The invention relates to consumer devices, such as vacuum cleaners.
Cleaning systems include a wide range of products designed to meet a wide variety of cleaning needs. Examples of cleaning systems include stick-type vacuums, lightweight upright vacuums, hand-held vacuums, carpet cleaners, canister vacuums, etc.
In one embodiment, the invention provides a cleaning system including a motor, an impeller driven by the motor, a battery receptacle, and a motor controller. The battery receptacle is configured to receive a battery pack. The battery pack includes one or more battery cells and a battery controller. The motor controller is configured to receive from the battery controller one of a first type of data and a second type of data, and operate the motor at a defined speed, the defined speed being a first speed upon receiving the first type of data, and a second speed upon receiving the second type of data.
In another embodiment the invention provides a method of operating a cleaning system. The method including receiving a first battery pack including a first battery controller; receiving a first type of data from the first battery controller; outputting a first control signal based on the first type of data; operating a motor at a first speed based on the first control signal; receiving a second battery pack including a second battery controller; receiving a second type of data from the second battery controller; outputting a second control signal based on the second type of data; and operating the motor at a second speed based on the second control signal.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
A cleaning system includes a motor, a battery receptacle, and a controller, such as a motor controller. The cleaning system receives a first battery pack or a second battery pack. The controller electrically and/or communicatively couples to the first battery pack or the second battery pack. The controller receives data from the first battery pack or the second battery pack and operates the motor based on the received data. In one example, the controller receives a first set of data from the first battery pack and a second set of data from the second battery pack. The controller operates the motor at a first speed if the first set of data is received and at a second speed if the second set of data is received.
The handle portion 105 includes a first section 120 and a second section 125. The first section 120 may be oblique with respect to the second section 125 and includes a grip portion 130. The grip portion 130 is used by a user to grip and control the cleaning system 100.
In some constructions, such as the one illustrated, one or more user-controlled switches 135 are located near the spine 115 on the body portion 110. However, in other constructions, the one or more user-controlled switches 135 may be located on the grip portion 130. In yet other constructions, the one or more user-controlled switches 135 are located on the spine 115 or in other areas of the body portion 110. The one or more user-controlled switches 135 provide operational control of the cleaning system 100 to the user. In some constructions, the one or more user-controlled switches 135 are two-position switches, having for example, an on-position and an off-position.
In some constructions, the second section 125 includes one or more indicators for providing indications to a user related to the operational mode of the cleaning system 100. In some constructions, the one or more indicators are light-emitting diodes (LEDs).
The handle portion 105 may be removably coupled to the body portion 110. For example, the handle portion 105 may be detachable from the body portion 110 providing a suction force or vacuum through at least a portion of the handle portion 105 as a wand, or may be removable for storage or transport purposes. In some constructions, the handle portion 105 is coupled and secured to the body portion 110 via friction only. In other constructions, the handle portion 105 is coupled and secured to the body portion 110 via a screw or other suitable fashionable device. The handle portion 105 further includes a plurality of electrical connectors located at an interface between the handle portion 105 and the body portion 110. The electrical connectors electrically connect the handle portion 105 to the body portion 110, so that electrical signals related to the operation of the cleaning system 100 can be sent from the handle portion 105 to the body portion 110 to control, for example, a motor/fan assembly and/or a brush-roll assembly.
The body portion 110 includes a battery receptacle 140, a motor/fan assembly 145, and a refuse chamber 150. In some constructions, the body portion 110 can further include a cyclonic separator. Alternatively, the body portion 110 can further include a disposable bag for dirt collection. The battery receptacle 140 receives a battery pack 155. The battery receptacle 140 includes a plurality of electrical connectors for electrically connecting the battery pack 155 to the cleaning system 100.
The motor/fan assembly 145 includes a suction motor 160 (
The refuse chamber 150 is positioned below the motor/fan assembly 145, and is removably coupled to the cleaning system 100 (e.g., removably coupled to the spine 115, the body portion 110, the motor/fan assembly 145, etc.). In some constructions, the refuse chamber 150 and the motor/fan assembly 145 are removably coupled together, and form a single unit when coupled together. In such a construction, the single unit is then removably coupled to the spine 115 and/or body portion 110. In the illustrated construction, the refuse chamber 150 is bagless and includes a latching mechanism which secures the refuse chamber 150 to the cleaning system 100. The refuse chamber 150 further includes an inlet for receiving refuse. In other constructions, the refuse chamber 150 includes the disposable bag for collecting refuse.
