The present disclosure is directed to apparatuses, systems, and methods for raising and lowering an overhead door.
This invention relates to systems and methods for raising and lowering overhead door such as a garage door, commercial door, roller door, or loading doors, etc. Current garage door openers require a 110/220v AC power outlet to provide sufficient power to raise and lower the door. In nearly all cases, this requires a separate outlet near the garage door opener which is costly and inefficient. The specialized outlet must be near the machine because regulations limit the length of cord that can carry this power to the machine. There is a need in the art for an improved garage door opener.
Embodiments of the present disclosure are directed to a battery system for principal power to an overhead door opener. The system includes a first cable connected to a standard power outlet, and a power adapter coupled to the first cable and being configured to convert power from the standard outlet to a low voltage. The system also includes a second cable coupled to the power adapter, and a battery coupled to the second cable. The battery is configured to charge on the low voltage, and to provide power to a motor unit. The motor unit is operable to raise and lower an overhead door.
Further embodiments of the present disclosure are directed to a method for operating an overhead door opener using a battery as a principal power source. The method includes connecting a power adaptor to a 120 volt outlet, converting power from the 120 volt outlet to a low voltage by a power adaptor, and conveying the low voltage from the power adaptor to a battery. An entire length of cabling and power outlet combined is at least 10 feet in length between the 120 volt outlet and the battery. The method also includes charging the battery using the low voltage, and in response to a signal to operate the overhead door opener, using power from the battery to operate the overhead door opener.
Still further embodiments of the present disclosure are directed to a system for operating an overhead door opener including a cable longer than 10 feet in length configured to plug into a 120 volt outlet, and a power adaptor on the cable being configured to convert the power from the 120 volt outlet to a low voltage. The system also includes a battery configured to charge from the low voltage from the cable. The battery is configured to operate an overhead door opener using only the power received from the low voltage power adaptor. Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
The following description recites various aspects and embodiments of the present disclosure. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, the terms “standard outlet” and “standard power outlet” are used to refer to power outlets providing a voltage that is standard in the country where they are found. For example, a standard voltage in the United States is 110 V. In much of Europe a standard voltage is 220V. The term “battery” refers to at least one rechargeable cell. For convenience, the term “battery” also includes the charging circuitry needed to recharge the battery. “Low voltage” is defined herein according to the National Electrical Code (NEC) as not greater than 30 root mean square, 42 peak, or 60 volts dc power. Low voltage is sufficiently low that contacting a cable carrying low voltage does not cause harm such as shock, burns, or electrocution.
As used herein, the term “principal,” as used in “principal power” means that the battery provides the major source of power for the overhead door opener. For example, the low power cable may also provide power to the opener, but the bulk of the power to run the motor on the door opener comes from the battery. Naturally, this phrase “principal power” is not referring to counterbalance systems, such as the torsion springs often used on garage doors.
In some embodiments the motor unit 110 is directly coupled to the shaft 104 to rotate the shaft 104 to operate the overhead door. In other embodiments the motor unit 110 is coupled to a belt drive or other mechanical system used to raise and lower the overhead door 100.
Many such systems include a backup battery 148 that is used when there is a power outage or other failure. These batteries may go unused for long periods of time, and many of them will never discharge any power. It is impossible to know whether or not the battery is in working order or not. In the event of a failure, the battery may not work at all, it may have lost its charge, or any number of things can go wrong and without a system in place to be sure it is working, it is an unknown quantity.
The system 150 further includes a first cable 160, a power adapter 162, and a second cable 164. The power adapter 162 is configured to convert from 110/220 AC down to a low voltage. The low voltage can be 12 volts, 18 volts, 20 volts, or any other commercially useful voltage. The low voltage can be lower than the 120 volts, and in some cases significantly lower. The low voltage can also be less than what is required by most commercial garage door openers on the market today. Using the low voltage allows for a longer cord to be used, which allows a more distant placement of the motor unit 152 relative to the outlet.
The second cable 164 connects the power adapter 162 to an outlet 166. The first cable 160 connects the power adapter 162 to the battery 154. Because the first cable 160 is a low voltage, such as 12 volts, and not a higher voltage/power rating, it is allowed by most applicable regulations to be long enough to reach a standard outlet in a house or in the garage. Building codes and standards such as UL 325 specify a length of cord that is not to be exceeded in residential buildings. The system 150 complies with this standard without requiring an outlet to be built into the house near enough to the motor unit 152 to comply with UL 325 because the cable 164 is a low voltage cable, and not the 110/220 AC cable as shown in
The systems and methods of the present disclosure provide the massive benefit of not having to install a separate, different, more powerful power outlet in a home. Also, the motor unit of an overhead door opener can be further away from the outlet. The location of the power outlet is another benefit. The length of the cord that is allowed by the present system is much greater than those of the prior art, allowing for different power outlets to be used if one becomes unusable, and without violating a building code and running a long cable carrying high voltage in a residential garage.
