The present disclosure relates to surgical instruments. More particularly, the present disclosure relates to a surgical stapling device that has an improved and internally powered driving mechanism.
Surgeons have recognized in the art the benefits of a compact surgical apparatus for the application of surgical clips and staples to body tissue in a number of different medical procedures. Often, prior art surgical staplers require some degree of physical force or lateral movement in order to operate a handle to actuate the surgical stapler and fire the staple after a compression to actuate the surgical stapler and fire the staple after a compression of tissue is made. It would be desirable to have a precise surgical stapler device that is compact and easy to use and will quickly and easily fire. Also, once compression of the desired stapling location is made, only a very limited degree of force to the surgical stapling device should be required in order to complete the actuation of the device and thus firing of the staples such as by actuating a trigger switch. Moreover, such a powered stapling device should be very easy to manipulate and hold by the surgeon.
Attempts have been made in the art to provide such a surgical stapling device that is pneumatic or gas powered and/or also externally powered in order to remedy this desire. However, it would be beneficial to provide a disposable apparatus for the application of staples to body tissue that is self contained, self powered and easy to manufacture.
Additionally, tissue exhibits visco-elastic properties. Once under pressure from a jawed structure such as an approximation device of a surgical stapler, the body tissue will slowly compress. Blood and other fluid traverses from the high pressure or gripped area to another low pressure or adjacent area. Once released, as expected the fluid will return from the adjacent area to the previously compressed area.
Prior art surgical stapling devices will approximate tissue. Then, once the approximation is made, the surgeon will introduce the staple into the body tissue.
It is desirable to provide a surgical stapler device that result in a uniform staple formation. It is also desirable to provide a surgical stapler device that allows for an appropriate time interval to elapse for tissue compression. This allows for the blood and fluid to travel away from the compressed area. Compression by an approximation device reduces the amount of blood and fluid therebetween. Without such compression, an uncompressed body tissue remains thicker whereas the compressed body tissue would be thinner, and more compact. The surgeon must control compression time by observing the tissue or by using a separate timing device.
Accordingly, compression of the tissue for the proper amount of time is important for a proper and uniform staple formation due to this viscoelastic tissue phenomenon.
According to a first aspect of the present disclosure, there is provided a surgical stapler. The stapler has a handle assembly including a stationary handle and a trigger. The trigger is configured to manipulate a cam member through an actuating stroke. The stapler has an elongated body extending distally from the handle assembly and defining a longitudinal axis with a staple cartridge supported adjacent the distal end of the elongated body and containing a plurality of staples. The stapler has an anvil pivotally mounted in relation to the cartridge adjacent the distal end of the elongated body. The anvil has a fastener forming surface thereon and is mounted for pivotal movement in relation to the cartridge between an open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge. The stapler has an actuation sled supported within the cartridge. The actuation sled is movable to urge the plurality of staples from the cartridge. The stapler also has a drive assembly with a body having a working end and a cam member supported on the working end. The cam member is positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler.
The trigger is operatively connected to a power cell. The power cell is operably connected to a motor of the drive assembly. The manipulation of the trigger actuates the power cell such that the power cell powers the drive assembly to effect translation of the cam member relative to the anvil. The stapler also has a channel for supporting the staple cartridge and the motor of the drive assembly controls the actuation sled supported within the cartridge. The actuation sled urges the plurality of staples from the cartridge when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
According to another aspect of the present disclosure, there is provided a surgical stapler. The stapler has a handle assembly with a stationary handle and a trigger configured to manipulate a cam member through an actuating stroke. The stapler also has an elongated body extending distally from the handle assembly and defining a longitudinal axis. The stapler also has a staple cartridge supported adjacent the distal end of the elongated body and containing a plurality of staples with an anvil pivotally mounted in relation to the cartridge adjacent the distal end of the elongated body. The anvil has a fastener forming surface thereon and is mounted for pivotal movement in relation to the cartridge between an open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge.
The stapler has an actuation sled supported within the cartridge. The actuation sled moves to urge the plurality of staples from the cartridge. The actuation sled is connected to a drive rack. The drive assembly has a body with a working end and a cam member supported on the working end. The cam member is positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler.
The trigger is operatively connected to a power cell. The power cell is operably connected to a motor of the drive assembly such that manipulation of the trigger actuates the power cell such that the power cell powers the drive assembly to effect translation of the cam member relative to the anvil. The stapler also has a channel for supporting the staple cartridge. The motor of the drive assembly controls the actuation sled supported within the cartridge. The actuation sled urges the plurality of staples from the cartridge when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
The stapler also has a protective casing. The protecting casing houses the power cell and the motor in the protective casing and is connected to the stationary handle. The motor has a motor drive shaft that extends through the stationary handle to connect with the drive rack.
According to another aspect of the present disclosure, the surgical stapler is powered by an inexpensive disposable power source that may be actuated by a manual or automatic switch or switch system and that has a power cell coupled to a motor assembly to assist with actuation and firing of the staples.
In another embodiment, the stapler has a power supply that can actuate the stapler and the power source can easily move the drive mechanism to an appropriate position for the next stapling operation.
According to another aspect of the present disclosure, there is provided a surgical stapler. The stapler has a handle assembly including a trigger and a clamping device including a staple cartridge with a plurality of staples and an anvil having a fastener forming surface thereon. The stapler also has a controller configured to determine an occurrence of clamping by the anvil and the staple cartridge. The controller controls firing of the plurality of staples from the staple cartridge. When the trigger is actuated the controller delays firing of the plurality of staples from the staple cartridge to provide for a predetermined time period of tissue compression of the tissue between the anvil and staple cartridge. The controller outputs a control signal to allow firing once the predetermined time period is reached. The stapler also has a motor having a geared assembly. The motor is disposed in the handle and configured to receive the control signal from the controller. The motor is operatively connected to the staple cartridge to fire the staples from the staple cartridge once the control signal is received.
It would additionally be advantageous to provide a surgical stapler having a timer device or display that would allow the surgeon to easily determine an appropriate compression time interval. It would be further advantageous to provide a surgical stapler with a mechanical digital or analog display to allow the surgeon to decide the optimal compression time, then actuate the stapler, insuring more uniformly shaped staples. It would still be further advantageous to provide a surgical stapler with an automatic delay mechanism that, once the trigger is actuated, would fire the stapler after the predetermined amount of time elapses to allow for the required tissue compression. It would still be further advantageous to provide a surgical stapler with a controller that measures one or more parameters (i.e. thickness) of the tissue or stapler to provide the necessary tissue compression with the parameters being selected from the group consisting of motor speed, a gear reduction, or motor actuation time, motor rotation or other mechanical member travel distance and any combinations thereof.
According to a first aspect of the present disclosure, the surgical stapler that has a motor that drives a firing mechanism component of various mechanical components that will manipulate an actuator at a complementary speed to ensure tissue compression and provide for a uniform staple formation.
According to another aspect of the present disclosure, the surgical stapler has a controller to place a delay between actuation of the firing mechanism component and actual firing of the staple.
According to another aspect of the present disclosure, the surgical stapler has a control device that controls a stroke parameter, a distance parameter and/or a time parameter of a firing mechanism component to increase a tissue compression time of the approximation device.
According to still another aspect of the present disclosure, the surgical stapler has a motor and a first switch. The first switch is connected to a motor and delays the motor from actuating in order to achieve an amount of tissue compression by an approximation device. The surgical stapler may have a second switch. The second switch senses another location of a drive screw and actuates a reverse function of the motor to return the drive screw to an initial position.
According to still yet another aspect of the present disclosure, the surgical stapler has an indicator that measure a distance traveled of the drive screw or a tissue compression time of the approximation device.
According to still another aspect of the present disclosure, the surgical stapler has a visual indicator that indicates a position of the firing mechanism component or indicates a status condition of the surgical stapling.
According to a further aspect of the present disclosure, a powered endoscopic surgical apparatus is provided. The surgical apparatus includes a handle including a housing, a power source supported in the housing; an endoscopic portion extending distally from the housing of the handle; a fastening assembly coupled to a distal end of the endoscopic portion, the fastening assembly including a pair of jaws defining a stapling mechanism, at least one of the jaws being movable with respect to the other jaw; a firing member extending between the handle and the fastening assembly; a drive source proximal of the endoscopic portion, the drive source including a motor powered by the power source and connected to the firing member; and a gear assembly engaged with the drive shaft of the motor, the gear assembly being disposed within the housing. The gear assembly includes a gear rack provided on the firing member; and a main gear operatively connected with the gear rack of the firing member, the motor being adapted and configured to spin the main gear such that rotary motion of the main gear moves the firing member linearly in an axial direction such that a distal end of the firing member engages and actuates the stapling mechanism in the fastening assembly.
