Battery tray floor assembly for electric vehicles

Information

  • Patent Grant
  • 10960748
  • Patent Number
    10,960,748
  • Date Filed
    Friday, April 17, 2020
    4 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
Abstract
A vehicle battery tray includes a floor assembly that has elongated tray sections that attach together at lateral edge portions of adjacent tray sections to form a floor structure that supports vehicle batteries contained in the vehicle battery tray. The elongated tray sections each have a substantially consistent cross-sectional shape that extends longitudinally along a length of the respective tray section. A first tray section includes a first attachment feature at the lateral edge portion thereof and a second tray section includes a second attachment feature at the lateral edge portion thereof that corresponds with the first attachment feature. The first and second attachment features engage together at a longitudinal seam between the lateral edge portions of the first and second tray sections, such as to align upper surfaces of the first and second tray sections.
Description
TECHNICAL FIELD

The present invention generally relates to vehicle battery support structures, and more particularly to tray and floor structures for holding and supporting protected batteries, such as battery packs or modules or the like for electric and hybrid-electric vehicles.


BACKGROUND

Electric and hybrid-electric vehicles are typically designed to locate and package battery modules on the vehicle in a manner that protects the batteries from damage when driving in various climates and environments, and also that protects the batteries from different types of impacts. It is also fairly common for vehicle frames to locate batteries in a portion of the frame or sub-structure of the vehicle, such as between the axles and near the floor of the vehicle, which can distribute the weight of the batteries across the vehicle frame and establish a low center of gravity for the vehicle.


SUMMARY

A battery tray for an electric vehicle has a floor that spans below the batteries held in a battery containment area. The floor is provided as a tray floor assembly that may be engineered or configured to reduce the weight of the overall battery tray, while also providing the desired structural support to the contained batteries and the desired protective attributes, such as impact resistance to the lower surface the battery tray. The tray floor assembly has elongated tray sections that may be extruded, such as with aluminum, or pultruded, such as with a resin and composite substrate, to form a cross-sectional profile that is substantially consistent longitudinally along the length of each tray section. The elongated tray sections may be attached or otherwise arranged together in a manner so as to form a floor structure with a varied cross-sectional profile across a width of the tray, such as to have structural mass at the desired locations of the floor structure to support loads of the vehicle batteries arranged over the floor of the battery tray. Also, exterior or outboard tray sections of the floor assembly may include a wall portion that extends longitudinally along the exterior or outboard tray section to provide a section of a peripheral wall structure of the battery tray. The wall structure section or sections provided by the floor assembly may further have wall thicknesses and longitudinal elongated hollow areas that are configured to laterally protect the battery containment area, such as to prevent lateral impact forces from objects hitting the vehicle from substantially penetrating the battery containment area.


According to one aspect of the present disclosure, a vehicle battery tray includes a floor assembly that has elongated tray sections that attach together at lateral edge portions of adjacent tray sections to form a floor structure that supports vehicle batteries contained in the vehicle battery tray. The elongated tray sections each have a substantially consistent cross-sectional shape that extends longitudinally along a length of the respective tray section. A first tray section includes a first attachment feature at the lateral edge portion thereof and a second tray section includes a second attachment feature at the lateral edge portion thereof that corresponds with the first attachment feature. The first and second attachment features engage together at a longitudinal seam between the lateral edge portions of the first and second tray sections, such as to align upper surfaces of the first and second tray sections.


According to another aspect of the present disclosure, a tray floor assembly for a vehicle battery tray has a first and a second elongated tray section. The first elongated tray section has a transverse cross-sectional profile that is substantially consistent longitudinally along its length and a first attachment feature disposed at a lateral edge portion thereof. The second elongated tray section also has a transverse cross-sectional profile that is substantially consistent longitudinally along its length and a second attachment feature disposed at a lateral edge portion of the second elongated tray section. The first and second elongated tray sections attach together in parallel alignment with each other at the lateral edge portions thereof to at least partially form a floor structure that is configured to support vehicle batteries. The first and second attachment features engage together at a longitudinal seam between the lateral edge portions of the first and second elongated tray sections.


According to yet another aspect of the present disclosure, a battery tray for an electric vehicle includes a plurality of elongated tray sections that extend in parallel alignment with each other and together to form a floor structure of the battery tray that has a substantially planar upper surface that is configured to support batteries that operate to propel the electric vehicle. A peripheral wall structure is coupled with the floor structure and surrounds a portion of the planar upper surface to define a battery containment area of the vehicle battery tray. A first tray section of the plurality of tray sections has a first attachment feature at an edge portion thereof. A second tray section of the plurality of tray sections has a second attachment feature at an edge portion thereof that engages the first attachment feature at a seam between the edge portions of the first and second tray sections.


These and other objects, advantages, purposes, and features of the present disclosure will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a battery support structure secured at a mounting location on a vehicle;



FIG. 2 is top plan view of the battery support structure shown in FIG. 1, illustrating rocker rails and other portions of the vehicle in dashed lines;



FIG. 3 is an upper perspective view of a tray floor assembly of the battery support structure shown in FIG. 1;



FIG. 4 is a top plan view of the tray floor assembly shown in FIG. 3;



FIG. 5 is an end elevational view of the tray floor assembly shown in FIG. 3;



FIG. 5A is an enlarged view of an outer section of the tray floor assembly shown in FIG. 5;



FIG. 5B is an enlarged view of a lap joint of the tray floor assembly shown in FIG. 5A, showing an attachment interface between elongated tray sections;



FIG. 6 is an exploded upper perspective view of the elongated tray sections of the tray floor assembly shown in FIG. 3;



FIG. 7 is an upper perspective view of an additional embodiment of a battery tray floor assembly;



FIG. 8 is a top plan view of the tray floor assembly shown in FIG. 7;



FIG. 9 is an end elevational view of the tray floor assembly shown in FIG. 7;



FIG. 9A is an enlarged view of an outer section of the tray floor assembly shown in FIG. 7;



FIG. 9B is an enlarged view of a lap joint of the tray floor assembly shown in FIG. 9A, showing an attachment interface between elongated tray sections;



FIG. 10 is an exploded upper perspective view of the elongated tray sections of the tray floor assembly shown in FIG. 7;



FIG. 11 is a cross-sectional view of an additional embodiment of a battery tray floor assembly, showing two tray sections;



FIG. 12 is a cross-sectional view of an additional embodiment of a battery tray floor assembly, showing two tray sections;



FIG. 13A is a cross-sectional view of an additional embodiment of a battery tray floor assembly, showing two tray sections in a formed state;



FIG. 13B is a cross-sectional view of the battery tray floor assembly of FIG. 13A, showing the two tray sections in a use state;



FIG. 14A is a cross-sectional view of an additional embodiment of a battery tray floor assembly, showing two tray sections in a formed state;



FIG. 14B is a cross-sectional view of the battery tray floor assembly of FIG. 14A, showing the two tray sections in a use state;



FIG. 15A is a cross-sectional view of an additional embodiment of a battery tray floor assembly, showing tray sections in a formed state;



FIG. 15B is a cross-sectional view of the battery tray floor assembly of FIG. 15A, showing the tray sections in a use state;



FIG. 16 shows top plan views and corresponding cross-sectional views of a battery tray floor assembly alongside a monolithic floor structure, showing trimmed sections removed;



FIG. 17 is an upper perspective view of an additional battery tray floor assembly;



FIG. 18 is a top plan view of the tray floor assembly shown in FIG. 17;



FIG. 19 is an end elevational view of the tray floor assembly shown in FIG. 17; and



FIG. 20 is an enlarged perspective view of the tray floor assembly shown in FIG. 17, showing the tray sections exploded away from each other.





DETAILED DESCRIPTION

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle battery tray or structure 10 is provided for supporting and protecting batteries, such as battery packs or modules or the like, for operating a vehicle 12 (FIG. 1), such as for operating of an electric vehicle or hybrid-electric vehicle. The battery tray 10 may be attached or mounted at or near the lower frame or rocker rails 14 of the vehicle 12 (FIG. 2), so as to locate the contained batteries 16 generally in a central location on the vehicle 12, which is generally away from probable impact locations and also in a location that may evenly distribute the weight of the batteries 16 over the vehicle frame. Such an attachment or mounting location at the bottom area of the vehicle frame may also provide the vehicle with a relatively lower center of gravity. The battery tray 10 spans below the vehicle 12, such as shown in FIG. 1, with a generally thin profile, so as to accommodate various vehicle body types and designs. For further usage considerations, it is contemplated that the battery tray 10 may be easily disengaged or detachable from the rocker rails 14 of the vehicle 12, such as for replacing or performing maintenance on the batteries 16 or related electrical components.


The battery tray 10 includes a battery tray floor assembly 18 that spans below the batteries 16 contained in the battery tray 10, so as to at least partially form an interior surface of a battery containment area of the battery tray 10. Moreover, such as shown in FIG. 1, a bottom surface 19 of the floor assembly 18 of the battery tray 10 may be exposed to generally provide an undercarriage surface of the vehicle body that faces and is suspended away from the road or ground surface. The tray floor assembly 18 has elongated tray sections that are attached or otherwise arranged together in a manner to form a floor structure 22 of the battery tray 10, such as shown in FIG. 4. The floor structure 22 formed by the tray sections provide the desired structural support to the contained batteries 16 and the desired protective attributes, such as impact resistance to the lower surface 19 the battery tray 10.


