This application is related to and claims priority from Japanese Patent Application No. 2020-004388 filed on Jan. 15, 2020, the contents of which are hereby incorporated by reference.
The present disclosure relates to battery packs having a plurality of battery modules.
There is a battery pack having a housing, a plurality of battery modules, a plurality of acquisition units and a monitoring device. The plurality of battery modules, the plurality of acquisition units or communication units and the monitoring device are arranged in the housing. The acquisition units are provided to the corresponding battery packs to detect battery information. The monitoring device performs wireless communication with the acquisition units to receive the battery information transmitted from the acquisition units.
Each of the monitoring device and the acquisition units is equipped with a wireless communication antenna. Each wireless communication antenna emits radio waves. The emitted radio waves are reflected by the inner walls of the housing. The reflection of the emitted radio waves generates a plurality of reflected radio waves, and the reflected radio waves are superimposed on each other. This causes radio wave interference, and loss of wireless communication and wireless communication accident may occur due to radio wave interference.
Because level of risk of wireless communication failure risk scale varies due to communication frequency, the monitoring device changes the communication frequency when loss of wireless communication and wireless communication accident occurs at a communication frequency. There is a technique which changes a communication frequency used in wireless communication when a communication failure thereof occurs.
This technique may perform the wireless communication with other units by changing the communication frequency. However, it is difficult for this technique to reduce occurrence of wireless communication failure and to avoid loss of wireless communication from occurring. Frequent occurrence of loss of wireless communication and wireless communication accident often causes the monitoring device in a battery pack to change its communication frequency. The frequent occurrence of loss of wireless communication and wireless communication accident reduces the updating of battery information. It is accordingly difficult to apply the monitoring device having wireless communication function previously described to a battery pack requiring real-time wireless communication.
It is desired for the present disclosure to provide a battery pack having a housing, a plurality of battery modules, a plurality of acquisition units, a monitoring device, a parent antenna, and a plurality of slave antennas. The battery modules are arranged in an inside of the housing. The acquisition units are arranged on the battery modules in one-to-one correspondence so as to acquire battery information of the battery modules. The monitoring device performs wireless communication with the acquisition units in the housing so as to acquire the battery information of the battery modules. The parent antenna is arranged on the monitoring device, and the slave antennas are arranged on the corresponding battery modules in one-to one correspondence, so as to perform the wireless communication between the monitoring device and the acquisition units. In particular, a radio wave absorption part is formed on at least one of surfaces of the housing and an inside of the housing. The radio wave absorption part absorbs radio waves emitted from the parent antenna and the slave antennas.
A preferred, non-limiting embodiment of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:
Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. In the following description of the various embodiments, like reference characters or numerals designate like or equivalent component parts throughout the several diagrams.
A description will be given of a battery pack 101 according to a first exemplary embodiment of the present disclosure with reference to
As shown in
The housing 10 is made of conductive material such as one made of metal. Outer surfaces of each of the battery modules 20, the acquisition units 30 and the monitoring device 40 are made of a conductive material such as one made of metal. Accordingly, the outer surfaces and the inner surfaces of the housing 10, the outer surfaces of each of the battery modules 20 and the acquisition units 30 reflect radio waves W. In other words, the outer surfaces and the inner surfaces of the housing 10, the outer surfaces of each of the battery modules 20 and the acquisition units 30 have a function of electromagnetic shielding.
In the following explanation with reference to
As shown in
Each acquisition unit 30 is arranged at each battery module 20. Specifically, each acquisition unit 30 is arranged at an upper surface 23 of the corresponding battery module 20. The acquisition unit 30 receives and acquires battery information regarding a state of the corresponding battery module 20. Such battery information includes voltage information, temperature information and current information of each battery cell 22 in the battery module 20. Each acquisition unit 30 is equipped with a slave antenna 36. Each slave antenna 36 projects upward from the upper surface of the corresponding acquisition unit 30. In other words, as shown in
As shown in
The monitoring device 40 performs the wireless communication to transmit an acquisition instruction to each of the acquisition units 30. The acquisition instruction instructs each acquisition unit 30 to acquire the battery information of its corresponding battery module 20, and to transmit the acquired battery information to the monitoring device 40. The monitoring device 40 generates an equalization instruction, and transmits it to the acquisition units 30 so as to equalize a voltage of each of the battery cells 22 in each battery module 20.
