1. Field of the Invention
This invention relates to a battery powered concrete saw for cutting concrete, asphalt and the like, etc.
2. Background Art
Saws for cutting concrete, asphalt and the like, etc. are conventionally electrically powered or powered by an internal combustion engine that utilizes gasoline or diesel fuel, the latter of which cannot be used indoors due to the exhaust generated. When concrete saws are powered by electricity, an internal combustion engine generator is conventionally used because 240 or 480 volt 3 phase power is required to operate concrete saws of about 5 horsepower or more. However, when indoor cutting is required, the generator due to the exhaust generated must be operated outside and the time required to run an electrical line, which often is hundreds of feet and/or up a number of stories, can be prohibitedly expensive.
U.S. Pat. No. 7,000,605 Due discloses a concrete engraver apparatus and method that is normally operated through a power cord that appears in the drawings to be house type 110 volt, but is also disclosed as using a battery pack. This engraver is manually moved much like a carpet vacuum cleaner and does not appear to be sufficiently heavy duty to permit use in heavy duty concrete cutting jobs.
U.S. Pat. No. 4,998,775 Hollifield discloses an apparatus for precision cutting of concrete surfaces that utilizes a battery for powering a self-powered vehicle supported by a pair of spaced tracks. The necessity for spaced tracks for such a concrete cutter would result in any cutting job also being prohibitedly expensive.
Other prior art noted during an investigation conducted for the present invention included U.S. Pat. No. 4,175,788 Jacobson et al.; U.S. Pat. No. 4,767,162 Reed, III; U.S. Pat. No. 4,824,516 Ishihara et al.; and U.S. Pat. No. 6,102,022 Schave.
An object of the present invention is to provide an improved concrete cutting saw.
In carrying out the above object, a concrete cutting saw constructed in accordance with the present invention includes a frame having a pair of rear wheels and a pair of front wheels for facilitating movement of the saw to different locations for use and for movement during a cutting operation. An electric motor of the saw is of at least 5 horsepower and is mounted by the frame. The frame also has a mounting arrangement for supporting a battery pack for operating the electric motor. A battery powered transmission drives the rear wheels to provide self-propulsion of the saw. A pair of saw arbors are respectively mounted for rotation on opposite lateral sides of the frame forward of the pair of front wheels, and the saw arbors have a rotational connection to the electric motor to provide rotational driving of the saw arbors for cutting. An actuator moves the front wheels upwardly and downwardly with respect to the frame to pivot the frame about the rear wheels between an upper idle position and a lower use position that permits cutting of concrete or the like with a saw blade mounted on one of the arbors.
A battery pack is mounted by the frame to power the electric motor. The battery pack may be lead acid batteries, nickel-cadmium batteries, nickel metal hydride batteries or lithium batteries, and the electric motor preferably has about 5 to 15 horsepower, most preferably about 10 horsepower.
The preferred transmission is a hydraulic transmission that drives the pair of rear wheels from the electric motor that also drives the saw arbors.
As disclosed, the actuator for moving the frame upwardly and downwardly is power operated. This power operated actuator includes a hydraulic cylinder for pivoting the frame between the upper idle position and the lower use position, a hydraulic pump that operates the hydraulic cylinder, and a second electric motor that powers the hydraulic pump. The second electric motor has an electrical connection for powering by the battery pack supported by the frame mounting arrangement.
The concrete saw also includes a front guide assembly including a V-shaped guide member pivotally mounted on the frame for movement between a forwardly projecting use position and a generally vertically extending storage position. A guide wheel on the vertex of the V-shaped guide member rolls along the surface being cut and provides guiding of the saw with the guide member in the forwardly projecting use position.
The concrete saw also includes a pair of blade guards respectively associated with the pair of saw arbors to provide protection from a saw blade mounted on either arbor.
The objects, features and advantages and of the present invention are readily apparent from the following detailed description of the preferred embodiment when taken in connection with the accompanying drawings.
With reference to
As shown in
With continuing reference to
As also shown in
As shown in
The electric motor 24 that drives the rear wheel transmission 30 and the saw arbors 42 through the rotational connection 46 preferably has about 5 to 15 horsepower to provide sufficient power for most conventional concrete requiring cutting. More specifically, when fresh green concrete is being cut, a less powerful electric motor of about 5 horsepower can be sufficient. For cutting aged thick concrete with reinforcing steel bars, a more powerful electric motor is needed, but electric motors having more than about 15 horsepower can draw so much current that the battery life will be unduly shortened. Electric motors with about 10 horsepower are believed to provide a good compromise of having sufficient cutting power without drawing too much current. More specifically, experimentation has indicated that an electric motor of about 10 horsepower that is powered by a battery pack including twelve six volt lead acid batteries connected in series for a total of 72 volts is capable of cutting for about one hour and thirty minutes through six inch thick aged concrete with ⅝ inch diameter reinforcing bars every foot and can cut for about 80 feet while drawing an average current of about 100 amperes, as high as about 150 amperes when cutting through the reinforcing bars and down to about 80 amperes when just cutting the concrete. Of course, improvements in battery technology may permit the use of higher horsepower electric motors in the future while maintaining an adequate charge time.
The power operated actuator 54 of the saw as shown in
As shown in
As shown in
While an embodiment of the invention has been illustrated and described, it is not intended that this embodiment illustrates and describes all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2468336 | Lewis | Apr 1949 | A |
4175788 | Jacobson et al. | Nov 1979 | A |
4767162 | Reed, III | Aug 1988 | A |
4824516 | Ishihara et al. | Apr 1989 | A |
4840431 | Jedick | Jun 1989 | A |
4938201 | Chiuminatta et al. | Jul 1990 | A |
4998775 | Hollifield | Mar 1991 | A |
5104195 | Zaccho | Apr 1992 | A |
5381780 | Yelton et al. | Jan 1995 | A |
5809985 | Kingsley et al. | Sep 1998 | A |
5810448 | Kingsley et al. | Sep 1998 | A |
6019433 | Allen | Feb 2000 | A |
6102022 | Schave | Aug 2000 | A |
6390086 | Collins et al. | May 2002 | B1 |
6484711 | Acker et al. | Nov 2002 | B2 |
6935703 | Gobright, IV | Aug 2005 | B1 |
6981494 | Bowman | Jan 2006 | B1 |
7000605 | Due | Feb 2006 | B2 |
7222618 | Galambos et al. | May 2007 | B2 |
7487770 | Johnson et al. | Feb 2009 | B2 |
20020117160 | Acker et al. | Aug 2002 | A1 |
20030168054 | Governo et al. | Sep 2003 | A1 |
20070164598 | Johnson et al. | Jul 2007 | A1 |
20100006082 | Glinski et al. | Jan 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090107476 A1 | Apr 2009 | US |