This non-provisional application claims priority claim under 35 U.S.C. ยง 119 (a) on China Patent Application No. 201710974637.4 filed Oct. 19, 2017, the entire contents of which are incorporated herein by reference.
The present invention relates to a battery powered device, particularly to a battery powered device capable of providing a standby power.
In order to avoid the power outage occurred during the system device performing the important task, the system device is able to be connected to an external battery powered device. When the power outage occurs, the required standby power that the system device performs the important task can be provided by the discharging of the system device.
In the past, the battery powered device is provided with a DC power converter (such as switched power converter or linear power converter) in the inside thereof. The battery powered device can buck the voltage of battery to the required working voltage of the system device by the DC power converter so as to power to the system device.
In general, the DC power converter is having the high cost of components that will increase the hardware cost of the battery powered device, and is having the higher power consumption that will easily cause the loss of battery energy, and is easy over-discharging during the discharging process, resulting in the damage of battery cell. Besides, a power management chip must be waked up when the battery powered device is powered via the DC power converter, so that the operation of the DC power converter can be controlled by the power management chip. However, the power management chip in a normal operation state is easy to cause that the battery energy of the battery powered device is exhausted quickly.
It is one objective of the present invention to provide a battery powered device, which comprises a battery pack, at least one switch, a power management chip, and a pre-powered circuit. The battery pack can be powered to a system device via the pre-powered circuit even if the battery powered device is operated in a power-saving standby mode. Besides, the power management chip can be operated in a standby state when the battery powered device is powered to the system device via the pre-powered circuit, so as to reduce the consumption of the battery energy and therefore extend the powered time of the battery powered device.
It is another objective of the present invention to provide a battery powered device, in which the pre-powered circuit comprises a buck and current-limiting module. The buck and current-limiting module comprises at least one zener diode and at least one current limiting resistor. The discharging energy of the battery pack can be powered to the system device via the zener diode and the current limiting resistor. Thus, a minimum discharge voltage of the battery pack is limited by a voltage drop of the zener diode, a discharging current is limited by the current limiting resistor, thereby the thing that the battery pack is over-discharging and therefore damaged can be avoided.
It is another objective of the present invention to provide a battery powered device, wherein the pre-powered circuit further comprises a temperature protection module. When an operation temperature of the buck and current-limiting module exceeds a temperature threshold, the temperature protection module will generate a high impedance, so that a current loop between the battery pack, the pre-powered circuit, and the system device will be disconnected by the high impedance of the temperature protection module, in such a way that the buck and current-limiting module can avoid to be powered to the system device when over-heating, thereby the safety on the powered can be ensured.
To achieve the above objective, the present invention provides a battery powered device, which is used for providing a power to a system device, the battery powered device comprising: a battery pack consisted of a plurality of batteries; at least one switch connected between the battery powered device and the system device; a power management chip, connected to the switch, used for controlling the turning on or the turning off of the switch; and a pre-powered circuit connected between the battery pack and the system device, wherein the pre-powered circuit comprises a buck and current-limiting module, the buck and current-limiting module comprises at least one zener diode and at least one current limiting resistor, the zener diode is connected to the current-limiting resistor in a series, the battery pack is powered to the system device by the pre-powered circuit when the switch is turned off.
In one embodiment of the present invention, the switch is turned off by the controlling of the power management chip before an operation mode of the power management chip is to be transferred from a normal operation mode to a standby operation mode.
In one embodiment of the present invention, the pre-powered circuit further comprises a temperature protection module, the temperature protection module is connected to the buck and current-limiting module, and used for sensing an operation temperature of the buck and current-limiting module, a current loop between the battery pack, the pre-powered circuit, and the system device will be disconnected by the temperature protection module when the operation temperature of the buck and current-limiting module exceeds a temperature threshold.
In one embodiment of the present invention, the temperature protection module is an impedance element of positive temperature coefficient.
In one embodiment of the present invention, the temperature protection module is a thermistor, a polysilicon fuse, or a circuit breaker.