As shown in FIGS. 2-6, the tray floor assembly 18 of the battery tray 10 provides five separate tray sections 20a, 20b, 20c, 20d, 20e that extend longitudinally in parallel alignment with each other and are attach together at lateral edge portions of adjacent tray sections to form the floor structure 22. These elongated tray sections 20a, 20b, 20c, 20d, 20e are formed to each have a cross-sectional profile taken transverse to the longitudinal length that is substantially consistent longitudinally along the length of each tray section. Such a generally consistent profile along the length of a tray section may be formed by extrusion, such as with an aluminum alloy, or pultrusion, such as with a resin and composite substrate. For example, the tray sections may be extruded with 6xxx or 7xxx series aluminum alloy or pultruded with carbon fiber strands and mats reinforced with a resin system. It is understood that a tray floor assembly may have more or fewer tray sections than shown in FIGS. 3-6, such as shown in the additional illustrated examples herein, and furthermore understood that tray sections may be formed separate from each other or integrally formed together, as described in examples below. In addition to the different exemplary structural configurations shown and described below, it is understood that other conceivable structural designs may be used to provide the varied floor structure 22 for the desired structural performance characteristics.


The open front and rear ends of the tray floor assembly 18 may be enclosed with structural modules or cross members to further protect the batteries 16 held in the containment area and provide the desired peripheral shape of the battery tray 10. As shown in FIGS. 1 and 2, the vehicle battery tray 10 has front and rear tray enclosure members 27a, 27b that extend laterally across the tray floor assembly 18 and attach at the wall portions of the outer tray sections 20a, 20e to together form a peripheral wall structure 21 that surrounds the battery containment area of the vehicle battery tray 10. The front and rear tray enclosure members 27a, 27b may engage within the hollow openings of the wall portions of the outer tray sections and may attach thereat via welding, adhesive, and/or fasteners, and other conceivable means of attachment. Moreover the front and rear tray enclosure members 27a, 27b may be part of a module that includes a floor section that aligns with the floor assembly 18 and is capable of supporting additional batteries, such as shown in FIG. 2.


The cross-sectional profile of one or more of the tray sections may be engineered or otherwise configured with the desired structure to support the loads of the vehicle batteries 16 and/or other related contents of the battery tray 10 at the respective tray section, such that the structural shape and design of the floor structure 22 may vary across the tray floor assembly 18. As shown in FIGS. 5-5B, the tray sections 20a, 20b, 20c, 20d, 20e may each have an upper panel portion 28 and a lower panel portion 30 that are separated from each other by intermediate members 32 that interconnect the upper and lower panel portions 28, 30 and consistently extend longitudinally along the length of the respective tray section. Accordingly, hollow areas 34 may be defined between the upper and lower panel portions 28, 30 that also extend longitudinally along the intermediate members 32, so as to laterally separate the hollow areas 34 from each other and vertically separate the upper and lower panel portions 29, 30 from each other.


The vertical spacing provided by the hollow areas 34 creates a distance to allow upward deformation of the lower panel portion 30 before impacting or substantially deforming the upper panel portion 28, such that impact resistance and an upward deformation range is provided at the bottom surface 19 of the battery tray 10. Further, the intermediate members 32 may be arranged at different distances or spacing from each other to increase the load capacity of the floor portion 22 of the tray 10 at the desired areas, such as at or near a central area laterally across the width of the tray. It is contemplated that in additional embodiments the intermediate members may be differently spaced and shaped, such as to extend at an angle between the upper and lower panel portions.


Moreover, as shown in FIG. 5, the tray sections of the tray floor assembly 18 have a varied cross-sectional profile across a width of the tray 10, such as to have structural mass at the desired cross-sectional locations of the floor structure 22 to support loads of the vehicle batteries arranged over and supported at the floor of the battery tray 10. The varied thickness provides an inner tray section 20c with a greater thickness than exterior tray sections 20a, 20e. Intermediate tray sections 20b, 20d are disposed outboard from the inner tray section 20c and inward from the outer tray sections 20a, 20e, such that the intermediate tray sections 20b, 20d connect between the exterior and inner tray sections 20a, 20c, 20e. The illustrated intermediate tray sections 20b, 20d have a tapering thickness that decrease at a generally consistent rate or slope from the inner tray section 20c to the exterior tray sections 20a, 20e. The upper panel portions 28 of the tray sections are generally arranged in horizontal alignment, such that the varied thickness of the intermediate tray sections 20b, 20d is provided an angle of the lower panel portion 30 and varied lengths of the intermediate members 32 integrally extending between the upper and lower panel portions 28, 30.


To attach the tray sections 20a-20e together in forming the tray 10, each tray section may include an attachment feature 36 that engages and couples with a corresponding attachment feature 36 of an adjacent tray section at a longitudinal seam between the tray sections. As shown in FIG. 5B, the attachment feature of one tray section 20b includes an upper flange 38 having horizontal attachment surface that extends longitudinally along an inside edge portion of the tray section 20a. The upper flange 38 may protrude laterally in alignment with the upper panel portion 28 and may provide the horizontal attachment surface generally between the upper and lower panel portions 28, 30 so as to be spaced at a generally central vertical location. Accordingly, the attachment feature 36 of the tray section 20c adjacent to the tray section 20b may include an opposite and corresponding lower flange 40 that protrudes laterally in alignment with the lower panel portion 30 to similarly centrally position a horizontal attachment surface that consistently extends longitudinally along the edge portion. The horizontal surfaces of the upper and lower flanges 38, 40 attach in abutting contact at an interface 39, such as to form a lap joint between the tray sections 20b, 20c. The flanges and attachment features may be shaped to mate and engage with each other in a close and tight fitting manner, and thus it is contemplated that attachment flanges in additional embodiment may have various surface orientations and shapes.


When engaged, the upper and lower surfaces of the adjacent tray sections are generally aligned and flush, such as illustrated with each of the tray sections shown in FIG. 5B. The attachment features 36 may provide both a structural connection for interlocking the tray sections and a tight fitting or seal that is configured to prevent moisture intrusion into the containment area of the battery tray. In addition to or in the alternative to the mechanical interface provided by the engaged attachment features, it is contemplated that the interface between the tray sections may be attached with welding, adhesive, and/or fasteners or the like. As shown in FIG. 6, the tray sections may be attached to each other via the mating of the attachment features 36, such as by attaching each tray sections separately or by simultaneously attaching the tray sections. During or after engaging the attachment features 36 together, such as with the horizontal surfaces of the flanges in abutting contact, additional welding, adhesive, and/or fasteners or the like may be disposed at the connection interface to secure the longitudinal seam. The welding of such a connection may be performed by laser welding, friction stir welding, MIG welding or the like.


The exterior or outboard tray sections 20a, 20e of the floor assembly 18 may include a wall portion 24 that extends longitudinally along the respective tray section to provide a section of a peripheral wall structure 21 of the battery tray 10. The wall structure 24 provided by the floor assembly may further have wall thicknesses and longitudinal elongated hollow areas 26 that are configured to laterally protect the battery containment area, such as to prevent lateral impact forces to the vehicle from substantially penetrating the battery containment area.


The outer edges of the battery tray 10 are generally defined by a perimeter wall 21 that surrounds the floor portion 22 of the tray to form a protective barrier that encloses the batteries 16 in the battery tray 10. The opposing exterior tray sections may each includes a wall portion 24 that is integrally formed with and protrudes upward form floor portion 22. The two exterior tray sections 20a, 20e shown in FIGS. 3 and 4 include wall portions 24 formed at an outer edge area of the floor portion 22 and that include an upright interior surface extending integrally from the upper surface of the floor portion 22. As such, the exterior tray sections 20a, 20e may provide a seamless transition or impermeable interface between the floor portion 22 and the wall portion 24 so as to prevent moisture from entering the interior area of the tray 10. The wall portion 24 may also include one or more hollow areas 26 extending longitudinally along the exterior tray section 20a, 20c to provide a tubular structure that may function as a side reinforcement member of the battery tray 10 that is configured to absorb and prevent intrusion from lateral impact forces to the vehicle. The wall portion 24 of the exterior tray sections 20a, 20e may include various cross-sectional profile shapes, thicknesses, hollow area configurations and the like so as to be configured for the desired vehicle application.


Referring now to an additional example shown in FIGS. 7-10, the battery tray floor assembly 118 has a floor structure 122 with a generally consistent thickness. As shown in FIG. 9B, the attachment feature 136 of one tray section 120a includes a channel 138 that extends longitudinally along an inside edge portion of the tray section 120a. The channel 138 may be generally defined between the upper and lower panel portions 128, 130 so as to be spaced at a generally central vertical location. Accordingly, the attachment feature 136 of the tray section 120c adjacent to the exterior tray section 120a may include a protrusion 140 that protrudes laterally from a generally central vertical location on the edge portion of the tray section 120c, and similarly the protrusion 140 may consistently extend longitudinally along the edge portion. The shape of the protrusion 140, such as the thickness and lateral extension, is generally configured to mate and engage with the channel 138 in a close or tight fitting manner, and thus it is contemplated that various protrusion and channel shapes are contemplated.