According to yet another embodiment of the present disclosure, a powered endoscopic surgical apparatus is provided and includes a handle including a housing, a power source supported in the housing; an endoscopic portion extending distally from the housing of the handle; an end effector assembly coupled to a distal end of the endoscopic portion, the end effector assembly including a pair of jaws configured to perform a surgical function, at least one of the jaws being movable with respect to the other jaw; a driving member extending between the handle and the end effector assembly; a drive source proximal of the endoscopic portion, the drive source including a motor powered by the power source and connected to the driving member; and a gear assembly engaged with the drive shaft of the motor, the gear assembly being disposed within the housing. The gear assembly includes a gear rack provided on the driving member; and a main gear operatively connected with the gear rack of the driving member, the motor being adapted and configured to spin the main gear such that rotary motion of the main gear moves the driving member linearly in an axial direction such that a distal end of the driving member actuates the end effector to perform the surgical function.
The end effector may be a stapling mechanism and the surgical function may include a stapling function. In use, linear movement of the driving member may actuate the end effector to perform a fastening function.
The main gear may be a spur gear. The gear rack may be formed along a bottom surface of the firing member.
The handle may further include a manually actuated closing lever supported on the housing; and a closure member having a proximal end operatively connected to the closing lever and a distal end extending through the endoscopic portion to the fastening assembly, wherein manual actuation of the lever imparts linear movement of the closure member in an axial direction such that the distal end of the closure member engages and actuates the fastening assembly to open and close the pair of jaws.
The handle may further include a trigger supported on the housing, wherein the trigger is operatively connected to the power source, the power source being operatively connected to the motor of the drive source such that manipulation of the trigger actuates the power source to activate the motor and rotate the main gear to actuate the firing member.
The endoscopic surgical apparatus may further include a controller configured to control the motor, the controller delaying activation of the motor for a predetermined time period after actuation of the lever.
The predetermined time period may be suitable in length to allow compression of the tissue for the predetermined time period and to allow tissue to settle from a first initial state into a second compressed state when the pair of jaws are in a closed position.
The endoscopic surgical apparatus may further include a dampening device, the controller configured to control the dampening device, the dampening device modulating the motor for the predetermined time period to allow for compression of tissue when the pair of jaws are in a closed position.
The controller may control the motor and may delay an actuation thereof, the delay permitting a predetermined compression time period when the pair of jaws are in a closed position.
The controller may slow an operation of the motor to provide for the delay to compress the tissue.
The handle may include a switch supported on the housing, wherein the lever actuates the switch upon actuation thereof, wherein the switch, when actuated, outputs a signal to the controller to complete a suitable timer circuit for a predetermined time interval.
In use, upon passage of the predetermined time interval, actuation of the motor may be permitted.
The power source may be a battery. The battery may be modular.
Other and further objects, advantages and features of the present disclosure will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:
In the drawings and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the apparatus which is closest to the operator, while the term “distal” will refer to the end of the apparatus which is furthest from the operator.
The present disclosure shall be discussed in terms of both conventional and endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, “endoscopically”, and “endoscopic portion”, among others, should not be construed to limit the present disclosure to an apparatus for use only in conjunction with an endoscopic tube. To the contrary, it is believed that the apparatus of present disclosure may find use in procedures in these and other uses including but not limited to where access is limited to a small incision such as arthroscopic and/or laparoscopic procedures, or any other conventional medical procedures known in the art.
The present disclosure may also be used with surgical stapling devices that do not have any separate clamping and firing procedures and may be used with such surgical stapling devices having a simultaneous clamping and firing. The present disclosure is also intended to be used with such surgical stapling devices have a discrete clamping gradient.
Referring now to the figures, wherein like reference numerals identify similar structural elements of the subject disclosure, there is illustrated in
The surgical stapler 10 of the present disclosure shown in a perspective view in
The frame 12 supports an endoscopic portion 16 or an extended tube-like portion. The endoscopic portion 16 is capable of being rotated and has a relatively narrow diameter, on the order of in a range that includes about 10 millimeters, and is for insertion into a small opening in or tube inserted into the body, such as in the abdominal cavity, or other similar body cavities. The endoscopic portion 16 has a longitudinal axis and has a length. The length is appropriate for reaching the operation site in the interior of the body. The surgical stapler 10 may be used in conjunction with other instruments such as endoscopes or other such optical devices for visually examining the interior of the body, for example, cameras by means of fiber optics or other optical or recording devices.
Generally, the endoscopic portion 16 of the surgical stapler 10 is inserted through the small opening or wound, and is manipulated to the operation site. At the operation site, the surgical stapler 10 is actuated.
The endoscopic portion 16 has a fastening assembly 18 and cutting assembly that is known in the art. The fastening assembly 18 and the cutting assembly are located in a housing 20 which carries a fastener and a cutter to the operation site. The fastening assembly 18 in this one non-limiting embodiment has a pair of jaws 21, 22, or an anvil 22 and a staple cartridge 21. The jaws 21, 22 may be a first jaw 21 and second jaw 22 that opens and closes or alternatively another clamping structure for compression of the tissue at the stapling site. The jaws 21,22 are defined by a staple carrying cartridge 21 and the anvil 22 that is located therein. The staple carrying cartridge 21 is in one embodiment located at the distal end of the housing 20. The staple carrying cartridge 21 has one or a number of rows of staples. The surgical stapler 10 also has an anvil 22 with a forming surface (not shown) and further includes a knife (not shown) as is well known in the art for accomplishing the surgical stapling.
Generally, actuating the operating portion of the fastening assembly 18 is accomplished via intermediate components disposed on or within the narrow longitudinally extending tubular endoscopic portion 16. In one embodiment, a cylindrical tubular sleeve member surrounds the endoscopic portion 16. The sleeve may be manipulated in a direction with the longitudinal axis of the surgical stapling device. The surgical stapler 10 of the present disclosure has three basic actions or functions.
First, the endoscopic portion 16 is introduced into the human or animal body and is positioned with the jaws 21,22 aligned at the desired stapling site to receive the target tissue. This may involve rotation of the endoscopic portion 16 relative to the body, either by rotating the surgical stapler 10, as a whole, by rotating simply the endoscopic portion 16 relative to the frame 12 as permitted, or a combination of both actions. Thereafter, the surgical stapler 10 secures the target body tissue between the staple cartridge 21 in the distal portion of the housing 20 and the anvil 22. This is accomplished by a clamping action of the jaws 21, 22 or alternatively by another similar or different clamping member. The jaws 21, 22 are allowed to remain in the closed position for a period of time. The jaws 21, 22 remaining closed for a predetermined period of time allow any excess liquid or fluid in the tissues to drain out of the body tissues prior to actuation of the stapling mechanism. This ensures that the liquid does not rapidly traverse out of the tissues to impede formation of the closed or formed staple and ensures a proper staple formation.
With the target tissue clamped between the anvil 22 and the staple cartridge 21, a camming surface which surrounds the housing 20 and anvil member 22 may be employed to close the jaws 21, 22 of the surgical stapler 10 and clamp the tissue between the anvil 22 and the tissue contacting surface of the staple cartridge 21. The jaws 21, 22 may be clamped by actuating or closing lever 24 that is opposite the jaws 21, 22. Thereafter, the third action of the operator or more particularly the surgeon is that of applying the staples to the body tissue. A longitudinally extending channel is employed to deliver longitudinal motion to an axial drive member and a tissue cutting knife.
The stapler 10 may have an axial drive member or an axial drive screw to contact a pusher. The pusher elements drive the staples through the body tissue against the fastener or forming surface of the anvil 22. Typically, in the art the surgical stapler 10 fires usually by an actuation of a first trigger 26. Thereafter, the clamping action of the jaws 21, 22 is released and the surgical stapler 10 or a portion thereof may be withdrawn from the body cavity or site.
A known and recognized benefit is that often an operator will desire a surgical stapler 10 that is self-actuating or that actuates with only a limited degree of physical force using the trigger handle (not shown) or using a trigger switch 26. It is envisioned that surgeons would desire such a surgical stapler 10 that does not have to be connected to any external power supply but instead includes an internal battery operated power supply. Operators would desire a surgical stapler having an internal power source that is comfortable to hold, compact and that is very suitable for endoscopic or laparoscopic procedures as well as other conventional surgical procedures. The stapler 10 of the present disclosure is advantageous since it is a compact and ergonomic member. It is also very advantageous to form such a surgical stapler 10 from few component parts relative to the prior art surgical instruments. This reduces manufacturing costs of the surgical stapler.
The present disclosure in one embodiment uses a motor drive source having a substantially offset or a direct drive to remedy these known issues in the art.
Referring now to
The surgical stapler 10 of the present disclosure may have a first axial drive shaft for operation of the stapling mechanism in the proximal end of the surgical stapler 10 as is known in the art. Such stapling mechanisms are well known in the art and may be found in U.S. Pat. No. 6,330,965 B1 to Milliman, et al., U.S. Pat. No. 6,250,532 B1 to Green, et al., U.S. Pat. No. 6,241,139 B1 to Milliman, et al., U.S. Pat. No. 6,109,500 to Alli et al., U.S. Pat. No. 6,202,914 B1 to Geiste, et al., U.S. Pat. No. 6,032,849 to Mastri, et al. and U.S. Pat. No. 5,954,259 to Viola, et al., which are all herein incorporated by reference in their entirety.
The drive source 30 has electrical contacts to an integrated power supply and an optional switch system. The drive source 30 is run by any integrated power supply that is compact, and low cost to manufacture. In one embodiment, the drive source 30 also has a suitable amount of torque in order to fire and apply the staple to the body tissue or bone, and form the staple using a forming surface disposed on an anvil. In one embodiment, the drive source 30 is a simple motor assembly having a drive shaft 32. The motor may be any device that converts the current from the portable power cells into mechanical energy but may be any motor that is low cost and that may be disposable and easily discarded after use. The drive shaft 32 is connected through the handle 14 through a sealed aperture in the handle 14. Aperture may be sealed using an “O” ring or similar structure to ensure no fluids enter the stapler 10.
Alternatively, the drive source 30 may comprise any electrically powered motor known in the art. The present disclosure provides that the drive source 30 may have a number of modular components that are disposable, permanent, replaceable or interchangeable. In one aspect, the motor 30 may be a modular component and replaceable. In another aspect, the battery can be a modular component and replaceable separate from the drive source 30. In still another aspect, both the battery and the motor of the drive source 30 may be modular components. The motor and battery may be stored in a casing or be separate units.
In one embodiment, the drive source 30 has electrical contacts to, and is powered by, one more internal power cells. The power cells may be one or more disposable or rechargeable power cells. For example, the power cells may be a nickel cadmium type battery, an alkaline battery, a lithium battery, or a nickel metal hydride and may be replaceable or disposable with the entire surgical stapler 10. Alternatively, the power cells of the drive source 30 may also 5 disengage from the surgical stapler 10 for recharging. Once disconnected, the surgical stapler 10 itself then may be discarded after use.
In one embodiment, the one or more power cells of the drive source 30 are disposed and oriented in a generally perpendicular fashion relative to an 10 outer surface of the handle 14 as shown in the housing 28 and optionally may be located in a casing with the motor assembly. In this non-limiting embodiment, the surgical stapler 10 may have a discrete analog switch assembly to actuate the drive source. The switch assembly may be located in any location or on an external surface of the surgical stapler 10, or be integral with the trigger switch 26. Alternatively, the drive source 30 may be actuated by a counter clockwise rotation of the protective housing 28 to actuate the drive source. Still further in another embodiment, the drive source 30 may be actuated by the trigger 26 or by simply the lowering an elevation of the lever 24.
Referring now to
The lever 24 as shown has a first lever side 42 that has a transverse aperture 44 being disposed therethrough. The lever 24 is connected to a member 46 by a link pin 48 through aperture 44 in the lever 24. The member 46 moves laterally through the endoscopic portion 16. The member 46 controls the jaws 21, 22 shown in
In one embodiment, the second linkage assembly 54 has two discrete links. Each of the links is spaced apart and is connected to one another to form an integral second linkage assembly 54. The second linkage assembly 54 is for translating a downward force from the lever 24 into an axial lateral force and for moving one or more structures in the handle 14. The second linkage assembly 54 is further fixedly connected to an interior pin 58 of the handle 14. The lever 24 still further has an orthogonal notch 60. The notch 60 is disposed on the lever 24 with the notch being between the transverse aperture 44 and the second aperture 52. The notch 60 provides clearance and prevents the lever 24 from interfering or otherwise contacting the gear assembly 34 during a firing sequence or otherwise when the drive source 30 is actuated.
As shown in the raised position, the free end 62 of the lever 24 rests elevated above the handle 14 as shown. As mentioned, when a stapling site is determined by the operator, the operator will use the jaws 21, 22 to compress the tissue at the stapling site to clamp the tissue for a period of time. The surgeon can control the jaws by lowering or closing lever 24 (from the elevated position to a position that rests on the handle 14). Upon lowering the lever 24 from the elevated position above the handle 14, the lever 24 lowers the second linkage assembly 54.
The second linkage assembly 54 forces the lever 24 at the first side 42 to move the member 46. The member 46 is then manipulated in a lateral axial direction opposite the handle 14. Thus, member 46 drives the jaws 21, 22 at the distal side of the surgical stapler 10 for clamping the selected body tissue between the jaws. In one embodiment, the member 46 may further contact a lead, switch or mechanical member in order to provide an audible or visual alert so as to inform the physician/operator that a preset period of time has elapsed for compression of tissue between the jaws and the firing can begin. Various clamp arrangements are possible and the present arrangement is for illustration purposes as it is envisioned that the clamp may be powered by the drive source 30, or by a separate drive source.
In another embodiment of the surgical stapler 10, the surgical stapler 10 may be manually actuated for stapling. In the manual embodiment, when the desired stapling is desired, the operator will actuate either a trigger handle (not shown) or in another embodiment will actuate a handle assembly having a linkage. Still in another embodiment, the lever 24 may operate the switch assembly at an end of the lever 24. The switch assembly 26 may be on any location of the surgical stapler 10 or may be adjacent to the protective housing 28.
The surgical stapler 10 further has a firing member 64. The firing member 64 is laterally disposed in the handle 14 and can optionally assist with driving an axial drive screw or another driving member to actuate the stapling mechanism in the distal side of the surgical stapler 10. The firing member 64 may include a single driving member that can control both the clamping and the firing of the surgical stapler 10. In another embodiment, the firing member 64 can alternatively include separate driving members with one driving member for the firing of the stapler cartridge 21 and another driving member for closing the jaws 21, 22. Various configurations are possible and within the scope of the present disclosure. The firing member 64 is a longitudinal member having a bottom driving surface 65. However, the longitudinal firing member 64 can be a single component or constructed of other multiple members. The firing member 64 is disposed in a longitudinal manner in the interior of the handle 14 of the surgical stapler 10. Upon actuation, the motor in the housing 28 spins the main gear 36 that contacts or is connected to the bottom driving surface 65 of the firing member 64. Gear 36 rotates in a counterclockwise fashion. Thus, in this manner, the drive source 30 will rotate the gear assembly 34 that will move the firing member 64 in an axial direction toward the distal direction of the surgical device 10 and away from the handle 14. A rotation of the main gear 36 applies a force to the firing member 64 on the bottom driving surface 65 for the purpose of axially moving the firing member in a longitudinal distal manner. This axial movement of the firing member 64 will impart an axial force the corresponding member in the endoscopic portion 16 that will engage the stapling mechanism.
A beneficial aspect of the present disclosure is that the drive source 30 will then allow a greater amount of torque to be applied to the driving member 64 relative to a manually actuated apparatus without any motor assembly 30. A significant aspect of the present disclosure is that the drive source or motor 30 is a low cost device that may be discarded. Given that the drive source 30 may be discarded, the drive source or motor 30 may be connected to an optional analog or digital circuit on a controller to drive the firing member 64 with a predetermined amount of torque so that a considerable amount of power is released from the drive source 30 each instance the firing is desired. Moreover, the surgical stapler 10 provides that the firing member 64 is directly driven by the drive source 30, or geared by a number of gears for the purpose of actuating the stapling mechanism without undue force or movement applied to the handle 14 or another trigger handle (not shown) of the surgical stapler 10. This is advantageous since the surgeon can precisely locate the stapler 10 at a site and then fire the stapler 10.
In operation, the rack 64 slides and moves the clamp tube 102 distally. The clamp tube 102 is provided to interconnect the handle portion 14 arid the extension tube 114. The channel 104 is slidably mounted for reciprocal longitudinal motion. The extension tube 114 provides support for the surgical stapler 10 and has slots that interface with the collar tube 116. The surgical stapler 10 also has a support 120 for longitudinal motion and to operate the stapling mechanism as described in
Advantageously, the rack 64 is driven distally to advance the channel 104 in a distal manner. The channel 104 delivers longitudinal motion to a pusher cam bar or an axial drive member as is known in the art for operation of the staple cartridge 21 shown in
Referring to
The anvil 130 has a longitudinal slot 140 that extends through anvil portion 130 to facilitate passage of retention flange 142 of the axial drive assembly 138 into the anvil slot 140. A camming surface 144 formed on anvil portion 22 is positioned to engage axial drive assembly 138 to facilitate clamping of tissue. A pair of pivot members 146 formed on anvil portion 130 is positioned within slots 146′ formed in carrier 148 to guide the anvil portion 130 between the open and 20 clamped positions.
The stapler 10 has a pair of stabilizing members 152 engage a respective shoulder formed on carrier 148 to prevent anvil portion 130 from sliding axially relative to staple cartridge 132 as camming surface of the anvil 130 is deformed. Cartridge assembly 132 includes the carrier 148 which defines an elongated support channel 154. Elongated support channel 154 is dimensioned and configured to receive the staple cartridge 132 which is shown above the carrier 148 in the exploded view of
Staple cartridge 132 includes retention slots 156 for receiving a plurality of fasteners 158 and pushers 160. Longitudinal slots 156 extend through staple cartridge 132 to accommodate upstanding cam wedges 162 of the actuation sled 164. A central longitudinal slot 166 extends along the length of staple cartridge 132 to facilitate passage of a knife blade (not shown). During operation of surgical stapler 10, actuation sled 164 is drive distally to translate through longitudinal slot 156 of staple cartridge 132 and to advance cam wedges 162 distally and into sequential contact with pushers 160, to cause pushers 160 to translate vertically within slots 156 and urge fasteners 158 from slots 156 into the staple deforming cavities of anvil assembly 130 to effect the stapling of tissue.
Referring now to
In one embodiment, the drive source 30 is disposed and lies in a longitudinal plane in the handle 14. The drive source 30 is disposed substantially parallel to a longitudinal axis of the surgical stapler 10. This location of the drive source 30 provides for a compact and self powered surgical stapler 10 that may be comfortably balanced and ergonomically grasped by the surgeon. The drive source 30 has the drive shaft 32. Drive shaft 32 is connected to a first drive gear 68. The first drive gear 68 has teeth that mesh with, and rotate a number of teeth of a second translating gear 70 as shown.
The second translating gear 70 further has a bore or aperture in a center of the second translating gear 70. The second translating gear 70 further is connected to a collar 72 in a center of the second translating gear. The collar 72 engages the drive screw 66 of the surgical stapler 10. A clockwise rotation of the second translating gear 70 will also rotate the collar 72 in a similar direction. The collar 72 will then, upon rotation, cooperates and engage with the drive screw 66 to move the drive screw 66 in a distal manner.
This rotation of the collar 72 allows the drive screw 66 to rotate and move distally. The drive screw 66 rotates and moves in an axial manner through the bore of the second translating gear 70 and the collar in a direction toward and through the endoscopic portion 16 of the surgical stapler 10. Upon rotation, the drive screw 66 will traverse laterally by rotation into the endoscopic portion 16 a predetermined amount in a direction away from the handle 14 of the surgical stapler 10 to actuate the stapler mechanism. A significant aspect of this embodiment is that the drive screw 66 has a considerable amount of torque from motor 30 in order to translate the force to the staple mechanism and to form the staples against anvil.
In this embodiment, the motor 30 is disposed at ninety degrees from the drive screw 66. Upon the actuation of trigger switch 26 (
Bevel gear 31 will rotate drive screw 66 to move the drive screw 66 in a longitudinal manner to actuate one or more other components of the surgical stapler 10 such for tissue compression or for stapling. Bevel gear 31 is useful to change a rotation direction of the motor output shaft 32 to move drive screw 66 longitudinally or distally and proximally, and to orient the motor 30 in an advantageous manner relative to the handle 14. Bevel gear 31 has teeth that can be straight, spiral or hypoid. Although bevel gear 31 is shown as perpendicular to gear 33, other arrangements are contemplated. Instead, of bevel gear 31 with second gear 33 oriented as shown the surgical stapler 10 may incorporate a hypoid gear which can engage with the axes in different planes. Hypoid gear may further permit different spacing arrangements of the motor 30 relative to the drive screw 66 to further provide for a more compact, balanced and ergonomic stapler design.
Referring now to
In this alternative embodiment, the drive screw 66 may reverse automatically or manually to move proximally at the conclusion of the stapling relative to the endoscopic portion 16. Upon the drive source 30 actuated by the switch 26 or another manual or automatic actuating device, the drive source rotates the drive shaft 32 in the opposite rotational direction. The drive shaft 32 then rotates the first drive gear 68 in the opposite rotational direction. Thereafter, a number of teeth of the first drive gear 66 rotate the second translating gear 70 in the opposite direction. The second translating gear 70 will then rotate the drive screw 66 in the opposite direction to return the drive screw 68 to an initial position for the next stapling operation.
Referring now to
In this embodiment, the lever 24 is connected to the linkage assembly 54 at the intermediate portion 50 of the lever 24. The lever 24 when lowered from the elevated position, imparts a downward force on the linkage assembly 54. Thereafter, the linkage assembly 54 fixed at one end by the interior pin 58 rotates about the interior pin and moves the lever 24 in an axial manner. This moves and advances a linkage (not shown) for clamping the tissue. Still further, the member or another component may actuate a timer (not shown) or display to alert the physician/operator to activate the trigger and to initiate the drive source 30. In still another embodiment of the present disclosure, the clamping may be mechanically connected or linked to the drive source 30 to provide for a powered compression of tissue. In still another embodiment, the clamping can be performed simultaneously with the firing of the trigger handle 26, and may be powered by the drive source 30 as opposed to independently of firing.
Once the actuation of the drive source 30 occurs, the drive source will turn the drive gear 74. The drive gear 74 will then directly rotate the second translation gear 76 and the drive screw 66 disposed directly through the bore of the second translation gear. Again, the drive screw 66 will then impart the required axial force to discharge the staples from the staple cartridge 21 in the distal location of the surgical stapler 10. As mentioned, once the drive screw 66 travels a predetermined distance, the drive screw 66 will actuate the corresponding stapler mechanism to fire the staples in the staple cartridge 21.
Referring now to
The surgical stapler 100 of the present disclosure (shown in a perspective view in
The frame 12 supports a portion 16 or an extended tube-like portion. The portion 16 is capable of being rotated and has a relatively narrow diameter in a range of about 10 millimeters, and is for insertion into a small opening or tube inserted into the body, such as in the abdominal cavity, or other similar body cavities. The portion 16 has a longitudinal axis and has a length appropriate for reaching the operation site in the interior of the body. The surgical stapler 100 may be used in conjunction with other instruments such as endoscopes or other such optical devices for visually examining the interior of the body, for example, cameras by means of CCD devices, fiber optics or other optical or recording devices.
Generally, portion 16 of the surgical stapler 100 is inserted through the small opening or wound, and is manipulated to the operation site. The present disclosure is intended to be used with any surgical stapler including but not limited to surgical staplers having simultaneous clamping and independent clamping.
Portion 16 has a fastening assembly generally represented by reference number 18 and cutting assembly (not shown) that is known in the art. The fastening assembly 18 and the cutting assembly (not shown) are located in a housing 20 which carries a fastener and an optional cutter to the operation site. The fastening assembly 18 in this particular embodiment has a jaw or a staple cartridge 21 and a second jaw or anvil 22. The staple cartridge 21 and the anvil 22 may be brought into close cooperative alignment with one another so the jaws 21, 22 form a clamp therebetween. The jaws 21, 22 may be a first and second jaw that open and close or may be another different clamping type structure as is known in the art. The staple cartridge 21 may be located at the distal end of the housing 20, in the jaws 21, 22 themselves or may be located in other locations as described in U.S. Pat. No. 7,044,353 to Mastri, et al. which is herein incorporated by reference in its entirety. The staple cartridge 21 has one or a number of rows of staples. The surgical stapler 100 also has an anvil (not shown) and further may include an optional knife (not shown) as is well known in the art for accomplishing the stapling. It is appreciated that the closing of the jaws 21, 22 with the staple cartridge 21 and the anvil 22 may be accomplished by pivoting the anvil 22 relative to the staple cartridge 21, or by pivoting the staple cartridge 21 relative to the anvil 22, or by pivoting both the staple cartridge 21 and the anvil 22 relative to one another.
Generally, actuating the operating portion of the fastening assembly 18 is accomplished via intermediate components disposed on or within the narrow longitudinally extending tubular portion 16. In one non-limiting embodiment, a cylindrical tubular sleeve member surrounds the portion 16. The sleeve may be manipulated in a direction with the longitudinal axis of the surgical stapling device. The sleeve slides onto the anvil 22 for closing the jaws 21, 22 that are biased open by a biasing device (not shown) to accomplish the clamping. The surgical stapler 100 of the present disclosure has three basic actions or functions, however, the present disclosure is intended to be used with any surgical stapler including but not limited to surgical staplers having simultaneous clamping (i.e., clamping and firing the stapler at the same time) and dependent or independent clamping (i.e., clamping prior to the staple firing).
First, portion 16 is introduced into the human or animal body and is positioned with the jaws 21, 22 aligned at the desired stapling site to receive the target tissue. This may involve rotation of the portion 16 relative to the body, either by rotating the surgical stapler 100 as a whole, by rotating simply the portion 16 relative to the frame 12 as permitted, or a combination of both actions. Thereafter (i.e., secondly), the surgical stapler 100 secures the target body tissue between the staple cartridge or jaw 21 in the distal portion of the housing 20 and the anvil 22. This is accomplished by a clamping action of the jaws 21, 22 or alternatively by another similar or different clamping member.
The jaws 21, 22 are allowed to remain in the closed position for a desired period of time depending on the particular tissue. By configuring the jaws 21, 22 to remain closed for a predetermined period of time allows any excess liquid or fluid in the tissues to drain out of the body tissues prior to actuation of the stapling cartridge 21. This ensures that the liquid does not traverse out of the tissues after firing to form non-uniform staples and instead ensures a proper and uniform staple formation.
With the target tissue clamped between the anvil 22 and the staple cartridge 21, a camming surface which surrounds the housing 20 and anvil 22 is employed to close the jaws 21, 22 of the surgical stapler 10 and clamp the tissue between the anvil 22 and the tissue contacting surface of the staple cartridge 21. The jaws 21, 22 are clamped by actuation of a lever 24 opposite the jaws 21, 22 as is known in the art. Thereafter, the surgeon applies the staples to the body tissue. A longitudinally extending channel is employed to deliver longitudinal motion to an axial drive member and a tissue cutting knife as is known in the art.
The axial drive member or an axial drive screw contacts pusher elements. The pusher elements drive the staples through the body tissue against the fastener or forming surface of the anvil as discussed herein. Typically, in the art the surgical stapler 100 fires usually by an actuation of a first trigger handle or alternatively using a trigger switch 126. Thereafter, the clamping action of the jaws 21, 22 is released and the surgical stapler 100 or a portion thereof may be withdrawn from the body.
Referring now to
The controller 128 is connected to an internal or external power supply and a motor and is connected between the anvil 22 and the stapling cartridge 21. In an alternative embodiment, a trigger handle or another actuating switch or component 126 is mechanically or electronically linked or otherwise connected to the stapling cartridge 21 as is known in the art as indicated by a dotted line, and the present disclosure is not intended to be limited to any configuration. Once the stapling cartridge 21 is fired using the trigger switch 126, the jaws 21, 22 are opened and the firing mechanism is retracted. The surgical stapler 100 as a whole may be withdrawn from the body tissue or may be manipulated for a next or second stapling operation as shown.
The present surgical stapler 100 has the controller 128 which is connected to one of the jaw or anvil 21 or jaw or staple cartridge 21 and the trigger switch 126 or is connected to both jaws 21, 22 and the trigger switch 126. In one embodiment, once the desired site is reached, the surgeon uses the jaws 21, 22 to compress the selected body tissue. Alternatively, the surgical stapler 100 may have a single drive component that can actuate both the anvil 22 and stapling cartridge 21.
Thereafter, the controller 28 may provide for a requisite amount of delay between clamping and firing (or after clamping and before firing) to ensure tissue compression and expulsion of fluid before the stapling cartridge 21 is actuated. After the desired compression is reached, the stapling cartridge 21 may be automatically engaged by the controller 128 to fire the staples from the stapling cartridge 21 into the body tissue or alternatively the controller 128 may send a signal to the surgeon thereby informing the surgeon a suggestion that the surgeon is to fire the staples. It is envisioned that the firing may be automatic or manual.
Furthermore, the controller 128 may control the speed with which the staples are fired from the staple cartridge 21. Still further, the controller 128 may control an amount of delay before firing. The controller 128 in one embodiment may provide for a predetermined amount of time to elapse prior to outputting a signal to the stapling cartridge 21. In another powered stapler embodiment, the controller 128 may slow a motor speed to increase the body tissue compression time.
In still another embodiment, the controller 128 may engage a dampening device 130. The dampening device 130 is configured to slow the actuating of the staple cartridge 21 in order to increase the overall compression time of the body tissue. Such a dampening device 130 may be a hydraulic or a pneumatic type damper or any other device that may dampen or modulate the operation of one or more components of the surgical stapler 100. In another embodiment, the trigger 126 may simply hold the fire signal for a predetermined time period in associated control circuitry and upon the expiration of the predetermined time period may communicate the signal to the stapling cartridge 21.
The controller 128 may be configured to slow a motor speed, modulate a gear or, still further, engage a circuitry of the motor to slow an operation thereof to otherwise reduce actuation, i.e., a rotation rate of the axial drive screw. Still further, the surgical stapler 100 may also include an override switch 132. The override switch 132 is an automatic or manual device (or other switch) that selectively disengages the controller 128 to permit direct actuation of the stapling cartridge 21 by the trigger switch 126 without any delay at the surgeon's discretion.
In one aspect of the present disclosure, the present surgical stapler 100 includes jaws 21, 22 which compresses tissue between the anvil 170 and the stapler cartridge 172 of the stapling cartridge 21 (
In one aspect, the surgical stapler 100 may pre-clamp or compress tissue using the jaws 21, 22 for a first interval. The first time interval may be preset and fixed, or variable depending on the tissue type. The first time interval may be for minutes, seconds or any other variable or fixed predetermined period of time. Then prior to stapling, the jaws 21, 22 may further tighten to further compress the tissue for another second compression time interval and then fire. The second time interval may be different from the first time interval and can be shorter or longer than the first. In another aspect, the instrument may pre-clamp or compress tissue using the jaws 21, 22 and then simply automatically fire the device to urge the staples 158 from the staple cartridge 132 at the conclusion of the first interval. Various configurations are possible, and the present surgical stapler 100 may have program instructions for any number of compression intervals desired by the surgeon and/or designer. The surgical stapler 100 may alternatively further use a second separate clamping device in association with the stapler 100. It is understood that the present disclosure may be incorporated into an instrument that approximates the tissue before firing such as with a TA surgical stapler such as U.S. Pat. No. 6,817,508 to Racenet, et al. which is herein incorporated by reference in its entirety, or can be used with an instrument that requires no such approximation before firing.
In another embodiment of the present disclosure, the surgical stapling device 100 may provide the surgeon with feedback by virtue of an indicator 136. The indicator 136 may display an amount of compression time and/or provide feedback of the status of the stapling, or display information relating to the location of the drive screw, or drive member. In another embodiment of the present disclosure, the surgical stapler 100 may not have separate clamping and firing actuators and include a clamping gradient indicator 136 or simultaneous clamping and firing indication mechanism. For example, the surgical stapler 100 may be configured to allow control of the firing speed which, in turn, controls the clamping speed and timing and then provide optimal compression for squeezing the tissue and pushing the blood and fluid out of the tissue at the desired site.
In operation, the rack 101 slides and moves the clamp tube 102 distally. The clamp tube 102 is provided to interconnect the handle portion 14 and the extension tube 114. The channel 104 is slidably mounted for reciprocal longitudinal motion. The extension tube 114 provides support for the surgical stapler 100 and has slots that interface with the collar tube 116. The surgical stapler 100 also has a support 120 for longitudinal motion and to operate the stapling mechanism as described in
Advantageously, the rack 101 moves distally to advance the channel 104 in a distal manner. The channel 104 delivers longitudinal motion to a pusher cam bar as is known in the art for operation of stapler cartridge 172 of jaw 21 shown in
Referring now to
The anvil portion 170 has a longitudinal slot 140 that extends through anvil portion 170 to facilitate passage of retention flange 142 of the axial drive assembly 138 into the anvil slot 140. A camming surface 144 formed on anvil portion 170 is positioned to engage axial drive assembly 138 to facilitate clamping of tissue. A pair of pivot members 146 formed on anvil portion 170 is positioned within slots 146′ formed in carrier 148 to guide the anvil portion 170 between the open and clamped positions.
The stapler 100 has a pair of stabilizing members 152 engage a respective shoulder formed on carrier 148 to prevent anvil portion 170 from sliding axially relative to staple cartridge 172 as camming surface of the anvil portion 170 is deformed. Cartridge assembly 172 includes the carrier 148 which defines an elongated support channel 154. Elongated support channel 154 is dimensioned and configured to receive the staple cartridge 172 which is shown above the carrier 148 in the exploded view of
Staple cartridge 172 includes retention slots 156 for receiving a plurality of fasteners 158 and pushers 160. Longitudinal slots 156 extend through staple cartridge 172 to accommodate upstanding cam wedges 162 of the actuation sled 164. A central longitudinal slot 166 extends along the length of staple cartridge 172 to facilitate passage of a knife blade (not shown). During operation of surgical stapler 100, actuation sled 164 is drive distally to translate through longitudinal slot 156 of staple cartridge 172 and to advance cam wedges 162 distally and into sequential contact with pushers 160, to cause pushers 160 to translate vertically within slots 156 and urge fasteners 158 from slots 156 into the staple deforming cavities of anvil assembly portion 170 to effect the stapling of tissue.
Referring to
In one embodiment, as shown the indicator 136 includes a number of light bulbs 238. The lights 238 may be one light or a series of many lights bulbs or LEDs with one color or an assortment of two or more colors. Each of the lights 238 may have a color representing one or more conditions of the surgical stapler 100. Alternatively, one or all of the lights 136 may flash to indicate a condition of the surgical stapler 100.
Upon being actuated by the trigger switch 126, the surgical stapler 100 may impart a delay before firing of the staples. However, in order to provide the proper feedback to the surgeon, the lights 238 provide, for example, a visual indication of the progress of the firing of the stapling cartridge 172. For example, still referring to
Referring now to
Upon all of the segments 252, 254, 256, 258, and 260 being illuminated, the stapling cartridge 172 fires the staple into the body tissue with assurance that an amount of compression time of the body tissue has lapsed. Linear display 250 may have one or more different colors or combinations of colors to indicate a position of the drive screw such as “red” to indicate firing and “green” to indicate that the firing is complete or vice versa. Still further the linear display 250 may display one or more graphical representations, images, or pictures to indicate one or more conditions or operating parameters of the surgical stapler 100.
For example, the linear display 250 may indicate “FIRE” or “COMPLETE”, or any other graphical representation to indicate that surgical stapler 100 will fire at the predetermined time period. Various possible combinations are possible and all are within the scope of the present disclosure.
In still another exemplary embodiment of the present disclosure shown in
Alternatively, the digital display 262 may be selectively preset and input by the surgeon using an input device (not shown) or button. The surgeon may input a time period of clamping into the display 262. Thereafter, the display 262 will suggest firing at the elapse of the clamping time period, or may automatically fire after a predetermined clamping time elapses (e.g., such as from about ten seconds to forty five seconds) to ensure proper tissue compression. The digital display 262 may be configured to count down from the predetermined set interval of clamping and visually communicate a signal to the controller 128. The controller 128 after receiving the signal allows the desired time period of clamping to elapse. After the set time period expires, the controller 128 may communicate a second signal to actuate the stapling cartridge 172. Alternatively, the controller 128 may simply modulate the speed of the motor to commence operation at a speed suitable to actuate the stapling cartridge 172 at the end of the desired time period. In still yet another embodiment, the digital display 262 may be configured to initiate counting after commencement of the clamping of tissue and then simply display the time from that point onwards to allow the surgeon to monitor and manually actuate the trigger switch 126 at the expiration of the desired time period. Thereafter, the digital display 262 may simply display or flash the compression time to the surgeon and the exact amount of elapsed time. It is appreciated that the instrument may provide a predetermined delay and then indicate that the instrument is ready to be manually fired, or alternatively the instrument may delay then indicate and then automatically fire.
Referring now to
Referring now to
The drive screw 74 is a threaded rod having a number of helical grooves that are intended to rotate and contact another member to actuate the stapling cartridge 172 in the distal location of the surgical stapler 100 once compression is made by the surgeon using the clamp or jaws 21, 22. The axial drive screw 74 is disposed in toothed engagement through a central bore 72 of the second gear 70. The axial drive screw may also be disposed offset from the second gear 70 or in any other desired geared arrangement. Upon actuation of the motor 30, the axial drive screw 74 rotates and traverses distally through the portion 16 of the surgical stapler 100 to engage the stapler cartridge 172 as is well known in the art. Alternatively, the surgical stapler 100 may have a drive piston or plunger instead of the axial drive screw 74 or a single drive mechanism to control both the anvil portion 170 and the stapling cartridge 172. Such mechanisms are well known in the art and may be found in U.S. Pat. No. 6,330,965 B1 to Milliman, et al., U.S. Pat. No. 6,250,532 B1 to Green, et al., U.S. Pat. No. 6,241,139 B1 to Milliman, et al., U.S. Pat. No. 6,109,500 to Alli et al., U.S. Pat. No. 6,202,914 B1 to Geiste, et al., U.S. Pat. No. 6,032,849 to Mastri, et al. and U.S. Pat. No. 5,954,259 to Viola, et al., which are all herein incorporated by reference in their entirety.
The surgical stapler 100 may include a first switch 80. Switch 80 is located in a fixed position of the handle as shown. The stapler 100 also has a second switch 82 disposed distally relative to the first switch 80 that is distal or near the path of the drive screw 74 in the first initial position 78. Likewise, the second switch 82 in a second firing position 84 which is disposed distally from the first initial position and proximal or near the path of the drive screw 74. Each of the first and second switches 80, 82 is a limit switch, but alternatively may be any switch known in the art to change or toggle from a first position to a second position by a simple motion of the axial drive screw 74 traversing past or adjacent to the respective limit switch.
Once the axial drive screw 74 or a portion thereof traverses past the first switch 80, the first switch communicates a signal to the controller 128 by lead 86. The controller 128 thus illuminates the indicator 136 or a portion thereof by lead 88 to indicate to the surgeon a first location of the axial drive screw 74.
Thereafter, the drive screw 74 or a portion thereof traverses or contacts the second switch 82 at the second firing position 84. The second switch 82 is also a limit switch and communicates a second signal to the controller 128 by lead 90 of the location or firing of the stapler cartridge 172. The controller 128 then illuminates indicator 136 (or another portion thereof) by lead 88 to indicate to the surgeon that the stapling has been completed. At the conclusion of the stapling, the surgeon/operator will initiate retraction and then will reverse a direction of the motor 30 by lead 92. The motor 30 then reverses operation and returns the axial drive screw 74 to the initial position 78 for the next stapling operation.
Alternatively, controller 128 upon receiving the first signal from the first switch 80 by lead 86 modulates one or more operations of the surgical stapler 100. For example, in response to receiving of the first signal, the controller 128 can control one or more parameters of the surgical stapler 100 including tissue gap, speed of the motor 30, control stroke of the axial drive screw 74, axial drive screw travel distance, rotational rate of the axial drive screw and any combinations thereof.
Referring now to
Thereafter, after the axial drive screw 74 traverses a predetermined distance to ensure tissue compression by the clamp or jaws 21, 22. The second switch 82 is actuated and outputs a second signal to the controller 128 by lead 90. The controller 128 in response to the second signal illuminates the second light 242 by lead 94. The second light 242 indicates that the stapling cartridge 172 has fired. The second switch 82 may further emit a signal to the controller 128 to reverse or cease motion in that direction of the motor 30 or to return the axial drive screw 74 to the initial position. The physician/operator may also manually reverse the direction of the motor 30. A third light 244 may illuminate to indicate to the surgeon that the axial drive screw 74 is returning to the initial position 78.
Thereafter, after the axial drive screw 74 traverses a predetermined distance to ensure tissue compression by the clamp or jaws 21, 22, the second switch 82 is actuated and outputs a second signal to the controller 128 by lead 90. Again, the controller 128 in response to the second signal illuminates the second light 242 by lead 94. The second light 242 indicates that the stapling cartridge 172 has fired. The second switch 82 that is actuated by switch 80′ may further emit a signal to the controller 128 to reverse or cease motion in that direction of the motor 30 or to return the axial drive screw 74 to the initial position. A third indicator 244 may be included to indicate to the surgeon that the axial drive screw 74 is returning to the initial position 78.
In still another embodiment, the jaws 21, 22 may be actuated by lowering the lever 24. Contemporaneously, the timer circuit of the display 262 is activated by the lever 24. Thereafter, the indicator 136 indicates a first indication to prompt for an actuation of the staple cartridge 172 by actuating switch 126 after a desired time period elapses. Once the trigger switch 126 is actuated, the controller 128 activates the motor 30. The motor 30 then moves the drive screw 74 as shown in
As the axial drive screw 74 moves in an axial manner, the drive screw (or another plunger 101 connected thereto as shown in
Alternatively, the resistor strip 102 may be coupled to another indicator 136 such as a linear display 250. The display 250 may illuminate the number of segments 252, 254, 256, 258, and 260 corresponding to a travel of the axial drive screw 74 or the plunger 101 until the axial drive screw actuates the staple cartridge 172. Upon actuated, the resistor strip 102 outputs a signal to the controller 128 which modulates the operation of the motor 30, and sends another second signal to the display 250 to indicate that the staple cartridge 172 has fired. The display 250 in response thereto may then display a suitable graphical image, another color, a textual message, or any other indication to indicate to the surgeon that the firing of the staple cartridge 172 has concluded. Various indicator configurations are possible and within the scope of the present disclosure.
Referring now to
For example, end 108 of the axial screw 74 is directly connected, geared to, or offset from the motor 30, and a cap like free end 110 of axial screw 74 contacts the staple cartridge 172 to actuate the stapler cartridge and to fire the staple as discussed previously. The free end 110 of the drive screw 74 has a magnetic member 112 which connects thereto and which will not become dislodged by a rotation of the drive screw 74. Alternatively, the magnetic member 112 may be disc shaped and simply connect to the free end 110. In one initial orientation, free end 110 and the magnetic member 112 are disposed closely adjacent, or near to the non-contact sensor 106. At this initial orientation, the magnetic member 112 is separated by a first distance “d” from the non-contact sensor 106.
Once the trigger switch or button 126 is actuated, the motor 30 is actuated, and rotates, the drive axial screw 74 to traverse distally to actuate the staple cartridge 172 as described above. In the second orientation after the motor 30 has been actuated, the magnetic member 112 moves and is a second distance “d” away from the non-contact sensor 106. The second distance is any distance greater than the first distance “d”. As the magnetic member 112 moves away from the non-contact sensor 106, the non-contact sensor now located the second distance away from the magnetic field of the magnetic member 112 modulates an operation of the motor 30.
The term “modulation” is defined as modulating amount of voltage received by the motor 30 in a dynamic manner, turning the motor “off” at a desired stroke, changing the motor speed, drive gear reduction of the motor, reduction of the axial drive screw pitch, or a change in the voltage or the current input of the motor, or changing another firing component, a change of the motor components and any combinations thereof. This may thereby slow the operation of the motor 30 to increase an amount of compression time of the body tissues between jaws 21, 22. In another alternative embodiment, the magnetic member 112 may be disposed on a suitable drive piston instead of the drive screw 74. As the drive piston travels away from the non-contact sensor 106, a reduced or modulated amount of voltage may be provided to the motor 30. Still further in another alternative embodiment, the non-contact sensor 106 may be placed at the free end 110 of the drive screw 74 and the magnetic member 112 fixed.
In another embodiment of the present disclosure, the surgical stapler may have a combined drive mechanism. The combined drive mechanism may control both a firing component of the stapling mechanism and a clamping mechanism. The surgical stapler 100 may, upon being actuated, has the drive mechanism advance to commence the clamping using the clamping mechanism and then hold and wait thus providing a predetermined delay. The surgical stapler 100 would then provide an indication to the surgeon/operator once a desired amount of compression is reached. Thereafter, the surgeon/operator would then actuate the drive mechanism after the time delay. The drive mechanism would then fire the staples from the staple cartridge 172 into the compressed tissues and thus ensure a uniform staple formation. The surgical stapler 100 thus provides a time delay prior to stapling to ensure tissue compression.
Although shown as an endoscopic surgical stapler, the present drive system may be used with any surgical stapling device known in the art, such as endoscopic surgical stapling devices, a multi-fire GIA surgical stapler, a TA surgical stapling device, and/or any other surgical stapler device known in the art. The present instrument may also be used with a single drive surgical stapler that drives both the clamping device of the jaws 21, 22 and the stapling device.
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure.
Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
This patent application is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 15/606,052, filed May 26, 2017, (now U.S. Pat. No. 10,188,391), which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 15/450,661, filed Mar. 6, 2017, (now U.S. Pat. No. 10,098,638), which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 13/955,374, filed on Jul. 31, 2013, (now U.S. Pat. No. 9,585,659) which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 13/442,141, filed on Apr. 9, 2012 (now U.S. Pat. No. 8,505,799), which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 13/052,871, filed on Mar. 21, 2011 (now U.S. Pat. No. 8,348,125), which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 12/247,733, filed on Oct. 8, 2008 (now U.S. Pat. No. 7,909,221), which is a Continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 11/446,283, filed on Jun. 2, 2006 (now U.S. Pat. No. 7,461,767), which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 60/687,406 to Viola, et al., filed on Jun. 3, 2005 which is herein incorporated by reference in its entirety. U.S. patent application Ser. No. 11/446,283, filed on Jun. 2, 2006 (now U.S. Pat. No. 7,461,767) also claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 60/687,244 to Viola, et al., filed on Jun. 3, 2005, which is also herein incorporated by reference in its entirety. U.S. patent application Ser. No. 11/446,283, filed on Jun. 2, 2006 (now U.S. Pat. No. 7,461,767), also relates to U.S. patent application Ser. No. 11/446,282, filed on Jun. 2, 2006 (now U.S. Pat. No. 7,464,847), which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
37165 | Gary | Dec 1862 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3209754 | Brown | Oct 1965 | A |
3273562 | Brown | Sep 1966 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3528693 | Pearson et al. | Sep 1970 | A |
3744495 | Johnson | Jul 1973 | A |
3862631 | Austin | Jan 1975 | A |
3949924 | Green | Apr 1976 | A |
4060089 | Noiles | Nov 1977 | A |
4091880 | Troutner et al. | May 1978 | A |
4204623 | Green | May 1980 | A |
4217902 | March | Aug 1980 | A |
4263903 | Griggs | Apr 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4331277 | Green | May 1982 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4444181 | Wevers et al. | Apr 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4456006 | Wevers et al. | Jun 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4508253 | Green | Apr 1985 | A |
4508523 | Leu | Apr 1985 | A |
4522206 | Whipple et al. | Jun 1985 | A |
4534350 | Golden et al. | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612923 | Kronenthal | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286442 | Korthoff et al. | Oct 1986 | S |
4627437 | Bedi et al. | Dec 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4712550 | Sinnett | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4724839 | Bedi et al. | Feb 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4852558 | Outerbridge | Aug 1989 | A |
4913144 | Del Medico | Apr 1990 | A |
4960420 | Goble et al. | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4990153 | Richards | Feb 1991 | A |
4994073 | Green | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5089009 | Green | Feb 1992 | A |
5108422 | Green et al. | Apr 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5143453 | Weynant nee Girones | Sep 1992 | A |
5203864 | Phillips | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5246443 | Mai | Sep 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5282829 | Hermes | Feb 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5482100 | Kuhar | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601558 | Torrie et al. | Feb 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634926 | Jobe | Jun 1997 | A |
5642848 | Ludwig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5759171 | Coelho et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5788698 | Savornin | Aug 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830121 | Enomoto et al. | Nov 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891156 | Gessner et al. | Apr 1999 | A |
5893813 | Yamamoto | Apr 1999 | A |
5895396 | Day et al. | Apr 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5944717 | Lee et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5961521 | Roger | Oct 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5980518 | Carr et al. | Nov 1999 | A |
5980548 | Evans et al. | Nov 1999 | A |
5991355 | Dahlke | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992724 | Snyder | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6013077 | Harwin | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6030410 | Zurbrugg | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6051007 | Hogendijk et al. | Apr 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080150 | Gough | Jun 2000 | A |
6083242 | Cook | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6092422 | Binnig et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6127811 | Shenoy et al. | Oct 2000 | A |
6132425 | Gough | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6166538 | D'Alfonso | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6187009 | Herzog et al. | Feb 2001 | B1 |
6187019 | Stefanchik et al. | Feb 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6193501 | Masel et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6228534 | Takeuchi et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236874 | Devlin et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6288534 | Starkweather et al. | Sep 2001 | B1 |
6290701 | Enayati | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6295330 | Skog et al. | Sep 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355066 | Kim | Mar 2002 | B1 |
6364884 | Bowman et al. | Apr 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
H2037 | Yates et al. | Jul 2002 | H |
6412279 | Coleman et al. | Jul 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447517 | Bowman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6515273 | Al-Ali | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6540751 | Enayati | Apr 2003 | B2 |
6544273 | Harari et al. | Apr 2003 | B1 |
6554852 | Oberlander | Apr 2003 | B1 |
6562071 | Jarvinen | May 2003 | B2 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6601748 | Fung et al. | Aug 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616821 | Broadley et al. | Sep 2003 | B2 |
6629986 | Ross et al. | Oct 2003 | B1 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6669705 | Westhaver et al. | Dec 2003 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6736085 | Esnouf | May 2004 | B1 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6900004 | Satake | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6926636 | Luper | Aug 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6979328 | Baerveldt et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7193519 | Root et al. | Mar 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220232 | Suorsa et al. | May 2007 | B2 |
7240817 | Higuchi | Jul 2007 | B2 |
7241270 | Horzewski et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7335169 | Thompson et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694809 | Garbini et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7753248 | Viola | Jul 2010 | B2 |
7757925 | Viola et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7815090 | Marczyk | Oct 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7886953 | Schwemberger et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7955352 | McEwen et al. | Jun 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006887 | Marczyk | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8038044 | Viola | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8074858 | Marczyk | Dec 2011 | B2 |
8092493 | Marczyk | Jan 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8210412 | Marczyk | Jul 2012 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8419768 | Marczyk | Apr 2013 | B2 |
8459522 | Marczyk | Jun 2013 | B2 |
8479967 | Marczyk | Jul 2013 | B2 |
8505799 | Viola et al. | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9585659 | Viola et al. | Mar 2017 | B2 |
10098638 | Viola | Oct 2018 | B2 |
10188391 | Viola et al. | Jan 2019 | B2 |
20020025891 | Colosky et al. | Feb 2002 | A1 |
20020103489 | Ku | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030073981 | Whitman et al. | Apr 2003 | A1 |
20030090201 | Peng | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20030139746 | Groiso | Jul 2003 | A1 |
20030225411 | Miller | Dec 2003 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040232199 | Shelton et al. | Nov 2004 | A1 |
20040232200 | Shelton et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050006430 | Wales | Jan 2005 | A1 |
20050006431 | Shelton et al. | Jan 2005 | A1 |
20050006434 | Wales et al. | Jan 2005 | A1 |
20050010235 | VanDusseldorp | Jan 2005 | A1 |
20050023324 | Doll et al. | Feb 2005 | A1 |
20050067458 | Swayze et al. | Mar 2005 | A1 |
20050070925 | Shelton et al. | Mar 2005 | A1 |
20050070958 | Swayze et al. | Mar 2005 | A1 |
20050072827 | Mollenauer | Apr 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050145674 | Sonnenschein et al. | Jul 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050178813 | Swayze et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050228341 | Edgerley | Oct 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20060022014 | Shelton et al. | Feb 2006 | A1 |
20060022015 | Shelton et al. | Feb 2006 | A1 |
20060097025 | Milliman et al. | May 2006 | A1 |
20060151567 | Roy | Jul 2006 | A1 |
20060175375 | Shelton et al. | Aug 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070029364 | Kruszynski et al. | Feb 2007 | A1 |
20070039995 | Schwemberger et al. | Feb 2007 | A1 |
20070039996 | Mather et al. | Feb 2007 | A1 |
20070039997 | Mather et al. | Feb 2007 | A1 |
20070084896 | Doll et al. | Apr 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070102473 | Shelton et al. | May 2007 | A1 |
20070102474 | Shelton et al. | May 2007 | A1 |
20070102475 | Ortiz et al. | May 2007 | A1 |
20070125826 | Shelton | Jun 2007 | A1 |
20070152014 | Gillum et al. | Jul 2007 | A1 |
20070158385 | Hueil et al. | Jul 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175952 | Shelton et al. | Aug 2007 | A1 |
20070175953 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175956 | Swayze et al. | Aug 2007 | A1 |
20070175957 | Shelton et al. | Aug 2007 | A1 |
20070175958 | Shelton et al. | Aug 2007 | A1 |
20070175959 | Shelton et al. | Aug 2007 | A1 |
20070175960 | Shelton et al. | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20070175962 | Shelton et al. | Aug 2007 | A1 |
20070175964 | Shelton et al. | Aug 2007 | A1 |
20070187453 | Smith et al. | Aug 2007 | A1 |
20070219563 | Voegele | Sep 2007 | A1 |
20070265640 | Kortenbach et al. | Nov 2007 | A1 |
20070278277 | Wixey et al. | Dec 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029571 | Shelton et al. | Feb 2008 | A1 |
20080029572 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080029576 | Shelton et al. | Feb 2008 | A1 |
20080029577 | Shelton et al. | Feb 2008 | A1 |
20080048002 | Smith et al. | Feb 2008 | A1 |
20080110957 | McBride et al. | May 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080164296 | Shelton et al. | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090090201 | Viola | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20100200636 | Zemlok et al. | Aug 2010 | A1 |
20100312257 | Aranyi | Dec 2010 | A1 |
20100320254 | Zemlok et al. | Dec 2010 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110062211 | Ross et al. | Mar 2011 | A1 |
20110168757 | Viola et al. | Jul 2011 | A1 |
20110172681 | Aranyi et al. | Jul 2011 | A1 |
20110190738 | Zemlok et al. | Aug 2011 | A1 |
20110301579 | Marczyk et al. | Dec 2011 | A1 |
20110303735 | Marczyk | Dec 2011 | A1 |
20120055972 | Marczyk | Mar 2012 | A1 |
20120074197 | Marczyk | Mar 2012 | A1 |
20120175400 | Viola et al. | Jul 2012 | A1 |
20120220989 | Zemlok et al. | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2155476 | Apr 1996 | CA |
0647431 | Apr 1995 | EP |
0738501 | Oct 1996 | EP |
0770354 | May 1997 | EP |
0537570 | Jan 1998 | EP |
1070487 | Jan 2001 | EP |
1201196 | May 2002 | EP |
1658817 | May 2006 | EP |
1813203 | Aug 2007 | EP |
2 849 589 | Jul 2004 | FR |
9414129 | Jun 1994 | WO |
9729694 | Aug 1997 | WO |
9740760 | Nov 1997 | WO |
9837825 | Sep 1998 | WO |
9952489 | Oct 1999 | WO |
0234140 | May 2002 | WO |
03026511 | Apr 2003 | WO |
03030743 | Apr 2003 | WO |
2004032760 | Apr 2004 | WO |
2007030753 | Mar 2007 | WO |
2007118179 | Oct 2007 | WO |
2007014355 | Apr 2009 | WO |
Entry |
---|
Detemple, P., “Microtechnology in Modern Health Care”, Med Device Technol. 9(9):18-25 (1998). |
European Search Report corresponding to EP 06 02 6840, dated Apr. 17, 2007. |
International Search Report for corresponding PCT Application PCT/US06/21524, dated May 28, 2008. |
European Search Report corresponding to EP 08 25 3184.9, dated Feb. 27, 2009. |
European Search Report corresponding to EP 08 25 1357.3, dated Sep. 29, 2009. |
European Search Report corresponding to EP 08 25 2703.7, dated Oct. 31, 2008. |
European Search Report—partial corresponding to EP 10251416 dated Nov. 2, 2010. |
European Search Report—extended corresponding to EP 10251416 dated Mar. 3, 2011. |
European Search Report corresponding to EP 10252080.6 dated Apr. 18, 2011. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,890,787, dated May 2, 2016. |
Extended European Search Report corresponding to counterpart Patent Application EP 06771991.4 dated Dec. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20190142424 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
60687406 | Jun 2005 | US | |
60687244 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15606052 | May 2017 | US |
Child | 16247104 | US | |
Parent | 15450661 | Mar 2017 | US |
Child | 15606052 | US | |
Parent | 13955374 | Jul 2013 | US |
Child | 15450661 | US | |
Parent | 13442141 | Apr 2012 | US |
Child | 13955374 | US | |
Parent | 13052871 | Mar 2011 | US |
Child | 13442141 | US | |
Parent | 12247733 | Oct 2008 | US |
Child | 13052871 | US | |
Parent | 11446283 | Jun 2006 | US |
Child | 12247733 | US |