In one embodiment of the present invention, when the power management chip is operated in a normal operation mode, the switch will be turned on by the controlling of the power management chip, the battery pack is powered to the system device by the switch.
In one embodiment of the present invention, the power management chip receives a waking signal, the operation mode of the power management chip is transferred from the standby operation mode to the normal operation mode according to the waking signal.
In one embodiment of the present invention, the switch is a JFET, a MOSFET, a BJT, or a Relay.
Referring to
The power management chip 13 is connected to the switch 15, used for controlling the turning on or the turning off of the switch 15. When the power management chip 13 is operated in a normal operation mode, it will issue an enable signal to the switch 15, so that the switch 15 is turned on according to the enable signal, and a discharging energy of the battery pack 11 is powered to the system device 20 via the switch 15 turned on. In the contrary, before the operation mode of the power management chip is to be transferred from a normal operation mode to a standby operation mode, the power management chip 13 will issue a disable signal to switch 15 so that the switch 15 is turned off according to the disable signal. Afterwards, when the switch 11 is turned off and the power management chip 13 is operated in the standby operation mode, the discharging energy of the battery pack 11 will be powered to the system device 20 via the pre-powered circuit 17. Accordingly, a normal powered loop is formed between the battery pack 11, the switch 15, and the system device 20, and a bypass powered loop is formed between the battery pack 11, the pre-powered circuit 17, and the system device 20.
As shown in
Accordingly, the battery pack 11 can still be powered to the system device 20 via the pre-powered circuit 17 when the battery powered device 10 of the present invention is operated in the power-saving standby mode, while the power management chip 13 operated in the standby state will reduce the consumption of battery energy of battery pack 11 so as to extend the powered time of the battery powered device 10.
Sequentially, the power management chip 13 is able to receive a waking signal, which is issued by the system device 20 or an external control device. When the power management chip 13 receives the waking signal, the operation mode of the power management chip 13 is able to be transferred from the standby operation mode to the normal operation mode according to the waking signal, and then the power management chip 13 sends an enable signal to the switch 15 so that the switch 15 can be again turned on by the enable signal.
The pre-powered circuit 17 further comprises a temperature protection module 19. The buck and current-limiting module 18 is connected to the system device 20 via the temperature protection module 19. In one embodiment of the present invention, the temperature protection module 19 is an impedance element of positive temperature coefficient, for example, thermistor, polysilicon fuse, or circuit breaker. An impedance value of the temperature protection module 19 will increase following to the temperature. The temperature protection module 19 is used for sensing an operation temperature of the buck and current-limiting module 18. When the operation temperature of the buck and current-limiting module 18 exceeds a temperature threshold, the temperature protection module 19 will generate a high impedance, so that the current loop between the battery pack, the pre-powered circuit, and the system device will be disconnected by the high impedance of the temperature protection module 19. By the configuration of the temperature protection module 19, the buck and current-limiting module 18 can avoid to be powered to the system device 20 when over-heating, thereby the safety on the powered can be ensured.