A lower end of the body portion 110 includes an interface attaching the body portion 110 to a base portion 165. The base portion 165 includes a corresponding interface for attaching to the body portion 110. The handle portion 105 and the body portion 110 pivotally move about a first axis parallel to a cleaning surface (e.g., the ground). Pivotal movement about the first axis allows the handle portion 105 and the body portion 110 to be moved from a position approximately perpendicular to the base portion 165 to a position approximately parallel to the ground. For example, the handle portion 105 and body portion 110 are able to be moved through an angle of between approximately 0.0° and approximately 90.0° with respect to the base portion 165. In other constructions, the handle portion 105 and body portion 110 are pivotable through larger or smaller angles.
The handle portion 105 and body portion 110 are also pivotable along a second axis. The second axis is approximately perpendicular to the first axis and is approximately parallel to the handle portion 105 and body portion 110. Pivotal movement about the second axis provides additional control and maneuverability of the cleaning system 100. In some constructions, a pivot joint is employed to allow movement about the first axis and the second axis. In other constructions, a ball joint is employed rather than the pivot joint.
The base portion 165 includes a first wheel 170, a second wheel 175, a suction inlet 180, and a brush-roll assembly 185. The first and second wheels 170, 175 are rotatably coupled to the base portion 165. The suction inlet 180 allows refuse to enter into the cleaning system 100. In some constructions, the suction inlet 180 further includes an aperture which allows larger objects to enter the suction inlet 180 without requiring the user to lift the cleaning system 100.
The brush-roll assembly 185 includes a brush and a brush-roll motor 190 (
The battery pack 155 includes one or more battery cells 215. In some constructions, the battery cells 215 are rechargeable lithium-ion battery cells. In other constructions, the one or more battery cells 215 may have a chemistry other than lithium-ion, such as but not limited to, nickel cadmium, nickel metal-hydride, etc. Additionally or alternatively, the one or more battery cells 215 may be non-rechargeable battery cells. The one or more battery cells 215 may be electrically connected in a series-type connection, a parallel-type connection, or both a series and parallel type connection.
The battery pack 155 further includes a battery controller 220. The battery controller 220 includes a processing unit (e.g., a microprocessor, a microcontroller, or another suitable programmable device) and a memory unit. In some constructions, the battery controller 220 is implemented partially or entirely on a semiconductor (e.g., a field-programmable gate array [“FPGA”] semiconductor) chip. In some constructions, the battery controller 220 senses/monitors a variety of characteristics of the battery cells 215, including but not limited to, voltage, current, capacity, resistance, temperature and number of cells. In some constructions, if any of the sensed/monitored characteristics of the battery cells 215 are out of a predetermined range, the battery controller 220 prohibits the battery pack 155 from outputting current.
The battery pack 155 selectively couples to main body housing 200 via the battery receptacle 140. The battery pack 155 selectively couples to the battery receptacle 140 through the use of one or more latching mechanisms. The battery pack 155 electrically connects to the main body housing 200 through a plurality of terminals. In the illustrated construction, the plurality of terminals include positive battery terminals 225a, 225b, negative battery terminals 230a, 230b, and data serial line, or communications, terminals 235a, 235b. The cleaning system receives power through the positive battery terminals 225a, 225b and is electrically grounded through the negative battery terminals 230a, 230b. The battery pack 155 outputs and/or receives data, or serial data, through the communications terminals 235a, 235b.
The battery receptacle 140 is configured to receive either a first battery pack or a second battery pack. Further, the cleaning system 100 is configured to be powered by either the first battery pack or the second battery pack. In some constructions, the first battery pack has different characteristics than the second battery pack. For example, but not limited to, the first battery pack may have a first capacity (e.g., 2 A-h), while the second battery pack may have a second capacity (e.g., 4 A-h). The characteristics may further be any of, or any combination of, voltage, current, resistance, number of cells, battery identification code, etc. When releasably coupled to the battery receptacle 140, the first battery pack outputs a first type of data through the communications terminals 235a, 235b. The first type of data is identification data identifying the first battery pack, or data indicative of one or more characteristics of the first battery pack. Additionally, when releasably coupled to the battery receptacle 140, the second battery pack outputs a second type of data through the communications terminals 235a, 235b. The second type of data is identification data identifying the second battery pack, or data indicative of one or more characteristics of the second battery pack. The battery pack 155 as discussed herein can be either the first battery pack or the second battery pack.
