The present disclosure relates to resistive welding processes for joining metallic workpieces having similar or dissimilar metals; more particularly to an electrical conductive assembly having welded joints.
Electric vehicles utilize onboard battery packs for the storage of electrical energy. A battery pack is formed of a plurality of individual battery cells. Electrodes extending from a group of individual battery cells are joined to main electrical conductors, also known as bus bars. The electrodes, also referred to as battery tabs, are formed from thin sheets of electrically conductive material containing copper and/or aluminum. Typically, two to four battery tabs are stacked together and joined to a bus bar.
Ultrasonic welding has been used for joining battery tabs to bus bars with some success. Ultrasonic welding provides good welded joints between two sheets of similar or dissimilar materials, and between sheets of materials having substantial differences in thickness. However, for joining multiple sheets of materials, the ultrasonic energy used during the ultrasonic welding process does not transfer well across the sheet-to-sheet interfaces, especially as the number of sheets increases. If the applied ultrasonic energy level is increased substantially to maintain a critical level across multiple interfaces, the surface sheet layers tend to be damaged by the horn and/or the energy transmitted to the battery cells themselves can cause damage therein.
Soldered joints have been used for joining battery tabs to bus bars with some success. However, the use of solders with fluxing agents, particularly for aluminum, can result in the formation of corrosive flux residue that could weaken the surrounding materials or that joint over time if not adequately removed by cleaning operations following the soldering process. These cleaning operations add cost and, in some cases, may not be possible depending on the assembly sequence.
Laser welding has been used for joining battery tabs to bus bars with some success. Laser welding forms strong joints for single materials systems, but joints between copper and aluminum may be brittle due to the formation of intermetallic compounds such as CuAl2. Laser welding can be costly due to specialty equipment requirements, such as high intensity lasers and fixtures to hold the battery tab/bus bar assemblies. Furthermore, laser welding larger stacks is difficult due to uneven heat generated through layers of sheets and the potential of heat soaking into the battery cells, thus damaging the battery cells. Spatter of molten material away from the weld is also a common problem with laser welding of battery tabs.
Mechanical fasteners such as screws or clamps have also been used for joining battery tabs to bus bars with some success. However, mechanical fasteners rely on very low contact resistance to achieve good electrical conductivity. The contact resistance can degrade over time through the build-up of surface contaminants, e.g., oxides, or through degradation of the fastener.
Thus, while current methods of joining battery tabs to bus bars achieve their intended purpose, there is a need for a new and improved method.
According to several aspects, a stack assembly is disclosed. The stack assembly includes a first metallic sheet having an interior surface; a second metallic sheet adjacent the first metallic sheet, wherein the second metallic sheet includes an exterior surface facing the interior surface of the first metallic sheet; and a resistive coating disposed on at least one of the interior surface of the first metallic sheet and the exterior surface of the second metallic sheet. The resistive coating is sandwiched between the first metallic sheet and the second metallic sheet forming a bond joining the first metallic sheet to the second metallic sheet.
In an additional aspect of the present disclosure, the first metallic sheet includes copper and the resistive coating includes a nickel-phosphorous (Ni—P) alloy comprising 5 to 7 weight percent of phosphorous.
In another aspect of the present disclosure, the stack further includes a solid-state diffusion weld at an interface between the first metallic sheet and the Ni—P alloy.
In another aspect of the present disclosure, the second metallic sheet includes aluminum (Al) and the resistive coating includes a nickel-phosphorous (Ni—P) alloy comprising 5 to 7 weight percent of phosphorous.
In another aspect of the present disclosure, the stack assembly further includes an interface between the Ni—P alloy and metallic sheet containing Al. The interface contains re-solidified Al alloy.
In another aspect of the present disclosure, at least one of the first metallic sheet and the second metallic sheet comprises a metal selected from a group consisting of elemental copper (Cu), copper based alloy (Cu alloy), elemental aluminum (Al). The resistive coating comprises of a nickel-phosphorous (Ni—P) alloy. The first metallic sheet is bonded to the second metallic sheet with a layer of Ni—P alloy sandwich there-between by a process of resistive heating a localized portion of the stack assembly.
In another aspect of the present disclosure, the Ni—P alloy comprises about 5 to 7 weight percent of phosphorus.
In another aspect of the present disclosure, the stack assembly further includes a solid-state diffusion bond joining the Ni—P alloy to at least one of the first metallic sheet and the second metallic sheet comprising an elemental Cu or a Cu alloy.
In another aspect of the present disclosure, at least one of the first metallic sheet and second metallic sheet includes a thickness of about 0.2 mm.
In another aspect of the present disclosure, the stack assembly further includes a third metallic sheet joined to the second metallic sheet with a second Ni-alloy layer sandwiched there-between. The third metallic sheet includes a thickness greater than 0.2 mm.