The above disclosure is only the preferred embodiment of the present invention, and not used for limiting the scope of the present invention. All equivalent variations and modifications on the basis of shapes, structures, features and spirits described in the claims of the present invention should be included in the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0974637 | Oct 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4260956 | Harford | Apr 1981 | A |
4528492 | Inaniwa | Jul 1985 | A |
5045768 | Pelly | Sep 1991 | A |
5506991 | Curry | Apr 1996 | A |
5646501 | Fishman | Jul 1997 | A |
6160375 | Horie | Dec 2000 | A |
6275002 | Chen | Aug 2001 | B1 |
6331764 | Oglesbee | Dec 2001 | B1 |
7154234 | Romano | Dec 2006 | B2 |
7274116 | Inoue | Sep 2007 | B2 |
7579716 | Sato | Aug 2009 | B2 |
7880434 | White | Feb 2011 | B2 |
7969121 | Smith | Jun 2011 | B2 |
8035251 | Lai | Oct 2011 | B2 |
8119275 | Lee | Feb 2012 | B2 |
8120326 | Heinrich | Feb 2012 | B2 |
8330436 | Oraw | Dec 2012 | B2 |
8575894 | White | Nov 2013 | B2 |
8829722 | Kusch | Sep 2014 | B2 |
8847554 | Sunderlin | Sep 2014 | B2 |
8890494 | Gasperi | Nov 2014 | B2 |
8912769 | Lin | Dec 2014 | B2 |
8922166 | White | Dec 2014 | B2 |
9077196 | Sim | Jul 2015 | B2 |
9099871 | White | Aug 2015 | B2 |
9172303 | Vasadi | Oct 2015 | B2 |
9219366 | Kim | Dec 2015 | B2 |
9318952 | Oraw | Apr 2016 | B2 |
9525301 | White | Dec 2016 | B2 |
9711962 | Andrea | Jul 2017 | B2 |
10033204 | Huang | Jul 2018 | B2 |
10199844 | Horie | Feb 2019 | B2 |
10250043 | White | Apr 2019 | B2 |
10578675 | Liang | Mar 2020 | B2 |
20010019256 | Olsson | Sep 2001 | A1 |
20020085837 | Yang | Jul 2002 | A1 |
20030179034 | Melis | Sep 2003 | A1 |
20030232237 | Nakagawa | Dec 2003 | A1 |
20040036446 | Iwashima | Feb 2004 | A1 |
20050219864 | Furukoshi | Oct 2005 | A1 |
20060006850 | Inoue | Jan 2006 | A1 |
20060139021 | Taurand | Jun 2006 | A1 |
20060186867 | Kataoka | Aug 2006 | A1 |
20080013236 | Weng | Jan 2008 | A1 |
20080129219 | Smith | Jun 2008 | A1 |
20080150364 | Chen | Jun 2008 | A1 |
20090009136 | Heinrich | Jan 2009 | A1 |
20090153124 | Ishii | Jun 2009 | A1 |
20090289599 | White | Nov 2009 | A1 |
20090322304 | Oraw | Dec 2009 | A1 |
20100008117 | Luthi | Jan 2010 | A1 |
20100149706 | Lee | Jun 2010 | A1 |
20110089901 | White | Apr 2011 | A1 |
20110095615 | Li | Apr 2011 | A1 |
20110130983 | Yang | Jun 2011 | A1 |
20120080945 | Vasadi | Apr 2012 | A1 |
20120086400 | White | Apr 2012 | A1 |
20120206116 | Fricker | Aug 2012 | A1 |
20120274295 | Lin | Nov 2012 | A1 |
20120319658 | White | Dec 2012 | A1 |
20130051101 | Cao | Feb 2013 | A1 |
20130058141 | Oraw | Mar 2013 | A1 |
20130121048 | Gasperi | May 2013 | A1 |
20130187619 | Dunipace | Jul 2013 | A1 |
20130221924 | Sim | Aug 2013 | A1 |
20140002003 | Kim | Jan 2014 | A1 |
20140009106 | Andrea | Jan 2014 | A1 |
20140028259 | White | Jan 2014 | A1 |
20140159681 | Oraw | Jun 2014 | A1 |
20150054479 | Shiwaya | Feb 2015 | A1 |
20150295427 | White | Oct 2015 | A1 |
20150295494 | Gong | Oct 2015 | A1 |
20150340894 | Horie | Nov 2015 | A1 |
20160016483 | Yasunori | Jan 2016 | A1 |
20160064963 | Huang | Mar 2016 | A1 |
20160064965 | White | Mar 2016 | A1 |
20160181918 | Herfurth | Jun 2016 | A1 |
20160301235 | Okanoue | Oct 2016 | A1 |
20170201109 | Meacham, II | Jul 2017 | A1 |
20170271863 | Andrea | Sep 2017 | A1 |
20170271864 | Andrea | Sep 2017 | A1 |
20170271865 | Andrea | Sep 2017 | A1 |
20180034365 | Sicard | Feb 2018 | A1 |
20180337536 | Li | Nov 2018 | A1 |
20190148782 | Chang | May 2019 | A1 |
20190227127 | Liang | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2000324841 | Nov 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20190123579 A1 | Apr 2019 | US |