When engaged, the upper and lower surfaces of the adjacent tray sections 120a, 120c, 120e are generally aligned and flush, as shown in FIGS. 9-9B. The attachment features 136 may provide both a structural connection for interlocking the tray sections and a tight fitting or seal that is configured to prevent moisture intrusion into the containment area of the battery tray. In addition to or in the alternative to the mechanical interface provided by the engaged attachment features, it is contemplated that the interface between the tray sections may be attached with welding, adhesive, and/or fasteners or the like. As shown in FIGS. 6-8, one of the exterior tray sections 120a, 120e may be attached to the interior tray section 120c via the matting of the attachment features 136, and subsequently or simultaneously, the remaining exterior tray section may be attached to the opposing side of the interior tray section 120c via the corresponding attachment features 136. During or after interlocking or engaging the attachment features 136 together, such as with the protrusion 140 disposed in the channel 138, the additional engagement features, such as welding, adhesive, and/or fasteners or the like may be disposed at the connection. Features of the tray floor assembly 118 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers may be used, incremented by 100.


Referring now to an additional example shown in FIG. 11, the battery tray floor assembly 218 has a floor structure with a varied thickness, where an inner tray section 220b has a greater thickness than an exterior tray section 220a, such that a central area of the floor portion of the battery tray is configured to support the loads distributed by the batteries contained in the battery tray. The illustrated the exterior and inner tray sections 220a, 220b each have an upper panel portion 228 and a lower panel portion 230 that are separated from each other by intermediate members 232 that interconnect the upper and lower panel portions 228, 230 and consistently extend longitudinally along the length of the respective tray section. Also, hollow areas 234 are defined between the upper and lower panel portions 228, 230 that also extend longitudinally along the intermediate members 232, so as to laterally separate the intermediate members 232 from each other and vertically separate the upper and lower panel portions 228, 230 from each other. The vertical separation provided by the intermediate members 232 at inner tray section 220b is greater than the vertical spacing provided at exterior tray section 220a.


With further reference to FIG. 11, the tray sections 220a, 220b are attached together using an attachment feature 236 that engages and couples with a corresponding attachment feature 236 of an adjacent tray section at a longitudinal seam between the tray sections. The illustrated attachment feature of the inner tray section 220b includes a protrusion 240 that protrudes generally laterally outward from the edge portion of the tray section 220b and that extends longitudinally along the edge portion of the tray section 220b. The corresponding edge portion of the exterior tray section 220a has a lower surface that rests on an upper surface of the protrusion 240 to provide the engagement between the adjacent tray sections 220a, 220b. The interface between the upper and lower surfaces at the respective protrusion 240 and engagement feature 236 of the exterior tray section 220a may be used for additional attachment means, such as welding, adhesive, and/or fasteners or the like. Features of the tray floor assembly 218 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 200.


A further example is shown in FIG. 12, where the battery tray floor assembly 318 has a varied cross-sectional thickness. Specifically, an inner tray section 320c has a greater thickness than exterior tray sections 320a. The illustrated exterior tray section 320a has a tapering thickness that decrease at a generally consistent rate or slope from the inner tray section 320c toward an integrally formed wall portion of the exterior tray sections 320a. The floor portion of the illustrated tray sections 320a, 320c each have an upper panel portion 328 and a lower panel portion 330 that are separated from each other by intermediate members 332 that interconnect the upper and lower panel portions 328, 330 and consistently extend longitudinally along the length of the respective tray section. Also, hollow areas 334 are defined between the upper and lower panel portions 328, 330, such that the intermediate members 332 laterally separate the hollow areas 334 from each other and vertically support the upper and lower panel portions 328, 330 from each other.


The exterior tray section 320a, as shown in FIG. 12, includes a wall portion 324 formed at an outer edge area of the floor portion of the exterior tray section 320a and that includes an upright interior surface extending integrally from the upper surface of the upper panel portion 328 of the exterior tray section 320a. It is understood that an additional exterior tray section may be attached at the opposing edge of the inner tray section 320c from the exterior tray section 320a shown in FIG. 12. The wall portions 324 of such an embodiment also include hollow areas 326 extending longitudinally along the exterior tray section 320a to provide a tubular structure that may function as a side reinforcement member of the battery tray that is configured to absorb and prevent intrusion from lateral impact forces to the vehicle. The exterior tray section 320a of the floor portion 322 shown as a single integral pieces of the parts that are of shown separately in FIGS. 3-6 as the intermediate tray sections 20b, 20d and the exterior tray section 20a, 20e of the floor assembly 18. Features of the tray floor assembly 318 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 300.


As also illustrated in FIG. 12, the tray sections attach together using an attachment feature 336 that engages and couples with a corresponding attachment feature 336 of an adjacent tray section at a longitudinal seam between the tray sections. The illustrated attachment feature of the inner tray sections 320b include a lower protrusion or flange 340 that protrudes laterally from a lower edge portion of the tray section 320c and that extends longitudinally along the edge portion of the tray section. The corresponding edge portion of the exterior tray section 320a has an upper protrusion or flange 338 that extends from an upper edge portion of the tray section 320a and that rests on an upper surface of the flange 340 to provide the engagement between the adjacent tray sections. The interface between the respective flanges 338, 340 may include additional attachment means, such as welding, adhesive, and/or fasteners or the like.


When forming the tray sections of the battery tray floor assembly, the adjacent tray sections may be formed together, such as by a single extrusion die, so as to increase tray section production speed and the ease of assembly, among other benefits. For example, extrusion dies may be limited in size or diameter, such as to approximately 12 to 16 inches, whereby it may be desirable to package multiple tray sections into a single extrusion die. When in an initially formed state, at least two of the tray sections may thereby be integrally interconnected with each other, such that one or more interconnecting pieces or portions may be deformed to align and attach the tray sections and/or may be removed so as to allow the tray sections to subsequently attach together.


As shown in FIGS. 13A and 13B, an outer tray section 420b is extruded simultaneously with an inner tray section 420c with an interconnecting piece 421 connecting between the edge portions at the upper panel portions 428 of each tray section 420b, 420c and extending longitudinally along the tray sections. With the interconnecting piece 421 intact, as shown in FIG. 13A, the tray sections may be considered to be in an initially formed state 423. From the initially formed state 423, the interconnecting piece 421 may be cut from or otherwise removed from the edge portions of both try sections, such that the tray sections may then be attached, similar to the tray sections 20b, 20d shown in FIGS. 3-6 and described herein. When attached, the tray sections may be considered to be in a use state 425 forming a substantially planar structure that is configured to support vehicle batteries. Features of the tray floor assembly 418 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 400.


Moreover, as shown in FIGS. 14A and 14B, an outer tray section 520b is extruded simultaneously with an inner tray section 520c with an interconnecting piece 521 connecting between the edge portions at the upper panel portions 528 of each tray section 520b, 520d and extending longitudinally along the tray sections. With the interconnecting piece 521 intact and shown in a U-shaped configuration, as shown in FIG. 14A, the tray sections may be considered to be in an initially formed state 523. From the initially formed state 523, the interconnecting piece 521 may be deformed from the U-shape to a generally flat configuration in alignment with the upper surfaces of the upper panel portions 528 of the tray sections, such that the tray sections are in substantially planar alignment with each other. As the deformation is occurring, attachment features along the edge portions of the tray sections 520b, 520c may engage with each other, such as a protrusion 540 engaging a corresponding channel 538. Once the interconnecting piece 521 is deformed to a planar configuration as shown in FIG. 14B, a lower brace 527 that protrudes form a lower panel portion of one of the tray sections may contact the adjacent lower panel of the other panel portion. The lower brace 527 may also be used as a weld point 541, such as with a laser welder or the like. When deformed and attached together, the tray sections may be considered to be in a use state 525 forming a substantially planar structure that is configured to support vehicle batteries, such as shown and described herein. Features of the tray floor assembly 518 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 500.


Furthermore, additional tray sections may be integrally formed together, such as all the tray sections of a single tray assembly 618, as shown in FIGS. 15A and 15B. In the initially formed state 623, the exterior tray sections 620a, 620e are integrally formed with wall portions 624 that each includes a hollow area extending longitudinally along the exterior tray section to provide a side reinforcement member of the battery tray. Also, multiple inner tray sections 620c are integrally formed with a cross-sectional profile that has a serpentine or wave-like shape that is generally consistent longitudinally along the length of the tray sections. The tray sections, such as the illustrated inner tray sections 620c, are deformed from the initially formed state 623 to a use state by laterally displacing the exterior tray sections, such as in a stretch forming apparatus and/or press to form a substantially planar floor structure 622 as shown in FIG. 15B. To further support and reinforce the floor portion 622 of the tray floor assembly 619, one or more cross members 627 may be disposed laterally between the wall portions 624 of the side reinforcement members. It is also shown that the floor structure 622 of the tray floor assembly 618 may include longitudinal stiffeners that include upward and downward facing channels integrally formed into the cross-sectional profile so as to extending longitudinally along the floor portion of the tray. Features of the tray floor assembly 618 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 600.


Once the tray floor assembly is formed, it may be trimmed to accommodate the perimeter shape of the battery tray, such as shown in FIG. 16. A similar tray perimeter is shown in FIG. 2 in an example of the completed tray 10. In FIG. 16, the tray floor assembly is shown at the left with a thickness of 2 millimeters at the exterior tray sections and a thickness of 5 millimeters at a central tray section 820b. Thus, when pieces 850, 851 are trimmed from the tray floor assembly 818, they are taken from the exterior tray sections 820a, 820c, such that the mass of material removed is less than if the tray floor were monolithic, having a single thickness greater than 2 millimeters over the entire panel, such as shown to the right in FIG. 16 as a thickness of 4 millimeters. It is also contemplated that the exterior tray sections may have a shorter longitudinal length than the corresponding central tray section, so that the pieces that need to be trimmed are reduced in size.