According to several aspects, a method for joining a plurality of metal work pieces is disclosed. The method includes the steps of: a. arranging a first work piece adjacent a second work piece such that a joining surface of the first work piece is facing toward a corresponding joining surface of the second work piece; b. providing a resistive coating on at least one of the joining surface of the first work piece and the joining surface of the second work piece; c. forming an assembly by compressing the first work piece and the second work piece together such that the resistive coating is sandwiched between the joining surface of the first work piece and the joining surface of the second work piece; and d. conducting an electric current through the assembly such that that resistive coating reacts with the electric current to generate sufficient heat to generate a bond joining the first work piece to the second work piece.
In an additional aspect of the present disclosure, the resistive coating of step (b) includes a nickel phosphorus (Ni—P) alloy containing 5 to 9 weight percent of phosphorus.
In another aspect of the present disclosure, at least one of the first workpiece and the second workpiece is a metallic sheet comprising a metal selected from a group consisting of elemental copper (Cu), copper based alloy (Cu alloy), elemental aluminum (Al).
In another aspect of the present disclosure, the bond of step (d) includes a layer of Ni—P sandwiched between a portion of the first and second metallic sheets.
According to several aspects, a battery pack assembly is provided. The battery pack is made by a process including the steps of arranging a plurality of battery tabs into a stack assembly, wherein each of the battery tabs includes an exterior surface and an interior surface; providing a resistive coating on at least one of the interior surfaces and the exterior surfaces of the battery tabs; and resistive heating the stack assembly to a temperature sufficient for the resistive coating to form a bond between adjacent battery tabs, thus joining the plurality of battery tabs with a layer of resistive coating between adjacent battery tabs.
In an additional aspect of the present disclosure, the plurality of battery tabs include a first battery tab comprising copper (Cu); the resistive coating a nickel-phosphorous (Ni—P) alloy; and the step of resistive heating includes reacting the Ni—P alloy with an electric current to generate concentrated heat localized between adjacent battery tabs such that the Ni—P alloy undergoes solid-state diffusion bonding with the Cu in the first batter tab.
In another aspect of the present disclosure, the resistive coating comprises 5 to 7 weight percent phosphorus (P).
In another aspect of the present disclosure, the plurality of battery tabs include a second battery tab comprising aluminum (Al) joined to the first battery tab with a layer of Ni—P there-between.
In another aspect of the present disclosure, the battery pack further includes a bus bar joined to one of the first battery tab and the second battery tab, and a layer of Ni—P sandwiched between the bus bar and the one of the first battery tab and the second battery tab. The Ni—P is bonded to both the bus bar and the one of the first battery tab and the second battery tab, thus joining the bus bar to the one of the first battery tab and the second battery tab.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. The illustrated embodiments are disclosed with reference to the drawings, wherein like numerals indicate corresponding parts throughout the several drawings. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular features. The specific structural and functional details disclosed are not to be interpreted as limiting, but as a representative basis for teaching one skilled in the art as to how to practice the disclosed concepts.
The disclosure provides an electrical conductive stacked assembly having multiple joints produced simultaneously via the introduction of electrically resistive material at each joint, and the subsequent application of electrical current across each joint to resistively heat the local surfaces to be joined. The disclosure also provides a method of joining, by a resistive joining process, also referred to as resistive heating, a plurality of thin metallic work pieces into a stacked assembly. The method allows high strength, localized contact area joints. The method permits a large number of thin metallic workpieces, such as relatively thin metallic sheets, to be joined together. The method provides advantages in the manufacturing of electrically conductive stacked assemblies, such as battery tabs stacked onto a bus bar.
The metallic workpieces may include metallic sheets formed of elemental copper, copper-based alloys, elemental aluminum, and/or aluminum-based alloys having a relatively thin cross-sectional thickness. In one embodiment as disclosed in detail below, the stacked assembly is that of a plurality of battery tabs joined onto a bus bar. The battery tabs include a cross-sectional thickness of approximately 0.2 mm and the bus bar include a cross-sectional thickness of approximately 0.5 mm. The dimensions are provided as examples of the small magnitude of the thicknesses of the workpieces and are not intended to be so limited.
The first metallic sheet 104 includes an interior joining surface 114, the second metallic sheet 106 includes a first joining surface 116 and an opposite second joining surface 118, the third metallic sheet 108 includes a first joining surface 120 and an opposite second joining surface 122, the fourth metallic 110 sheet includes a first joining surface 124 and an opposite second joining surface 126, and the fifth metallic sheet 112 includes an interior joining surface 128. The metallic sheets 104, 106, 108, 110, 112 are arranged in an order to be stacked and assembled for joining by resistive heating. The interior joining surface 114 of the first metallic sheet 104 is facing towards the first joining surface 116 of the second metallic sheet 106. The second joining surface 118 of the second metallic sheet 106 is facing towards the first joining surface 120 of the third metallic sheet 108. The second joining surface 122 of the third metallic sheet 108 is facing toward the first joining surface 124 of the fourth metallic sheet 110. The second joining surface 126 of the fourth metallic sheet 110 is facing toward the interior joining surface 128 of the fifth metallic sheet 112.