The main body housing 200 of the cleaning system 100 includes a switch board 240. The switch board 240 selectively controls power from the battery pack 155 to a variety of electrical components of the cleaning system 100, such as but not limited to electrical components of the motor/fan assembly housing 205 and the brush-roll assembly housing 210. In some constructions, the switch board 240 is operated by the one or more user-controlled switches 135. In the illustrated construction, the one or more user-controlled switches 135 include a main power switch 245 and a brush-roll switch 250. In such a construction the main power switch 245 provides power from the battery pack 155 to electrical components within the motor/fan assembly housing 205 and the brush-roll assembly housing 210, while the brush-roll switch 250 provides power from the battery pack 155 to electrical components within the brush-roll assembly housing 210. In some constructions, the switch board 240 may include more or less components. For example, the switch board 240 may include one or more fuses, one or more positive temperature coefficient (PTO) devices, etc.
In some constructions, such as the one illustrated, the main body housing 200 further includes a light 255. In such a construction, the main power switch 245 selectively provides power from the battery pack 155 to the light 255. Upon receiving power, the light 255 illuminates. In some constructions, the light 255 is located on the base portion 165. The light 255 can be one of a light-emitting diode (LED) or an incandescent light bulb.
The main body housing 200 electrically connects to the motor/fan assembly housing 205 via a plurality of electrical terminals, including motor/fan power terminals 260a, 260b, motor/fan ground terminals 265a, 265b, and motor/fan communication terminals 270a, 270b.
The motor/fan assembly housing 205 includes a speed control module 275 connected to the suction motor 160. The speed control module 275 operates the suction motor 160 at a defined speed. In some constructions, the speed control module 275 is a controller that outputs a control signal to the suction motor 160. The control signal operates the suction motor 160 at the defined speed. In one construction, the speed control module 275 outputs a first control signal to operate the suction motor 160 at a first speed, and outputs a second control signal to operates the suction motor 160 at a second speed. In some constructions, the control signal is a pulse-width modulated (PWM) signal having a voltage and a duty cycle (e.g., 10%, 25%, 50%, 75%, etc.). The average voltage value of the PWM signal is output to the suction motor 160 in order to operate the suction motor 160. A PWM signal having a high average voltage drives the motor at a high motor speed. A PWM signal having a low average voltage drives the motor at a low motor speed.
The speed control module 275 receives power through the motor/fan power terminals 260a, 260b and is grounded through motor/fan ground terminals 265a, 265b. The speed control module 275 further receives data through the motor/fan communication terminals 270a, 270b. In the illustrated construction, the data received through the motor/fan communication terminals 270a, 270b is from the battery controller 220 of the battery pack 155. In some constructions, the speed control module 275 receives data from the battery controller 220, determines a motor operating speed based on the received data, and outputs a control signal indicative of the motor operating speed to the suction motor 160. For example, the data may be a first type of data from the first battery pack or a second type of data from the second battery pack. The speed control module 275 interprets the received data and operates the suction motor 160 at a first speed when the first type of data is received (i.e., the first battery pack is connected) or at a second speed when the second type of data is received (i.e., the second battery pack is connected).
In other constructions, the speed control module 275 receives a motor operating speed from the battery controller 220, and outputs a control signal indicative of the motor operating speed to the suction motor 160. For example, the speed control module 275 may receive a first type of data related to a first operating speed or a second type of data related to a second operating speed. The speed control module 275 operates the suction motor 160 at the first operating speed (i.e., when the first battery pack is connected) or at the second operating speed (i.e., when the second battery pack is connected).
In some constructions, the motor/fan assembly housing 205 selectively couples to the main body housing 200 via one or more latching mechanisms. In other constructions, the motor/fan assembly housing 205 is permanently affixed to the main body housing 200.
The main body housing 200 electrically connects to the brush-roll assembly housing 210 via a plurality of electrical terminals. In the illustrated construction, the plurality of terminals includes brush-roll power terminals 280a, 280b and brush-roll ground terminals 285a, 285b. In other constructions, there may further be brush-roll communication terminals.
The brush-roll assembly housing 210 includes a switch 290 and the brush-roll motor 190. The switch 290 receives power through the brush-roll power terminals 280a, 280b and selectively provides power to the brush-roll motor 190. Upon receiving power, the brush-roll motor 190 rotates the brush. The brush-roll motor 190 is ground through the brush-roll ground terminals 285a, 285b.
In some constructions, the switch 290 is activated when the cleaning system 100 is in an operation position, such as when the handle portion 105 and the body portion 110 are tilted downward along the first axis at an approximate angle of less than 90°. In such a construction, the switch 290 is deactivated when the cleaning system 100 is in an upright position, such as when the handle portion 105 and the body portion 110 are tilted upward along the first axis at an angle equal to approximately 90°.
In some constructions, the brush-roll motor 190 is operated by the speed control module 275, or the control signal from the speed control module 275. In such a construction, the brush-roll motor 190 receives the control signal from the speed control module 275 through the brush-roll power terminals 280a, 280b. The brush-roll motor 190 operates at a speed (e.g., a first brush-roll-motor speed, a second brush-roll-motor speed, etc.) based on the control signal.
Thus, the invention provides, among other things, a cleaning system configured to receive a battery pack and operate a suction motor based on the data received from the battery pack. Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/262,070, filed Sep. 12, 2016, which issued as U.S. Pat. No. 9,844,310 on Dec. 19, 2017, which is a continuation of U.S. patent application Ser. No. 14/550,079, filed on Nov. 21, 2014, which issued as U.S. Pat. No. 9,456,726 on Oct. 4, 2016, which claims priority to U.S. Provisional Application 61/907,725, filed Nov. 22, 2013, the entire contents of all which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4920606 | Gerke, Jr. et al. | May 1990 | A |
5222276 | Glenn, III | Jun 1993 | A |
5243732 | Koharagi et al. | Sep 1993 | A |
5363534 | Dekker et al. | Nov 1994 | A |
5554917 | Kurz et al. | Sep 1996 | A |
6061869 | Ettes et al. | May 2000 | A |
6131236 | Roth | Oct 2000 | A |
6226830 | Hendriks et al. | May 2001 | B1 |
6307358 | Conrad | Oct 2001 | B1 |
6374453 | Kim | Apr 2002 | B1 |
6457205 | Conrad | Oct 2002 | B1 |
6519804 | Vujik | Feb 2003 | B1 |
6526622 | Conrad | Mar 2003 | B2 |
6664748 | Kushida et al. | Dec 2003 | B2 |
6941615 | Shanor et al. | Sep 2005 | B2 |
7000285 | Conner et al. | Feb 2006 | B2 |
7049789 | Taniguchi et al. | May 2006 | B2 |
7237298 | Reindle | Jul 2007 | B2 |
7313845 | Nam | Jan 2008 | B2 |
7328479 | Willenbring | Feb 2008 | B2 |
7332881 | Clark | Feb 2008 | B2 |
7362064 | Coates et al. | Apr 2008 | B2 |
7377007 | Best | May 2008 | B2 |
7456612 | Murakami | Nov 2008 | B2 |
7482768 | Lucas | Jan 2009 | B2 |
7562414 | Oh et al. | Jul 2009 | B2 |
7587786 | Zahuranec et al. | Sep 2009 | B2 |
7690078 | Zahuranec et al. | Apr 2010 | B2 |
7694383 | Zahuranec et al. | Apr 2010 | B2 |
7712182 | Zeiler | May 2010 | B2 |
7723952 | Phillips et al. | May 2010 | B2 |
7725223 | Gordon et al. | May 2010 | B2 |
7825615 | Chen et al. | Nov 2010 | B2 |
7854038 | Zahuranec et al. | Dec 2010 | B2 |
7870637 | Parr et al. | Jan 2011 | B2 |
7950107 | Pineschi | May 2011 | B2 |
7979953 | Yoo | Jul 2011 | B2 |
8172932 | Oh et al. | May 2012 | B2 |
8196257 | Hanschur et al. | Jun 2012 | B2 |
8286302 | Andrup et al. | Oct 2012 | B2 |
8326502 | Snyder et al. | Dec 2012 | B2 |
8339101 | Wu et al. | Dec 2012 | B2 |
8427087 | Yamada | Apr 2013 | B2 |
8429792 | Genn et al. | Apr 2013 | B2 |
8432114 | Clothier | Apr 2013 | B2 |
8438693 | Fujiwara | May 2013 | B2 |
8549701 | Fujiwara | Oct 2013 | B2 |
8595893 | Morgan et al. | Dec 2013 | B2 |
8607402 | Gerhards | Dec 2013 | B2 |
8607405 | Reed et al. | Dec 2013 | B2 |
8671509 | Reed et al. | Mar 2014 | B2 |
8732896 | Lucas | May 2014 | B2 |
8756753 | Reed et al. | Jun 2014 | B2 |
8847532 | Miyazaki et al. | Sep 2014 | B2 |
8984711 | Ota et al. | Mar 2015 | B2 |
9007002 | Niizuma et al. | Apr 2015 | B2 |
20040255426 | Davis et al. | Dec 2004 | A1 |
20050022338 | Muhlenkamp | Feb 2005 | A1 |
20050071056 | Tondra et al. | Mar 2005 | A1 |
20050097701 | Kushida et al. | May 2005 | A1 |
20050189915 | O'Neill | Sep 2005 | A1 |
20060123587 | Parr et al. | Jun 2006 | A1 |
20070094839 | Zahuranec et al. | May 2007 | A1 |
20070101536 | Nielsen | May 2007 | A1 |
20070136979 | Zahuranec | Jun 2007 | A1 |
20070157418 | Zahuranec et al. | Jul 2007 | A1 |
20070261196 | Edginton et al. | Nov 2007 | A1 |
20080086833 | Capron-Tee | Apr 2008 | A1 |
20080157717 | Weston et al. | Jul 2008 | A1 |
20080284363 | Lucas et al. | Nov 2008 | A1 |
20090271944 | Lovelass | Nov 2009 | A1 |
20100084150 | Suzuki et al. | Apr 2010 | A1 |
20100141186 | Katzenberger et al. | Jun 2010 | A1 |
20100155162 | Nakamura et al. | Jun 2010 | A1 |
20100187899 | Suzuki | Jul 2010 | A1 |
20100253257 | Clothier et al. | Oct 2010 | A1 |
20100270095 | Shono | Oct 2010 | A1 |
20100281646 | Fujiwara | Nov 2010 | A1 |
20110197389 | Ota et al. | Aug 2011 | A1 |
20110279071 | Yamada | Nov 2011 | A1 |
20110288711 | Yanagisawa | Nov 2011 | A1 |
20120112670 | Danestad et al. | May 2012 | A1 |
20120152285 | Gerhards et al. | Jun 2012 | A1 |
20120159734 | Fujiwara | Jun 2012 | A1 |
20120317743 | Reed et al. | Dec 2012 | A1 |
20120317749 | Spiggle | Dec 2012 | A1 |
20130152333 | Reed et al. | Jun 2013 | A1 |
20130319478 | Hensel | Dec 2013 | A1 |
20140100736 | Kim | Apr 2014 | A1 |
20140244082 | Caron | Aug 2014 | A1 |
20150280630 | Yoon | Oct 2015 | A1 |
20150333666 | Miller | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
4433181 | Mar 1996 | DE |
10327909 | Jan 2005 | DE |
2659824 | Nov 2013 | EP |
2774200 | Jul 1999 | FR |
2225219 | May 1990 | GB |
2469142 | Oct 2010 | GB |
2490256 | Oct 2012 | GB |
H10314078 | Feb 1998 | JP |
WO 2007083153 | Jul 2007 | WO |
Entry |
---|
International Preliminary Report on Patentability for Application No. PCT/US2014/066865 dated Feb. 17, 2016 (18 pages). |
Chinese Patent Office Action for Application 2010480063278.1with English Translation dated Mar. 21, 2017 (19 pages). |
Number | Date | Country | |
---|---|---|---|
20180103815 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61907725 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15262070 | Sep 2016 | US |
Child | 15844782 | US | |
Parent | 14550079 | Nov 2014 | US |
Child | 15262070 | US |