Optionally, the battery tray floor assembly may be formed to arrange the tray sections in a manner that they extend laterally relative to vehicle, such that the tray section have a substantially constant cross-sectional profile laterally across the battery tray, such as the floor assembly 718 shown in FIGS. 17-20. In this embodiment, the tray sections may be engineered to have desired load capacity and performance for locating the batteries at the desired longitudinal position on the battery tray. Accordingly, the tray floor assembly 718 provides at least two separate tray sections 720e, 720f that are formed to each have a cross-sectional profile that is substantially consistent laterally across the width of the battery tray. This generally consistent profile each tray section may be formed by extrusion, such as with an aluminum alloy, or pultrusion, such as with a resin and composite substrate. Similar to the embodiments described above, the adjacent tray sections may be attached together, such as with engagement features that include one or more of mechanically engaged geometric features, such as protrusions and channels, welding, adhesive, fasteners and the like. The tray sections shown in FIGS. 17-20 also include intermediate wall portions 724 that protrude upward from the edges of the respect floor portions 722. Further, the upper surface of the illustrated floor portions 722 may include upward facing channels. Features of the tray floor assembly 718 that are similar to the battery tray floor assembly 18 described above may not be described in detail again, and similar reference numbers are used, incremented by 700.


Several different attachment techniques and configurations may be used to permanently or releasable secure the battery tray to a vehicle frame, such as below a floor of the vehicle and generally between the axles. Further, with respect to the general installation or attachment or formation, the steps discussed herein may be performed in various different sequences from those discussed to result in engaging, disengaging, or forming the battery tray or components thereof.


It is to be understood that the specific devices and processes illustrated in the attached drawings, and described in this specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific values and other precise physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Changes and modifications in the specifically described embodiments may be carried out without departing from the principles of the present disclosure, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law. The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.

Claims
  • 1. A vehicle battery tray comprising: a floor assembly having a plurality of elongated tray sections that attach together at lateral edge portions of adjacent tray sections of the plurality of elongated tray sections to form a floor structure that is configured to support vehicle batteries contained in the vehicle battery tray;wherein the plurality of elongated tray sections each comprise a substantially consistent cross-sectional shape extending longitudinally along a length of the respective tray section;wherein a first tray section of the plurality of elongated tray sections comprises a first attachment feature at the lateral edge portion thereof;wherein a second tray section of the plurality of elongated tray sections comprises a second attachment feature at the lateral edge portion thereof that corresponds with the first attachment feature; andwherein the first and second attachment features engage together at a longitudinal seam between the lateral edge portions of the first and second tray sections.
  • 2. The vehicle battery tray of claim 1, wherein the engaged first and second attachment features align upper surfaces of the first and second tray sections, and wherein at least one of the plurality of elongated tray sections comprises an aluminum alloy.
  • 3. The vehicle battery tray of claim 1, wherein the first attachment feature includes a channel that extends longitudinally along the lateral edge portion of the first tray section, and wherein the second attachment feature includes a lateral protrusion that extends longitudinally along the lateral edge portion of the second tray section and engages within the channel.
  • 4. The vehicle battery tray of claim 1, wherein the first attachment feature includes a first flange that extends longitudinally along the lateral edge portion of the first tray section, and wherein the second attachment feature includes a second flange that extends longitudinally along the lateral edge portion of the second tray section and couples with the first flange.
  • 5. The vehicle battery tray of claim 4, wherein the first flange comprises a downward-facing attachment surface disposed between an upper surface of the first tray section and a lower surface of the first tray section, wherein the second flange comprises an upward-facing attachment surface disposed between an upper surface of the second tray section and a lower surface of the second tray section, and wherein the downward-facing attachment surface attaches at the upward-facing attachment surface.
  • 6. The vehicle battery tray of claim 1, wherein the first and second attachment features extend longitudinally along the lateral edge portions of respective first and second tray sections to provide a structural connection along the longitudinal seam between the first and second tray sections.
  • 7. The vehicle battery tray of claim 1, wherein attachment of the first and second attachment features comprises welding or adhesive at a connection interface along the longitudinal seam between the first and second tray sections.
  • 8. The vehicle battery tray of claim 1, wherein the first and second tray sections each comprise an upper panel portion and a lower panel portion that is separated from the upper panel portion to provide a hollow area extending longitudinally along the length of the respective tray section.
  • 9. The vehicle battery tray of claim 8, wherein the first and second tray sections each comprise intermediate members that integrally interconnect between the upper and lower panel portions that divide the hollow area into multiple elongated hollow channels disposed between the upper and lower panel portions.
  • 10. The vehicle battery tray of claim 1, wherein the first tray section comprises a panel portion that partially forms the floor structure, and wherein the first tray section comprises a wall portion integrally protruding upward from the panel portion of the first tray section to at least partially form a peripheral wall structure of the vehicle battery tray.
  • 11. The vehicle battery tray of claim 1, further comprising wall enclosure members that extend laterally relative to the plurality of elongated tray sections and attach at end portions of plurality of elongated tray section to form a peripheral wall structure that partially surrounds a battery containment area of the vehicle battery tray.
  • 12. A tray floor assembly for a vehicle battery tray, the tray floor assembly comprising: a first elongated tray section comprising a transverse cross-sectional profile that is substantially consistent longitudinally along a length of the first elongated tray section and a first attachment feature disposed at a lateral edge portion of the first elongated tray section;a second elongated tray section comprising a transverse cross-sectional profile that is substantially consistent longitudinally along a length of the second elongated tray section and a second attachment feature disposed at a lateral edge portion of the second elongated tray section;wherein the first and second elongated tray sections attach together in parallel alignment with each other at the lateral edge portions thereof to at least partially form a floor structure that is configured to support vehicle batteries; andwherein the first and second attachment features engage together at a longitudinal seam between the lateral edge portions of the first and second elongated tray sections.
  • 13. The tray floor assembly of claim 12, wherein the first and second elongated tray sections comprise an aluminum extrusion.
  • 14. The tray floor assembly of claim 12, wherein the first attachment feature includes a channel that extends longitudinally along the lateral edge portion of the first tray section, and wherein the second attachment feature includes a lateral protrusion that extends longitudinally along the lateral edge portion of the second tray section and matably engages within the channel.
  • 15. The tray floor assembly of claim 12, wherein the first and second elongated tray sections each comprise (i) an upper panel portion that at least partially forms an upper surface of the floor structure, (ii) a lower panel portion that is separated from the upper panel portion to provide a hollow area extending longitudinally along the length of the respective elongated tray section, and (iii) intermediate stiffening members that integrally interconnect between the upper and lower panel portions to laterally divide the hollow area.
  • 16. The tray floor assembly of claim 12, wherein the first attachment feature includes an first flange that extends longitudinally along the lateral edge portion of the first elongated tray section, and wherein the second attachment feature includes a second flange that extends longitudinally along the lateral edge portion of the second elongated tray section and couples with the first flange.
  • 17. The tray floor assembly of claim 16, wherein the first flange comprises a downward-facing attachment surface disposed between an upper surface of the first tray section and a lower surface of the first tray section, wherein the second flange comprises an upward-facing attachment surface disposed between an upper surface of the second tray section and a lower surface of the second tray section, and wherein the downward-facing attachment surface attaches at the upward-facing attachment surface.
  • 18. A battery tray for an electric vehicle, the battery tray comprising: a plurality of elongated tray sections that extend in parallel alignment with each other and together to form a floor structure of the battery tray that has a substantially planar upper surface that is configured to support batteries that operate to propel the electric vehicle;a peripheral wall structure coupled with the floor structure and surrounding a portion of the planar upper surface to define a battery containment area of the vehicle battery tray;wherein a first tray section of the plurality of tray sections comprises a first attachment feature at an edge portion thereof; andwherein a second tray section of the plurality of tray sections comprises a second attachment feature at an edge portion thereof that engages the first attachment feature at a seam between the edge portions of the first and second tray sections.
  • 19. The battery tray of claim 18, wherein the first attachment feature includes a channel that extends along the edge portion of the first tray section, and wherein the second attachment feature includes a protrusion that extends along the edge portion of the second tray section and engages within the channel.
  • 20. The battery tray of claim 19, wherein an opposing edge portion of the first tray section from the channel includes a protrusion that is configured to engage a channel of an adjacent tray section, and wherein an opposing edge portion of the second tray section from the protrusion includes a channel that is configured to engage a protrusion of an adjacent tray section.
  • 21. The battery tray of claim 18, wherein the plurality of elongated tray sections are arranged with lengths of the plurality of elongated tray sections extending along a width of the electric vehicle or along a length of the electric vehicle between front and rear ends of the electric vehicle.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-provisional application Ser. No. 16/152,147, filed Oct. 4, 2018, which claims benefit and priority under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/568,051, filed Oct. 4, 2017, which are hereby incorporated by reference in their entireties.

US Referenced Citations (516)
Number Name Date Kind
3708028 Hafer Jan 1973 A
3930552 Kunkle et al. Jan 1976 A
3983952 McKee Oct 1976 A
4174014 Bjorksten Nov 1979 A
4252206 Burkholder et al. Feb 1981 A
4317497 Alt et al. Mar 1982 A
4339015 Fowkes et al. Jul 1982 A
4506748 Thomas Mar 1985 A
5015545 Brooks May 1991 A
5198638 Massacesi Mar 1993 A
5378555 Waters et al. Jan 1995 A
5390754 Masuyama et al. Feb 1995 A
5392873 Masuyama et al. Feb 1995 A
5476151 Tsuchida et al. Dec 1995 A
5501289 Nishikawa et al. Mar 1996 A
5513721 Ogawa et al. May 1996 A
5523666 Hoelzl et al. Jun 1996 A
5534364 Watanabe et al. Jul 1996 A
5549443 Hammerslag Aug 1996 A
5555950 Harada et al. Sep 1996 A
5558949 Iwatsuki et al. Sep 1996 A
5561359 Matsuura et al. Oct 1996 A
5567542 Bae Oct 1996 A
5585204 Oshida et al. Dec 1996 A
5585205 Kohchi Dec 1996 A
5612606 Guimarin et al. Mar 1997 A
5620057 Klemen et al. Apr 1997 A
5709280 Beckley et al. Jan 1998 A
5736272 Veenstra et al. Apr 1998 A
5760569 Chase, Jr. Jun 1998 A
5833023 Shimizu Nov 1998 A
5853058 Endo et al. Dec 1998 A
5866276 Ogami et al. Feb 1999 A
5934053 Fillman et al. Aug 1999 A
6040080 Minami et al. Mar 2000 A
6079984 Torres et al. Jun 2000 A
6085854 Nishikawa Jul 2000 A
6094927 Anazawa et al. Aug 2000 A
6109380 Veenstra Aug 2000 A
6130003 Etoh et al. Oct 2000 A
6158538 Botzelmann et al. Dec 2000 A
6188574 Anazawa Feb 2001 B1
6189635 Schuler et al. Feb 2001 B1
6220380 Mita et al. Apr 2001 B1
6227322 Nishikawa May 2001 B1
6260645 Pawlowski et al. Jul 2001 B1
6402229 Suganuma Jun 2002 B1
6406812 Dreulle et al. Jun 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6541151 Minamiura et al. Apr 2003 B2
6541154 Oogami et al. Apr 2003 B2
6565836 Ovshinsky et al. May 2003 B2
6598691 Mita et al. Jul 2003 B2
6648090 Iwase Nov 2003 B2
6668957 King Dec 2003 B2
6736229 Amori et al. May 2004 B1
6811197 Grabowski et al. Nov 2004 B1
7004274 Shibasawa et al. Feb 2006 B2
7017361 Kwon Mar 2006 B2
7070015 Mathews et al. Jul 2006 B2
7128999 Martin et al. Oct 2006 B1
7201384 Chaney Apr 2007 B2
7207405 Reid et al. Apr 2007 B2
7221123 Chen May 2007 B2
7249644 Honda et al. Jul 2007 B2
7267190 Hirano Sep 2007 B2
7323272 Ambrosio et al. Jan 2008 B2
7401669 Fujii et al. Jul 2008 B2
7405022 Kang et al. Jul 2008 B2
7412309 Honda Aug 2008 B2
7416039 Anderson et al. Aug 2008 B1
7424926 Tsuchiya Sep 2008 B2
7427156 Ambrosio et al. Sep 2008 B2
7501793 Kadouchi et al. Mar 2009 B2
7507499 Zhou et al. Mar 2009 B2
7520355 Chaney Apr 2009 B2
7610978 Takasaki et al. Nov 2009 B2
7654351 Koike et al. Feb 2010 B2
7654352 Takasaki et al. Feb 2010 B2
7661370 Pike et al. Feb 2010 B2
7686111 Koenekamp et al. Mar 2010 B2
7687192 Yoon et al. Mar 2010 B2
7713655 Ha et al. May 2010 B2
7749644 Nishino Jul 2010 B2
7807288 Yoon et al. Oct 2010 B2
7854282 Lee et al. Dec 2010 B2
7858229 Shin et al. Dec 2010 B2
7875378 Yang et al. Jan 2011 B2
7879480 Yoon et al. Feb 2011 B2
7879485 Yoon et al. Feb 2011 B2
7926602 Takasaki Apr 2011 B2
7931105 Sato et al. Apr 2011 B2
7948207 Scheucher May 2011 B2
7967093 Nagasaka Jun 2011 B2
7984779 Boegelein et al. Jul 2011 B2
7990105 Matsumoto et al. Aug 2011 B2
7993155 Heichal et al. Aug 2011 B2
7997368 Takasaki et al. Aug 2011 B2
8006626 Kumar et al. Aug 2011 B2
8006793 Heichal et al. Aug 2011 B2
8012620 Takasaki et al. Sep 2011 B2
8034476 Ha et al. Oct 2011 B2
8037954 Taguchi Oct 2011 B2
8079435 Takasaki et al. Dec 2011 B2
8091669 Taneda et al. Jan 2012 B2
8110300 Niedzwiecki et al. Feb 2012 B2
8146694 Hamidi Apr 2012 B2
8163420 Okada et al. Apr 2012 B2
8167070 Takamura et al. May 2012 B2
8186468 Parrett et al. May 2012 B2
8187736 Park et al. May 2012 B2
8205702 Hoermandinger et al. Jun 2012 B2
8206846 Yang et al. Jun 2012 B2
8210301 Hashimoto et al. Jul 2012 B2
8211564 Choi et al. Jul 2012 B2
8256552 Okada Sep 2012 B2
8268469 Hermann et al. Sep 2012 B2
8268472 Ronning et al. Sep 2012 B2
8276697 Takasaki Oct 2012 B2
8286743 Rawlinson Oct 2012 B2
8298698 Chung et al. Oct 2012 B2
8304104 Lee et al. Nov 2012 B2
8307930 Sailor et al. Nov 2012 B2
8323819 Lee et al. Dec 2012 B2
8327962 Bergmeier et al. Dec 2012 B2
8343647 Ahn et al. Jan 2013 B2
8353374 Sugawara et al. Jan 2013 B2
8371401 Illustrato Feb 2013 B1
8397853 Stefani et al. Mar 2013 B2
8409743 Okada et al. Apr 2013 B2
8418795 Sasage et al. Apr 2013 B2
8420245 Im et al. Apr 2013 B2
8439144 Murase May 2013 B2
8453773 Hill et al. Jun 2013 B2
8453778 Bannier et al. Jun 2013 B2
8455122 Shin et al. Jun 2013 B2
8465866 Kim Jun 2013 B2
8481343 Hsin et al. Jul 2013 B2
8486557 Lee et al. Jul 2013 B2
8492016 Shin et al. Jul 2013 B2
8501344 Yang et al. Aug 2013 B2
8511412 Kawaguchi et al. Aug 2013 B2
8540282 Yoda et al. Sep 2013 B2
8551640 Hedrich et al. Oct 2013 B2
8557425 Ronning et al. Oct 2013 B2
8561743 Iwasa et al. Oct 2013 B2
8563155 Lee et al. Oct 2013 B2
8567543 Kubota et al. Oct 2013 B2
8584780 Yu et al. Nov 2013 B2
8587907 Gaben Nov 2013 B2
8592069 Anderson et al. Nov 2013 B1
8602139 Takamura et al. Dec 2013 B2
8609271 Yoon et al. Dec 2013 B2
8658303 Chung et al. Feb 2014 B2
8672077 Sand et al. Mar 2014 B2
8672354 Kim et al. Mar 2014 B2
8689918 Yu et al. Apr 2014 B2
8689919 Maeda et al. Apr 2014 B2
8691421 Lee et al. Apr 2014 B2
8708080 Lee et al. Apr 2014 B2
8708402 Saeki Apr 2014 B2
8709628 Carignan et al. Apr 2014 B2
8722224 Lee et al. May 2014 B2
8728648 Choo et al. May 2014 B2
8733486 Nishiura et al. May 2014 B2
8733488 Umetani May 2014 B2
8739908 Taniguchi et al. Jun 2014 B2
8739909 Hashimoto Jun 2014 B2
8741466 Youngs et al. Jun 2014 B2
8746391 Atsuchi et al. Jun 2014 B2
8757304 Amano et al. Jun 2014 B2
8789634 Nitawaki Jul 2014 B2
8794365 Matsuzawa et al. Aug 2014 B2
8802259 Lee et al. Aug 2014 B2
8803477 Kittell Aug 2014 B2
8808893 Choo et al. Aug 2014 B2
8818588 Ambrosio et al. Aug 2014 B2
8820444 Nguyen Sep 2014 B2
8820461 Shinde et al. Sep 2014 B2
8827023 Matsuda et al. Sep 2014 B2
8833495 Iwata et al. Sep 2014 B2
8833499 Rawlinson Sep 2014 B2
8835033 Choi et al. Sep 2014 B2
8841013 Choo et al. Sep 2014 B2
8846233 Lee et al. Sep 2014 B2
8846234 Lee et al. Sep 2014 B2
8852794 Laitinen Oct 2014 B2
8862296 Kurakawa et al. Oct 2014 B2
8865332 Yang et al. Oct 2014 B2
8875828 Rawlinson et al. Nov 2014 B2
8895173 Gandhi et al. Nov 2014 B2
8900736 Choi et al. Dec 2014 B2
8905170 Kyoden et al. Dec 2014 B2
8905171 Lee et al. Dec 2014 B2
8911899 Lim et al. Dec 2014 B2
8936125 Nakamori Jan 2015 B2
8939245 Jaffrezic Jan 2015 B2
8939246 Yamaguchi et al. Jan 2015 B2
8951655 Chung et al. Feb 2015 B2
8960346 Ogawa Feb 2015 B2
8970061 Nakagawa et al. Mar 2015 B2
8973697 Matsuda Mar 2015 B2
8975774 Kreutzer et al. Mar 2015 B2
8978800 Soma' et al. Mar 2015 B2
8980458 Honjo et al. Mar 2015 B2
8986864 Wiegmann et al. Mar 2015 B2
9004535 Wu Apr 2015 B2
9012051 Lee et al. Apr 2015 B2
9017846 Kawatani et al. Apr 2015 B2
9023502 Favaretto May 2015 B2
9023503 Seong et al. May 2015 B2
9024572 Nishihara et al. May 2015 B2
9033084 Joye May 2015 B2
9033085 Rawlinson May 2015 B1
9034502 Kano et al. May 2015 B2
9052168 Rawlinson Jun 2015 B1
9054402 Rawlinson Jun 2015 B1
9061714 Albery et al. Jun 2015 B1
9065103 Straubel et al. Jun 2015 B2
9070926 Seong et al. Jun 2015 B2
9073426 Tachikawa et al. Jul 2015 B2
9077058 Yang et al. Jul 2015 B2
9090218 Karashima Jul 2015 B2
9093701 Kawatani et al. Jul 2015 B2
9101060 Yamanaka et al. Aug 2015 B2
9102362 Baccouche et al. Aug 2015 B2
9126637 Eberle et al. Sep 2015 B2
9136514 Kawatani et al. Sep 2015 B2
9156340 van den Akker Oct 2015 B2
9159968 Park et al. Oct 2015 B2
9159970 Watanabe et al. Oct 2015 B2
9160042 Fujii et al. Oct 2015 B2
9160214 Matsuda Oct 2015 B2
9172071 Yoshioka et al. Oct 2015 B2
9174520 Katayama et al. Nov 2015 B2
9184477 Jeong et al. Nov 2015 B2
9192450 Yamashita et al. Nov 2015 B2
9193316 McLaughlin et al. Nov 2015 B2
9196882 Seong et al. Nov 2015 B2
9203064 Lee et al. Dec 2015 B2
9203124 Chung et al. Dec 2015 B2
9205749 Sakamoto Dec 2015 B2
9205757 Matsuda Dec 2015 B2
9216638 Katayama et al. Dec 2015 B2
9227582 Katayama et al. Jan 2016 B2
9231285 Schmidt et al. Jan 2016 B2
9236587 Lee et al. Jan 2016 B2
9236589 Lee Jan 2016 B2
9238495 Matsuda Jan 2016 B2
9246148 Maguire Jan 2016 B2
9252409 Lee et al. Feb 2016 B2
9254871 Hotta et al. Feb 2016 B2
9263249 Tomohiro et al. Feb 2016 B2
9269934 Yang et al. Feb 2016 B2
9277674 Watanabe Mar 2016 B2
9281505 Hihara Mar 2016 B2
9281546 Chung et al. Mar 2016 B2
9283837 Rawlinson Mar 2016 B1
9306201 Lu et al. Apr 2016 B2
9306247 Rawlinson Apr 2016 B2
9308829 Matsuda Apr 2016 B2
9308966 Kosuge et al. Apr 2016 B2
9312579 Jeong et al. Apr 2016 B2
9321357 Caldeira et al. Apr 2016 B2
9321433 Yin et al. Apr 2016 B2
9327586 Miyashiro May 2016 B2
9331321 Berger et al. May 2016 B2
9331366 Fuerstner et al. May 2016 B2
9333868 Uchida et al. May 2016 B2
9337455 Yang et al. May 2016 B2
9337457 Yajima et al. May 2016 B2
9337458 Kim May 2016 B2
9337516 Klausner et al. May 2016 B2
9346346 Murray May 2016 B2
9350003 Wen et al. May 2016 B2
9358869 Le Jaouen et al. Jun 2016 B2
9373828 Kawatani et al. Jun 2016 B2
9381798 Meyer-Ebeling Jul 2016 B2
9412984 Fritz et al. Aug 2016 B2
9413043 Kim et al. Aug 2016 B2
9425628 Pham et al. Aug 2016 B2
9434243 Nakao Sep 2016 B2
9434270 Penilla et al. Sep 2016 B1
9434333 Sloan et al. Sep 2016 B2
9444082 Tsujimura et al. Sep 2016 B2
9446643 Vollmer Sep 2016 B1
9450228 Sakai et al. Sep 2016 B2
9452686 Yang et al. Sep 2016 B2
9457666 Caldeira et al. Oct 2016 B2
9461284 Power et al. Oct 2016 B2
9461454 Auguet et al. Oct 2016 B2
9463695 Matsuda et al. Oct 2016 B2
9478778 Im et al. Oct 2016 B2
9481249 Yamazaki Nov 2016 B2
9484564 Stuetz et al. Nov 2016 B2
9484592 Roh et al. Nov 2016 B2
9487237 Vollmer Nov 2016 B1
9502700 Haussman Nov 2016 B2
9520624 Lee et al. Dec 2016 B2
9531041 Hwang Dec 2016 B2
9533546 Cheng Jan 2017 B2
9533600 Schwab et al. Jan 2017 B1
9537186 Chung et al. Jan 2017 B2
9537187 Chung et al. Jan 2017 B2
9540055 Berger et al. Jan 2017 B2
9545962 Pang Jan 2017 B2
9545968 Miyashiro et al. Jan 2017 B2
9561735 Nozaki Feb 2017 B2
9564663 Kim et al. Feb 2017 B2
9564664 Tanigaki et al. Feb 2017 B2
9579963 Landgraf Feb 2017 B2
9579983 Inoue Feb 2017 B2
9579986 Bachir Feb 2017 B2
9590216 Maguire et al. Mar 2017 B2
9597973 Penilla et al. Mar 2017 B2
9597976 Dickinson et al. Mar 2017 B2
9608244 Shin et al. Mar 2017 B2
9614206 Choi et al. Apr 2017 B2
9614260 Kim et al. Apr 2017 B2
9616766 Fujii Apr 2017 B2
9620826 Yang et al. Apr 2017 B2
9623742 Ikeda et al. Apr 2017 B2
9623911 Kano et al. Apr 2017 B2
9627664 Choo et al. Apr 2017 B2
9627666 Baldwin Apr 2017 B2
9630483 Yamada et al. Apr 2017 B2
9636984 Baccouche et al. May 2017 B1
9643660 Vollmer May 2017 B2
9647251 Prinz et al. May 2017 B2
9653712 Seong et al. May 2017 B2
9660236 Kondo et al. May 2017 B2
9660288 Gendlin et al. May 2017 B2
9660304 Choi et al. May 2017 B2
9673433 Pullalarevu et al. Jun 2017 B1
9673495 Lee et al. Jun 2017 B2
9692095 Harris Jun 2017 B2
9694772 Ikeda et al. Jul 2017 B2
9718340 Berger Aug 2017 B2
9789908 Tsukada et al. Oct 2017 B2
9796424 Sakaguchi et al. Oct 2017 B2
9802650 Nishida et al. Oct 2017 B2
10059382 Nusier et al. Aug 2018 B2
10483510 Stephens Nov 2019 B2
20010046624 Goto et al. Nov 2001 A1
20010052433 Harris et al. Dec 2001 A1
20020066608 Guenard et al. Jun 2002 A1
20030089540 Koike et al. May 2003 A1
20030188417 McGlinchy et al. Oct 2003 A1
20030209375 Suzuki et al. Nov 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040142232 Risca et al. Jul 2004 A1
20040261377 Sung Dec 2004 A1
20050095500 Corless et al. May 2005 A1
20060001399 Salasoo et al. Jan 2006 A1
20060024566 Plummer Feb 2006 A1
20080179040 Rosenbaum Jul 2008 A1
20080199771 Chiu Aug 2008 A1
20080238152 Konishi et al. Oct 2008 A1
20080280192 Drozdz et al. Nov 2008 A1
20080311468 Hermann et al. Dec 2008 A1
20090014221 Kim et al. Jan 2009 A1
20090058355 Meyer Mar 2009 A1
20100025131 Gloceri et al. Feb 2010 A1
20100112419 Jang et al. May 2010 A1
20100159317 Taghikhani et al. Jun 2010 A1
20100173191 Meintschel et al. Jul 2010 A1
20100307848 Hashimoto et al. Dec 2010 A1
20110036657 Bland et al. Feb 2011 A1
20110070474 Lee et al. Mar 2011 A1
20110104530 Muller et al. May 2011 A1
20110123309 Berdelle-Hilge et al. May 2011 A1
20110132580 Herrmann et al. Jun 2011 A1
20110143179 Nakamori Jun 2011 A1
20110168461 Meyer-Ebeling Jul 2011 A1
20110240385 Farmer Oct 2011 A1
20120091955 Gao Apr 2012 A1
20120103714 Choi et al. May 2012 A1
20120118653 Ogihara et al. May 2012 A1
20120125702 Bergfjord May 2012 A1
20120129031 Kim May 2012 A1
20120160583 Rawlinson Jun 2012 A1
20120223113 Gaisne Sep 2012 A1
20120298433 Ohkura Nov 2012 A1
20120301765 Loo et al. Nov 2012 A1
20120312610 Kim et al. Dec 2012 A1
20130020139 Kim et al. Jan 2013 A1
20130122337 Katayama et al. May 2013 A1
20130122338 Katayama et al. May 2013 A1
20130143081 Watanabe et al. Jun 2013 A1
20130164580 Au Jun 2013 A1
20130192908 Schlagheck Aug 2013 A1
20130230759 Jeong et al. Sep 2013 A1
20130270863 Young et al. Oct 2013 A1
20130273829 Obasih et al. Oct 2013 A1
20130284531 Oonuma et al. Oct 2013 A1
20130337297 Lee et al. Dec 2013 A1
20140017546 Yanagi Jan 2014 A1
20140045026 Fritz et al. Feb 2014 A1
20140072845 Oh et al. Mar 2014 A1
20140072856 Chung et al. Mar 2014 A1
20140087228 Fabian et al. Mar 2014 A1
20140120406 Kim May 2014 A1
20140141298 Michelitsch May 2014 A1
20140178721 Chung et al. Jun 2014 A1
20140193683 Mardall et al. Jul 2014 A1
20140202671 Yan Jul 2014 A1
20140212723 Lee et al. Jul 2014 A1
20140242429 Lee et al. Aug 2014 A1
20140246259 Yamamura et al. Sep 2014 A1
20140262573 Ito et al. Sep 2014 A1
20140272501 O'Brien et al. Sep 2014 A1
20140284125 Katayama et al. Sep 2014 A1
20140302360 Klammler et al. Oct 2014 A1
20140322583 Choi et al. Oct 2014 A1
20140338999 Fujii et al. Nov 2014 A1
20150004458 Lee Jan 2015 A1
20150010795 Tanigaki et al. Jan 2015 A1
20150053493 Kees et al. Feb 2015 A1
20150056481 Cohen et al. Feb 2015 A1
20150060164 Wang et al. Mar 2015 A1
20150061381 Biskup Mar 2015 A1
20150061413 Janarthanam et al. Mar 2015 A1
20150064535 Seong et al. Mar 2015 A1
20150104686 Brommer et al. Apr 2015 A1
20150136506 Quinn et al. May 2015 A1
20150188207 Son et al. Jul 2015 A1
20150204583 Stephan et al. Jul 2015 A1
20150207115 Wondraczek Jul 2015 A1
20150236326 Kim et al. Aug 2015 A1
20150243956 Loo et al. Aug 2015 A1
20150255764 Loo et al. Sep 2015 A1
20150259011 Deckard et al. Sep 2015 A1
20150280188 Nozaki et al. Oct 2015 A1
20150291046 Kawabata Oct 2015 A1
20150298661 Zhang Oct 2015 A1
20150314830 Inoue Nov 2015 A1
20150329174 Inoue Nov 2015 A1
20150329175 Inoue Nov 2015 A1
20150329176 Inoue Nov 2015 A1
20150344081 Kor et al. Dec 2015 A1
20160023689 Berger et al. Jan 2016 A1
20160028056 Lee et al. Jan 2016 A1
20160068195 Hentrich et al. Mar 2016 A1
20160072108 Keller et al. Mar 2016 A1
20160087319 Roh et al. Mar 2016 A1
20160093856 DeKeuster et al. Mar 2016 A1
20160133899 Qiao et al. May 2016 A1
20160137046 Song May 2016 A1
20160141738 Kwag May 2016 A1
20160149177 Sugeno et al. May 2016 A1
20160156005 Elliot et al. Jun 2016 A1
20160159221 Chen et al. Jun 2016 A1
20160164053 Lee et al. Jun 2016 A1
20160167544 Barbat et al. Jun 2016 A1
20160176312 Duhaime et al. Jun 2016 A1
20160197332 Lee et al. Jul 2016 A1
20160197386 Moon et al. Jul 2016 A1
20160197387 Lee et al. Jul 2016 A1
20160204398 Moon et al. Jul 2016 A1
20160207418 Bergstrom et al. Jul 2016 A1
20160218335 Baek Jul 2016 A1
20160222631 Kohno et al. Aug 2016 A1
20160226040 Mongeau et al. Aug 2016 A1
20160226108 Kim et al. Aug 2016 A1
20160229309 Mitsutani Aug 2016 A1
20160233468 Nusier et al. Aug 2016 A1
20160236713 Sakaguchi et al. Aug 2016 A1
20160248060 Brambrink et al. Aug 2016 A1
20160248061 Brambrink et al. Aug 2016 A1
20160257219 Miller et al. Sep 2016 A1
20160280306 Miyashiro et al. Sep 2016 A1
20160308180 Kohda Oct 2016 A1
20160318579 Miyashiro Nov 2016 A1
20160339855 Chinavare et al. Nov 2016 A1
20160347161 Kusumi et al. Dec 2016 A1
20160361984 Manganaro Dec 2016 A1
20160368358 Nagaosa Dec 2016 A1
20160375750 Hokazono et al. Dec 2016 A1
20170001507 Ashraf et al. Jan 2017 A1
20170005303 Harris et al. Jan 2017 A1
20170005371 Chidester et al. Jan 2017 A1
20170005375 Walker Jan 2017 A1
20170029034 Faruque et al. Feb 2017 A1
20170047563 Lee et al. Feb 2017 A1
20170050533 Wei et al. Feb 2017 A1
20170054120 Templeman et al. Feb 2017 A1
20170062782 Cho et al. Mar 2017 A1
20170084890 Subramanian et al. Mar 2017 A1
20170088013 Shimizu et al. Mar 2017 A1
20170088178 Tsukada et al. Mar 2017 A1
20170106907 Gong et al. Apr 2017 A1
20170106908 Song Apr 2017 A1
20170144566 Aschwer et al. May 2017 A1
20170190243 Duan et al. Jul 2017 A1
20170194681 Kim et al. Jul 2017 A1
20170200925 Seo et al. Jul 2017 A1
20170214018 Sun et al. Jul 2017 A1
20170222199 Idikurt et al. Aug 2017 A1
20170232859 Li Aug 2017 A1
20170288185 Maguire Oct 2017 A1
20170331086 Frehn et al. Nov 2017 A1
20180050607 Matecki et al. Feb 2018 A1
20180062224 Drabon et al. Mar 2018 A1
20180154754 Rowley et al. Jun 2018 A1
20180186227 Stephens et al. Jul 2018 A1
20180229593 Hitz et al. Aug 2018 A1
20180233789 Iqbal et al. Aug 2018 A1
20180236863 Kawabe et al. Aug 2018 A1
20180237075 Kawabe et al. Aug 2018 A1
20180323409 Maier Nov 2018 A1
20180334022 Rawlinson et al. Nov 2018 A1
20180337374 Matecki et al. Nov 2018 A1
20180337377 Stephens et al. Nov 2018 A1
20180337378 Stephens et al. Nov 2018 A1
20190081298 Matecki et al. Mar 2019 A1
20190100090 Matecki et al. Apr 2019 A1
Foreign Referenced Citations (308)
Number Date Country
511428 Nov 2012 AT
511670 Jan 2013 AT
2008200543 Aug 2009 AU
100429805 Oct 2008 CN
100429806 Oct 2008 CN
102452293 May 2012 CN
102802983 Nov 2012 CN
103568820 Feb 2014 CN
104010884 Aug 2014 CN
106029407 Oct 2016 CN
205645923 Oct 2016 CN
106207029 Dec 2016 CN
106410077 Feb 2017 CN
4105246 Aug 1992 DE
4129351 May 1993 DE
4427322 Feb 1996 DE
19534427 Mar 1996 DE
4446257 Jun 1996 DE
202005018897 Feb 2006 DE
102004062932 Aug 2006 DE
102007012893 Mar 2008 DE
102007017019 Mar 2008 DE
102007030542 Mar 2008 DE
102006049269 Jun 2008 DE
202008006698 Jul 2008 DE
102007011026 Sep 2008 DE
102007021293 Nov 2008 DE
102007044526 Mar 2009 DE
102007050103 Apr 2009 DE
102007063187 Apr 2009 DE
102008051786 Apr 2009 DE
102007063194 Jun 2009 DE
102008034880 Jun 2009 DE
102007061562 Jul 2009 DE
102008010813 Aug 2009 DE
102008024007 Dec 2009 DE
102008034695 Jan 2010 DE
102008034700 Jan 2010 DE
102008034856 Jan 2010 DE
102008034860 Jan 2010 DE
102008034863 Jan 2010 DE
102008034873 Jan 2010 DE
102008034889 Jan 2010 DE
102008052284 Apr 2010 DE
102008059953 Jun 2010 DE
102008059964 Jun 2010 DE
102008059966 Jun 2010 DE
102008059967 Jun 2010 DE
102008059969 Jun 2010 DE
102008059971 Jun 2010 DE
102008054968 Jul 2010 DE
102010006514 Sep 2010 DE
102009019384 Nov 2010 DE
102009035488 Feb 2011 DE
102009040598 Mar 2011 DE
102010014484 Mar 2011 DE
102009043635 Apr 2011 DE
102010007414 Aug 2011 DE
102010009063 Aug 2011 DE
102010012992 Sep 2011 DE
102010012996 Sep 2011 DE
102010013025 Sep 2011 DE
102010028728 Nov 2011 DE
102011011698 Aug 2012 DE
102011013182 Sep 2012 DE
102011016526 Oct 2012 DE
102011017459 Oct 2012 DE
102011075820 Nov 2012 DE
102011103990 Dec 2012 DE
102011080053 Jan 2013 DE
102011107007 Jan 2013 DE
102011109309 Feb 2013 DE
102011111537 Feb 2013 DE