The housing 10 has a box shape so as to accommodate the parent antenna 46 and each of the slave antennas 36 in six directions which are in both sides of the lateral direction X, the longitudinal direction Y and the vertical direction Z. In other words, the housing 10 is arranged in the six directions of each of the parent antenna 46 and the slave antennas 36. It is accordingly acceptable for the housing 10 to have a screw hole, a vent hole and a connector hole, etc.
Hereinafter, radio waves emitted from the parent antenna 46 and radio waves emitted from each of the slave antennas 36 will be referred to as the direct radio waves. The direct radio waves are not reflected by the inner surfaces of the housing 10, the outer surfaces of the battery modules 20, etc. On the other hand, the radio waves which have been reflected by them will be referred to as the reflected waves.
In the housing 10 shown in
A gap between the upper surface 23 of each of the battery modules 20 and the ceiling surface 13 of the housing 10 in the vertical direction Z is narrow. Similarly, a gap between the upper surface 33 of each of the acquisition units 30 and the ceiling surface 13 of the housing 10 in the vertical direction Z is narrow, for example, each of these gaps in the vertical direction Z is not more than 3 cm, not more than 2 cm, or not more than 1 cm. For this reason, as shown in
For example, it is acceptable to use as the radio wave absorber a powder-type absorber or a liquid-type absorber applied on the ceiling surface 13 of the housing 10. It is also acceptable to paste a sheet-type absorber on the ceiling surface 13 of the housing 10.
It is also acceptable to use the ceiling surface of the housing 10 made of a material capable of absorbing radio waves. It is also acceptable to use a ceiling surface of the housing 10 having a shape capable of absorbing radio waves. More specifically, it is possible to use, as the radio wave absorption part 60, conductive fibers, dielectric radiation absorbent material, or magnetic radio wave absorbent material, etc.
The battery pack 101 according to the first exemplary embodiment having the improved structure previously described has the following effects.
The improved structure of the battery pack 101 may reduce the overall size of the battery pack because each of the slave antennas 36 is arranged at a gap between the upper surface 33 of the corresponding acquisition unit 30 and the ceiling surface 13 of the housing 10.
In the structure of the battery pack according to the comparative example shown in
These upper surfaces 23 of the battery modules 20 and the upper surfaces 33 of the acquisition units 30 and the ceiling surface 13 of the housing 10 are made of conductive materials. Such conductive materials reflect radio waves W emitted from the slave antennas 36 and the parent antenna 46. In addition to this drawback, each of the battery pack shown in
As shown in
As previously described, it is possible for the battery pack 101 having the improved structure to reduce the overall size of the battery pack 101 and to suppress a communication failure from occurring.
The battery pack 101 according to the first exemplary embodiment has the housing made of conductive material such as one made of metal in which the radio wave absorption part 60 is arranged on the ceiling part 13 of the housing 10, and no radio wave absorption part 60 is arranged on the other surfaces, i.e. the inner side wall surfaces and the inner bottom surface of the housing 10. The radio waves are accordingly reflected by the inner side wall surfaces and the inner bottom surface of the housing 10. This structure makes it possible to prevent the radio waves W from being leaked to the outside of the housing 10. This structure makes it possible to improve and provide tight security regarding data information of the battery modules 20, etc. In addition, this structure of the battery pack 101 makes it possible to suppress leaked radio waves from influencing communication devices, etc. located around the battery pack 101.
Still further, this improved structure makes it possible to prevent external radio waves Wo from entering into the inside of the housing 10 because such external radio waves Wo are reflected by the outer surface of the housing 10. That is, this improved structure of the battery pack 101 makes it possible to prevent the external radio waves Wo from causing interference at the slave antennas 36 and the parent antenna 46. This makes it possible to suppress a communication failure from occurring due to the external radio waves Wo.
A description will be given of a battery pack 102 according to the second exemplary embodiment of the present disclosure with reference to
In the structure of the battery pack 102 shown in
Because the battery pack 102 according to the second exemplary embodiment has the structure in which the radio wave absorption part 60 is arranged on the inner surfaces of the housing 10, this structure makes it possible to better suppress radio waves from being reflected on the inner surfaces of the housing 10, and to prevent wireless communication failure from occurring due to radio wave interference.
A description will be given of a battery pack 103 according to the third exemplary embodiment of the present disclosure with reference to
It is possible for the structure of the battery pack 103 according to the third exemplary embodiment to have the radio wave absorption part 60 formed on the ceiling surface 13, at least one outer surface of each of the battery modules 20, at least one outer surface of each of the acquisition units 30, and at least one outer surface of the monitoring device 40 which is exposed to the inside chamber of the housing 10.
Specifically, in the structure of the battery pack 103 shown in
Because the battery pack 103 according to the third exemplary embodiment has the structure in which the radio wave absorption part 60 is arranged on the outer surfaces of each of the battery modules 20, each of the acquisition units 30 and the monitoring device 40, this structure makes it possible to more suppress radio waves from being reflected on the outer surfaces of each of the battery modules 20, each of the acquisition units 30 and the monitoring device 40. Further, this structure makes it possible to prevent wireless communication failure from occurring due to radio wave interference.
A description will be given of a battery pack 104 according to the fourth exemplary embodiment of the present disclosure with reference to
In the structure of the battery pack 104 according to the fourth exemplary embodiment shown in
In order to avoid this drawback, a reflection part 50 is arranged in the inside of the housing 10. The reflection part 50 reflects radio waves W emitted from the slave antennas 36 and the parent antenna 46. Radio waves emitted from the parent antenna 46 are reflected by the reflection part 50 located at the middle part of the ceiling surface of the housing 10. These reflected radio waves W may reach the slave antennas 36 of the battery modules 20 located at the leftmost side and around it. Similarly, the reflected radio waves W emitted from the battery modules 20 and reflected by the reflection part 50 may reach the parent antenna 46 of the monitoring device 40 shown in
Specifically, as shown in
The structure of the battery pack 104 according to the fourth exemplary embodiment makes it possible to perform radio wave communication because of having the reflection part 50 even if obstacles such as conductors are located between the parent antenna 46 and the slave antennas 36. This structure makes it possible to allow the parent antenna 46 and the slave antennas 36 to be arranged at desired locations in the housing 10, and also possible to allow the monitoring device 40 and the acquisition units 30 to be arranged at optional locations in the housing 10.
Still further, this structure of the battery pack 104 allows once-reflected radio waves which have been reflected once by the reflection part 50 to correctly reach the parent antenna 46 and the slave antennas 36. This structure makes it possible to provide stable radio wave communication transmit because of transmitting the strong radio waves to the parent antenna 46 and the slave antennas 36 when compared with a case in which multiple-reflected radio waves, which have been reflected more than several times, reach the parent antenna 46 and the slave antennas 36.
Furthermore, the reflection part 50 and the radio wave absorption part 60 are arranged on the ceiling surface 13 of the housing 10 in the battery pack 104 according to the fourth exemplary embodiment. This improved structure using the reflection part 50 and the radio wave absorption part 60 allows the reflection part 50 to be easily arranged on the reflection part 50 on the ceiling surface at the inside of the housing 10.
A description will be given of a battery pack 105 according to the fifth exemplary embodiment of the present disclosure with reference to
As shown in
In the structure of the battery pack 105 according to the fifth exemplary embodiment shown in
The structure of the battery pack 105 according to the fifth exemplary embodiment shown in
This structure of the battery pack 105 makes it possible to prevent radio waves W emitted from each of the parent antenna 46 and the slave antennas 36 from being leaked to outside of the housing 10 because the inner wall surfaces of the housing reflects the radio waves W. Further, this structure of the battery pack 105 makes it possible to prevent external radio waves from entering into the inside chamber of the housing 10 because the outer surfaces of the housing 10 reflect these external radio waves.
Although the ceiling part 10b made of non-conductive material such as resin allows radio waves to pass therethrough, the radio wave absorption part 60 arranged on the bottom surface of the ceiling part 10b absorbs external radio waves passing through the ceiling part 10b and the radio waves W emitted from the parent antenna 46 and the slave antennas 36. from entering into the inside chamber of the housing 10. In other words, the arrangement of the ceiling part 10b makes it possible to prevent the radio waves W emitted from the parent antenna 46 and the slave antennas 36 form being leaked to the outside of the housing 10, and to prevent the external radio waves Wo from entering into the inside chamber of the housing 10.
The arrangement of the radio wave absorption part 60 on the ceiling part 10b made of non-conductive material such as resin without any function of electromagnetic shielding makes it possible to prevent these radio waves W and Wo from being leaked outside and from entering into the inside chamber of the housing 10.
In particular, in the structure of the battery pack 105 according to the fifth exemplary embodiment shown in
A description will be given of a battery pack 106 according to the sixth exemplary embodiment of the present disclosure with reference to
As shown in
In the structure of the battery pack 106 according to the sixth exemplary embodiment shown in
The concept of the present disclosure is not limited by the structures according to the first to sixth exemplary embodiment previously described. For example, it is possible for the battery pack to have the following various modifications.
It is acceptable to arrange the radio wave absorption part 60 on at least the upper surface 33 of the acquisition unit 30, below each of the slave antennas 36, instead of or in addition to the radio wave absorption part 60 arranged on the ceiling surface 13 of the housing 10, above each of the slave antennas 36.
Further, it is acceptable to arrange the slave antenna 36 to the side wall surface of each of the radio wave absorption parts 60, and to arrange the radio wave absorption part 60 on the upper surface 23 of each of the battery modules 20, below its corresponding slave antenna 36.
Further, in the battery packs 101 to 103 according to the first to third exemplary embodiments, it is acceptable to use the housing 10 in which a part or the overall area thereof is made of non-conductive material. In this case, it is acceptable to arrange the radio wave absorption part 60 on the external surface of the ceiling part 10b made of non-conductive material or to embed the radio wave absorption part 60 into the inside of the ceiling part 10b made of non-conductive material such as resin.
When the housing 10 is made of non-conductive material, it is possible for the inner surfaces of the housing 10 to reflect no radio wave W. Even if the radio waves W, emitted from the parent antenna 46 and the slave antennas 36, pass through the housing 10 and are reflected by the outside conductive parts (not shown), it is possible for the arrangement of the radio wave absorption part 60 to prevent the radio waves W reflected by the outside conductive part from being superimposed on the slave antennas 36 and the parent antenna 46 arranged in the housing 10.
In the structure of the battery pack 104 according to the fourth exemplary embodiment shown in
In the structure of each of the battery pack 105 according to the fifth exemplary embodiment shown in
In the structure of each of the battery packs 101 to 106 according to the first to sixth exemplary embodiments shown in
It is possible to eliminate the radio wave absorption part 60 from a part including the radio wave absorption part 60.
As previously described, in the improved structure of the battery pack according to the present disclosure, the radio wave absorption part is arranged on the housing or embedded in the housing, and the radio wave absorption part absorbs a part of radio waves emitted from the parent antenna and the slave antennas. Accordingly, even if the housing is made of conductive material such as one made of metal, this structure of the battery pack makes it possible to suppress radio waves emitted from the parent antenna and the slave antennas from being reflected by the inner surface of the housing and from being superimposed on the parent antenna and the slave antennas. Further, even if the housing is made of non-conductive material such as resin, this structure of the battery pack makes it possible to suppress reflected radio waves from being superimposed on the parent antenna and the slave antennas, where the reflected radio waves have passed through the housing, and been reflected by an external conductive part located outside of the housing. This improved structure of the battery pack according to the present disclosure makes it possible to suppress wireless communication failure from occurring due to radio wave interference.
While specific embodiments of the present disclosure have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limited to the scope of the present disclosure which is to be given the full breadth of the following claims and all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2020-004388 | Jan 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20090130530 | Tanaka | May 2009 | A1 |
20130130070 | Adachi | May 2013 | A1 |
20160056510 | Takeuchi et al. | Feb 2016 | A1 |
20190242949 | Lemkin | Aug 2019 | A1 |
20190280264 | Kuruma | Sep 2019 | A1 |
20200006815 | Hwang | Jan 2020 | A1 |
20210218071 | Aoki et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
2010-142083 | Jun 2010 | JP |
2010142083 | Jun 2010 | JP |
2013-097883 | May 2013 | JP |
6228552 | Nov 2017 | JP |
2018-133152 | Aug 2018 | JP |
Number | Date | Country | |
---|---|---|---|
20210218071 A1 | Jul 2021 | US |