The battery 154 can be charged using a trickle charge from the power adapter 162 over relatively long stretches of time where the motor unit 152 is not in use, so that the battery 154 has sufficient power to raise and lower the overhead door 100 on demand. The size and capacity of the battery 154 can be chosen according to an average household's use of an overhead door 100. In some embodiments the battery 154 can be large enough to cycle the overhead door 100 three times in one minute. A cycle defined as once up, once down. A half cycle can be defined as once up, or once down. An up-cycle can be defined as lifting the overhead door up one time, and a down-cycle can be defined as lowering the overhead door one time. Partial cycles are also possible, such as when the overhead door is prevented from completing a full up or down-cycle, and the overhead door is returned to a raised or lowered position.
The system 150 can also include a secondary battery 157 configured to operate in a generally similar manner as the battery 154. The secondary battery 157 can operate alternatingly with the battery 154. In other embodiments the secondary battery 157 is a backup battery that is used only when the battery 154 fails or has insufficient charge.
The system 150 preferably also includes a controller 153 configured to execute controls for the battery to determine how and when to charge the battery. The controller 153 can calculate an expected load, a usual cycle, timings of cycles, and other factors that can be used to determine when to charge the battery, and a rate of charge to employ. The controller 153 can also be configured to issue an alarm if there is any problem with the system 150 such as insufficient power in the battery 154 or battery 157. The controller 153 can determine a time period to wait before charging the battery 154 or secondary battery 157. For example, the controller 153 can determine that no load will be present for at least three hours, and it takes two hours to reach sufficient charge, so it can wait at least one hour to begin the charge. In other embodiments the controller 153 can charge the batteries steadily and stop charging when there is sufficient power in the batteries to execute one or more cycles. The number of cycles can be one, two, or any other suitable number of cycles.
At 241 another cycle is initiated and the battery drains until completing at 242 at which point it is charged once again. The same process can be repeated at 243 and 244. The slopes of each of these charge and depletion regions can vary. The slope of the depletion profiles (239, 241, and 244) depend on the amount of work done by the door. Mostly, cycles are either up or down, and up will generally require more power. Usually the door itself is the only load and the weight is constant; however, if the weight is increased such as by snow or ice stuck to the door, or by a child hanging inadvisably from the door as it raises, the weight is not necessarily constant.
The slope of the replenishing regions (240 and 242) can be controlled by the battery which can pull more or less power to reach a required power level before being called on to execute a cycle. Sometimes, such as at 245, the battery reaches full capacity and stays there for some period of time. This period of full charge is referred to as “full charge status.” The length of time the full charge status lasts can be a factor in determining the rate of charge for the battery. The replenish rate need not be as high as it possibly could be if there will be a lengthy full charge status period afterward. In some embodiments the battery does not charge between each and every cycle. At 246 the battery is called upon to execute a cycle, and at 247 it is left where it is, at approximately ⅔rd charged. This is based on a calculation that cycles are not consuming so much of the available power that the battery needs to charge every time. Another cycle is called upon at 248, and executed. There can be any number of cycles, and the number available between charge times depends on the load on the system and the battery capacity.
At 250 the battery is depleted, and an error occurs. The error may have any number of causes, but since the battery is used for each cycle, the error is known as it happens, and will not be allowed to persist for a lengthy time period, and only show up when the battery is the only available source of power such as during a power outage or the like.
At 306 a check is performed to see whether or not there is sufficient power to handle the load for an expected cycle. If there is, the check can continue every second or so or however often is convenient for the system. The check can be once per minute, or once per hour, or any desired time length. If there is insufficient power in the battery to meet the demand for an expected cycle, at 308 the battery is charged. The system can include a built-in buffer region, to never let the amount of charge deplete lower than, say, 10% of the available charge. The buffer region amount can vary greatly depending on usage. In some embodiments the buffer region amount is at least approximately equal to the power required for a single cycle. This way the battery will never have less than one full cycle's worth of power.
At 310 a check is performed to see whether or not the battery has reached a desired level of charge. The desired level of charge can be full, near full, or it can be relative to a single cycle worth of power. There may be two or more levels of acceptable charge: one at full, and another at greater than one cycle's worth of power. If the battery cannot be charged sufficiently, at 312 an error occurs. The error can be a signal sent to a remote device such as a smartphone, or a server, or it can simply mean the system will have insufficient power and will therefore be unable to execute a cycle.
The foregoing disclosure hereby enables a person of ordinary skill in the art to make and use the disclosed systems without undue experimentation. Certain examples are given to for purposes of explanation and are not given in a limiting manner. All patents and published patent applications referred to herein are incorporated herein by reference.
This application claims priority to U.S. Provisional Patent Application No. 62/984,111 entitled “SYSTEM AND METHOD FOR POWERING AN OVERHEAD DOOR” filed Mar. 2, 2020, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62984111 | Mar 2020 | US |