The metallic sheets 104, 106, 108, 110, 112 are formed of an electrically conductive material selected from a group consisting of elemental Cu, elemental Al, Cu-based alloy, and Al-based alloy. The interior joining surface 114 of the first metallic sheet 104 may include a nickel (Ni) plating 129, as shown, for corrosion protection.
The EN plating process utilizes an autocatalytic chemical reaction to deposit a uniform thickness coating of Ni—P alloy onto the metal substrates without the use of an externally applied electrical current. The EN plating process normally provides a Ni—P coating containing between 2 to 13 weight percent of phosphorus. It is desirable that the Ni—P coating 134 contains sufficient phosphorus content to provide sufficient electric resistance to concentrate the heat during the welding process. It is preferable that the range of phosphorus content is from about 5 to 9 weight percent; still more preferably, the range of phosphorus content is from about 5 to 7 weight percent.
Referring to
The metallic sheets 104, 106, 108, 110, 112 are held in position and pressed together by pairs of forces, generally referenced as F. These forces can be introduced through an external tooling, or alternatively, by the faces of the electrodes themselves. A pair of electrodes 138 are placed on opposite surfaces of the stacked assembly 102 where the first electrode 138A is placed against an exterior surface 140 of the first metallic sheet 104 and the second electrode 138B is placed against an exterior surface 142 of the fifth metallic sheet 112. An electric current is passed between the pair of electrodes 138A, 138B through the stacked assembly 102. The resistive Ni—P coatings 134 react with the electric current to generate concentrated heat between adjacent metallic sheets 104, 106, 108, 110,112, thus forming a resistive joint 136.
In one embodiment, the stack assembly 102 shown is that of a plurality of battery tabs joined to a bus bar, in which case the first through fourth metallic sheets 104, 106, 108, 110 represent the plurality of battery tabs and includes substantially the same thickness of approximately 0.2 mm. The fifth metallic sheet represents the bus bar and includes a thickness of approximately 0.5 mm, which is substantially greater than the thicknesses of each of the first through fourth metallic sheets 104, 106, 108, 110. The battery tabs may be all elemental Cu, Cu based alloy, elemental Al, Al based alloy, or alternating elemental Cu/Cu based alloy and elemental Al/AI based alloy sheets. The bus bar may be elemental Cu, Cu based alloy, elemental Al, or Al based alloy. The Ni—P coating 134 on the first joining surfaces 116, 120, 124 and second joining surfaces 118, 122, 126 of the intermediate second through fourth metallic sheets 106, 108, 110 include a thickness of approximately 16 micrometers and contains approximately 2 to 13 weight percent P; preferably 5 to 9 weight percent P; and still more preferably, 5 to 7 weight percent P. The exterior and interior surfaces 140, 114 of the first metallic plate may be Ni plated 114 for corrosion protection.
After arranging the Ni-plated Cu sheet 302, Ni—P coated Al sheet 304, and Cu sheet 306 into a stack assembly, an electric current was conducted through the stack assembly. The resistive Ni—P coating reacted with the electric current to generate sufficient heat causing partial melting of the Al sheet due to its low melting temperature (660° C. for aluminum and about 1,100° C. for Ni—P coating). The liquid Al dissolved part of the Ni—P coating 308a, 308b (about 2-3 micrometers in this case) and formed a strong metallurgical bond during solidification. At the same time, the elevated temperature and high pressure introduced by the applied load at the faying interfaces bonded the Ni—P coating 308a and Ni plated Cu sheet 302, and also bonded the Ni—P coating 308b and non-plated Cu sheet 306 together in a solid-state format. In other words, the resistive Ni—P coating layers 308a, 308b reacted with the electric current to generate sufficient heat causing at least: (i) solid-state diffusion bonding between the Ni plated Cu sheet 302 and the first Ni—P layer 308a, (ii) locally partially melt the Al sheet 304 between the first Ni—P coating layer 308a and the second Ni—P coating layer 308b, and (iii) solid state bonding between the second Ni—P layer 308b and the Cu sheet 306.
The first and second NI—P coating layers 308a, 308b remains an integral part of the finished stack assembly 300 and is not squeezed out or removed during the resistive welding process. A continuous intermediate layer of Ni—P (first Ni—P coating layer 308a) can be clearly seen between the Ni plated Cu sheet 302 and the Al sheet 304. Also, a continuous intermediate layer of Ni—P (second Ni—P coating layer 308b) can be clearly seen between the Al sheet 304 and Cu sheet 306.
The description of the present disclosure is merely exemplary in nature and variations that do not depart from the gist of the present disclosure are intended to be within the scope of the present disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure.