second terminal electrodes 3 and 4 are led out from the laminate film 40. The laminated body 30 has a structure in which a plurality of positive electrodes 31 and a plurality of negative electrodes 32 are laminated through separators 33. The separators 33 are insulating films each having minute holes that transmit lithium ion contained in the electrolytic solution.
The positive electrode 31 has a structure in which a positive electrode active material is formed on the surface of a positive electrode collector, and a part of the positive electrode collector is lead out from the laminate film 40 to constitute the first terminal electrode 3. The first terminal electrode 3 may be a separate metallic body connected to the positive electrode collector. The positive electrode collector is made of, e.g., aluminum (Al), and the positive electrode active material is made of a material, such as LiCoO2, LiNiO2, or LiMnO2, that can store or release lithium ion.
The negative electrode 32 has a structure in which a negative active material is formed on the surface of a negative electrode collector, and a part of the negative electrode collector is lead out from the laminate film 40 to constitute the second terminal electrode 4. The second terminal electrode 4 may be a separate metallic body connected to the negative electrode collector. The negative electrode collector is made of, e.g., copper (Cu), and the negative electrode active material is made of, e.g., activated carbon.
The laminated body 30 having such a structure is housed in the bag-like laminate film 40 together with an electrolytic solution. The laminate film 40 has a structure in which an insulating film is laminated on both surfaces of a metal film and is processed into a bag-like shape to enclose the laminated body 30 and electrolytic solution in a sealed manner. The laminate film may be processed into a bag-like shape by folding a single laminate film 40 in two and then heating the overlapping three sides to bond the end portions of the upper insulating film and the end portions of the lower insulating film, or by overlapping two laminate films 40 and then heating the four sides to bond the end portions of the upper insulating film and the end portions of the lower insulating film.
A reference numeral B in
In general, the lithium ion battery may be ignited when the main body temperature reaches 150° C. If the temperature of a certain thin cell 2 reaches 150° C. to be ignited, a high-temperature gas is generated from the electrolytic solution, causing the bonded portion of the laminate film 40 to peel off, and the gas is ejected therefrom. At this time, the temperature of the gas reaches near 60° C. The gas ejected from the thin cell 2 is discharged from the housing C through the gas holes formed in the printed board 23 and is filled in a gas diffusion space formed by the cover member 25.
As illustrated in
Thus, when a certain thin cell 2 undergoes abnormal heat generation to cause a high-temperature gas G to be ejected, the gas G does not stay in the housing C but flows out to the gas diffusion space SP through the first gas hole 23b. The gas diffusion space SP is a comparatively large volumetric space provided in common for the 28 thin cells, so that the gas G having reached the gas diffusion space SP is cooled down to some extent. Thus, another normal thin cell 2 does not undergo abnormal heat generation by the gas flowing therein through another gas hole 23b. The volume of the gas diffusion space SP is preferably larger than the volume of one thin cell 2 and, more preferably, 1/100 or more of the volume of a gas that can be generated when one thin cell 2 undergoes abnormal heat generation. With such a volume of the gas diffusion space SP, even when one thin cell 2 undergoes abnormal heat generation, it is possible to reliably prevent propagation of the abnormal heat generation to another thin cell 2. Further, in the present embodiment, one gas hole 23b is provided for each two thin cells, so that the diameter of the gas hole 23b can be designed sufficiently large.
Further, a plurality of second gas holes 25a are formed in the upper surface of the cover member 25. Thus, the gas G filled in the gas diffusion space SP is released outside the battery pack 20 through the second gas holes 25a.
As illustrated in
However, in a normal operating condition, the second gas hole 25a is closed by the resin film 26 illustrated in
As described above, in the battery pack 20 according to the preset embodiment, the thin cells 2 are housed in the cell housing body constituted by the resin holder 7, heat conducting member 6 and printed board 23, and the first gas holes 23b are formed in the printed board 23. Thus, even when a certain thin cell 2 undergoes abnormal heat generation, it is possible to guide a high-temperature gas ejected from the thin cell 2 in a predetermined direction. This can prevent propagation of the abnormal heat generation to another thin cell 2. Further, the printed board 23 is attached with the cover member 25 that forms the gas diffusion space SP, allowing the high-temperature gas to be cooled down to some extent in the gas diffusion space SP. The gas in the gas diffusion space SP is released outside the battery pack 20 through the second gas holes 25a formed in the cover member 25.
The following describes a manufacturing method for the battery pack 20.
First, as illustrated in
Then, the above-described processes are repeated with the resin holder 7 turned upside down. That is, as illustrated in
By the processes thus far, the structural body Sa illustrated in
After completion of the structural body S, a PCB (Printed Circuit Board) holder 21 is fixed to the terminal surface (the surface of each thin cell 2 from which the terminal electrodes 3 and 4 are exposed) of the structural body S using tapping screws 22 as illustrated in
Then, as illustrated in
Here, electrical connection between the thin cells 2 in the battery pack 20 will be described.
The bus bar 24 realizing the above electrical connection has a simple configuration that connects the terminal electrodes 3 and 4 linearly as illustrated in
Then, as illustrated in
Then, as illustrated in
Finally, as illustrated in
It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
For example, in the above embodiment, the first gas holes 23b are disposed at apart of the cell housing body housing the thin cells 2 that covers the terminal electrodes 3 and 4; however, this point is not essential in the present invention. Thus, as in a modification illustrated in
Further, in the above embodiment, the tubular resin film 26 is used to close the second gas holes 25a; alternatively, however, instead of using the resin film 26, other closing members, such as a gas valve, that open the second gas holes 25a when a gas is generated may be used to close the second gas holes 25a in a normal operating condition.
Number | Date | Country | Kind |
---|---|---|---|
2019-010109 | Jan 2019 | JP | national |