102011112598 Mar 2013 DE
102011086049 May 2013 DE
102011109011 May 2013 DE
102011120010 Jun 2013 DE
102012000622 Jul 2013 DE
102012001596 Aug 2013 DE
102012102657 Oct 2013 DE
102012103149 Oct 2013 DE
102013205215 Oct 2013 DE
102013205323 Oct 2013 DE
202013104224 Oct 2013 DE
102012012897 Jan 2014 DE
102012107548 Feb 2014 DE
102012219301 Feb 2014 DE
202012104339 Feb 2014 DE
102012018057 Mar 2014 DE
102013200562 Jul 2014 DE
102013200726 Jul 2014 DE
102013200786 Jul 2014 DE
102013203102 Aug 2014 DE
102013102501 Sep 2014 DE
102013208996 Nov 2014 DE
102013215082 Feb 2015 DE
102013218674 Mar 2015 DE
102014011609 Mar 2015 DE
102014217188 Mar 2015 DE
102013016797 Apr 2015 DE
102013223357 May 2015 DE
102014100334 Jul 2015 DE
202015005208 Aug 2015 DE
102014203715 Sep 2015 DE
102014106949 Nov 2015 DE
202014008335 Jan 2016 DE
202014008336 Jan 2016 DE
102014011727 Feb 2016 DE
102014215164 Feb 2016 DE
102014112596 Mar 2016 DE
102014219644 Mar 2016 DE
102014115051 Apr 2016 DE
102014221167 Apr 2016 DE
102014019696 Jun 2016 DE
102014224545 Jun 2016 DE
102015015504 Jun 2016 DE
102015014337 Jul 2016 DE
102015200636 Jul 2016 DE
102015204216 Sep 2016 DE
202016005333 Sep 2016 DE
102015219558 Apr 2017 DE
102015222171 May 2017 DE
0705724 Apr 1996 EP
0779668 Jun 1997 EP
0780915 Jun 1997 EP
1939028 Jul 2008 EP
2298690 Mar 2011 EP
2374646 Oct 2011 EP
2388851 Nov 2011 EP
2456003 May 2012 EP
2467276 Jun 2012 EP
2554420 Feb 2013 EP
2562065 Feb 2013 EP
2565958 Mar 2013 EP
2581249 Apr 2013 EP
2620997 Jul 2013 EP
2626231 Aug 2013 EP
2626232 Aug 2013 EP
2626233 Aug 2013 EP
2741343 Jun 2014 EP
2758262 Jul 2014 EP
2833436 Feb 2015 EP
2913863 Sep 2015 EP
2944493 Nov 2015 EP
2990247 Mar 2016 EP
3379598 Sep 2018 EP
3382774 Oct 2018 EP
2661281 Oct 1991 FR
2705926 Dec 1994 FR
2774044 Jul 1999 FR
2782399 Feb 2000 FR
2861441 Apr 2005 FR
2948072 Jan 2011 FR
2949096 Feb 2011 FR
2959454 Nov 2011 FR
2961960 Dec 2011 FR
2962076 Jan 2012 FR
2975230 Nov 2012 FR
2976731 Dec 2012 FR
2982566 May 2013 FR
2986374 Aug 2013 FR
2986744 Aug 2013 FR
2986910 Aug 2013 FR
2986911 Aug 2013 FR
2987000 Aug 2013 FR
2987001 Aug 2013 FR
2988039 Sep 2013 FR
2990386 Nov 2013 FR
2993511 Jan 2014 FR
2994340 Feb 2014 FR
2996193 Apr 2014 FR
2998715 May 2014 FR
2999809 Jun 2014 FR
3000002 Jun 2014 FR
3002910 Sep 2014 FR
3007209 Dec 2014 FR
3014035 Jun 2015 FR
3019688 Oct 2015 FR
3022402 Dec 2015 FR
3028456 May 2016 FR
2081495 Feb 1982 GB
2353151 Feb 2001 GB
2443272 Apr 2008 GB
2483272 Mar 2012 GB
2516120 Jan 2015 GB
05193370 Mar 1993 JP
H05193366 Aug 1993 JP
H05201356 Aug 1993 JP
H08268083 Oct 1996 JP
H08276752 Oct 1996 JP
H1075504 Mar 1998 JP
H10109548 Apr 1998 JP
H10149805 Jun 1998 JP
2819927 Nov 1998 JP
H11178115 Jul 1999 JP
2967711 Oct 1999 JP
2000041303 Feb 2000 JP
3085346 Sep 2000 JP
3199296 Aug 2001 JP
3284850 May 2002 JP
3284878 May 2002 JP
3286634 May 2002 JP
3489186 Jan 2004 JP
2004142524 May 2004 JP
2007331669 Dec 2007 JP
2011006050 Jan 2011 JP
2011049151 Mar 2011 JP
2011152906 Aug 2011 JP
2013133044 Jul 2013 JP
20120030014 Mar 2012 KR
20140007063 Jan 2014 KR
101565980 Nov 2015 KR
101565981 Nov 2015 KR
20160001976 Jan 2016 KR
20160055712 May 2016 KR
20160087077 Jul 2016 KR
101647825 Aug 2016 KR
20160092902 Aug 2016 KR
20160104867 Sep 2016 KR
20160111231 Sep 2016 KR
20160116383 Oct 2016 KR
20170000325 Jan 2017 KR
101704496 Feb 2017 KR
20170052831 May 2017 KR
20170062845 Jun 2017 KR
20170065764 Jun 2017 KR
20170065771 Jun 2017 KR
20170065854 Jun 2017 KR
20170070080 Jun 2017 KR
1020170067240 Jun 2017 KR
507909 Jul 1998 SE
201425112 Jul 2014 TW
I467830 Jan 2015 TW
I482718 May 2015 TW
WO-0074964 Dec 2000 WO
WO-2006100005 Sep 2006 WO
WO-2006100006 Sep 2006 WO
WO-2008104356 Sep 2008 WO
WO-2008104358 Sep 2008 WO
WO-2008104376 Sep 2008 WO
WO-2008131935 Nov 2008 WO
WO-2009080151 Jul 2009 WO
WO-2009080166 Jul 2009 WO
WO-2009103462 Aug 2009 WO
WO-2010004192 Jan 2010 WO
WO-2010012337 Feb 2010 WO
WO-2010012338 Feb 2010 WO
WO-2010012342 Feb 2010 WO
WO-2010040520 Apr 2010 WO
WO-2010063365 Jun 2010 WO
WO-2010069713 Jun 2010 WO
WO-2010076053 Jul 2010 WO
WO-2010076055 Jul 2010 WO
WO-2010076452 Jul 2010 WO
WO-2011030041 Mar 2011 WO
WO-2011083980 Jul 2011 WO
WO-2011106851 Sep 2011 WO
WO-2011116801 Sep 2011 WO
WO-2011116959 Sep 2011 WO
WO-2011121757 Oct 2011 WO
WO-2011134815 Nov 2011 WO
WO-2011134828 Nov 2011 WO
WO-2012025710 Mar 2012 WO
WO-2012063025 May 2012 WO
WO-2012065853 May 2012 WO
WO-2012065855 May 2012 WO
WO-2012069349 May 2012 WO
WO-2012084132 Jun 2012 WO
WO-2012093233 Jul 2012 WO
WO-2012097514 Jul 2012 WO
WO-2012114040 Aug 2012 WO
WO-2012116608 Sep 2012 WO
WO-2012119424 Sep 2012 WO
WO-2012163504 Dec 2012 WO
WO-2013020707 Feb 2013 WO
WO-2013027982 Feb 2013 WO
WO-2013042628 Mar 2013 WO
WO-2013080008 Jun 2013 WO
WO-2013188680 Dec 2013 WO
WO-2014114511 Jul 2014 WO
WO-2014140412 Sep 2014 WO
WO-2014140463 Sep 2014 WO
WO-2014183995 Nov 2014 WO
WO-2014191651 Dec 2014 WO
WO-2015018658 Feb 2015 WO
WO-2015043869 Apr 2015 WO
WO-2015149660 Oct 2015 WO
WO-2016029084 Feb 2016 WO
WO-2016046144 Mar 2016 WO
WO-2016046145 Mar 2016 WO
WO-2016046146 Mar 2016 WO
WO-2016046147 Mar 2016 WO
WO-2016072822 May 2016 WO
WO-2016086274 Jun 2016 WO
WO-2016106658 Jul 2016 WO
WO-2016132280 Aug 2016 WO
WO-2016203130 Dec 2016 WO
WO-2017025592 Feb 2017 WO
WO-2017032571 Mar 2017 WO
WO-2017060608 Apr 2017 WO
WO-2017084938 May 2017 WO
WO-2017103449 Jun 2017 WO
WO-2018033880 Feb 2018 WO
WO-2018065554 Apr 2018 WO
WO-2018149762 Aug 2018 WO
WO-2018213475 Nov 2018 WO
WO-2019055658 Mar 2019 WO
WO-2019-071013 Apr 2019 WO
Non-Patent Literature Citations (6)
Entry
Korean Intellectual Propery Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/054423, dated Jan. 28, 2019.
International Searching Authority (KR), International Search Report and Written Opinion for International Application No. PCT/IB2017/055002, dated Jul. 19, 2018.
International Searhcing Authority, International Search Report and Written Opinion for Application No. PCT/IB2018/050066, dated Apr. 26, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/033009, dated Sep. 11, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/032760, dated Sep. 11, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/050889, dated Mar. 21, 2019.
Related Publications (1)
Number Date Country
20200238811 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62568051 Oct 2017 US
Continuations (1)
Number Date Country
Parent 16152147 Oct 2018 US
Child 16851703 US