This disclosure relates to batteries having an aluminum-containing cathode.
When a cathode including aluminum is used in a battery with an aqueous electrolyte, hydroxide and oxide anions generated at the anode can react with the aluminum to form a passivating aluminum oxide layer. In some cases, an electric field can draw anions through an aluminum oxide layer on the cathode, growing the oxide layer into as well as away from the surface of an electrode. Thus, the use of aluminum in cathodes can be hindered by the inability of cathodes to provide reversible insertion of aluminum ions.
In a first general aspect, a battery includes an anode chamber configured to contain an anolyte and including an anode, a cathode chamber configured to contain a catholyte including a cathode, and a separator between the anode chamber and the cathode chamber. The anode includes sodium, and the cathode includes aluminum. The battery is configured to be operated above a melting point of the anolyte and the catholyte, such that the anolyte is a molten anolyte and the catholyte is a molten catholyte.
Implementations of the first general aspect may include one or more of the following features.
The anode may consist of sodium or consist essentially of sodium. The anolyte includes sodium, consists of sodium, or consists essentially of sodium. During operation of the battery, the anode and the anolyte may both be molten sodium.
In some cases, the cathode includes NaAl2Cl7. The catholyte typically includes NaAl2Cl7. The catholyte may include AlCl3. In some cases, the catholyte includes EMIAlCl4, where EMIAlCl4 is a compound of 1-ethyl-3-methylimidazolium chloride and AlCl3.
The separator includes a solid sodium super ionic conductor. In some cases, the solid sodium ion conductor includes a porous coating of an electronically conductive metal oxide (e.g., indium tin oxide) proximate the anode chamber.
The cathode chamber may include aluminum wool. The aluminum wool is in direct contact with the separator, and the catholyte is in direct contact with the aluminum wool and the separator.
Charging the battery typically results in the formation of sodium, and discharging the battery typically results in the formation of aluminum.
Non-aqueous media such as ionic liquids and molten salts can be free of oxygen, such that cathode 106 in battery 100 does not form a surface oxide film during operation. Aluminum has relatively low electropositivity compared to alkali metal anodes. For an aluminum-containing material to be suitable as a cathode, it should be capable of supporting reversible plating and stripping of aluminum metal, and a compatible electrolyte is needed to support alkali ion migration to and from anode chamber 102 to maintain charge balance. NaAl2Cl7 (mole ratio of AlCl3:NaCl=2:1), a combination of AlCl3 and NaCl, may be used as catholyte 108. In one example, catholyte 108 is NaAl2Cl7 and anolyte 112 is molten sodium. At least one of NaAlCl4 and NaCl may be present in catholyte as solids 116 and 118, respectively. In the charged state, both the catholyte and the anolyte are liquid. During the discharge, the liquid volume of anolyte 112 and catholyte 108 decreases, as solid NaCl and Al metal are produced. In the recharge process, solid NaCl and Al metal return to the molten sodium and molten NaAl2Cl7 respectively. Battery 100 may be recharged with fresh catholyte 108 and fresh anolyte 112 via inlet and outlet valves 120, 122 and 124, 126, respectively.
The voltage output of a Na—Al battery such as that depicted in
According to the NaCl—AlCl3 phase diagram depicted in
Battery 100 is typically assembled in a charged state, thus the first stage of a cycle is a discharge. NaAl2Cl7 will transform to NaAlCl4 first (point “a” to point “b” in
after which the composition on the phase diagram is NaCl:AlCl3=4:1 or 20 mol % AlCl3. NaAlCl4 then becomes the catholyte, which can continue the discharge as shown in equation (2).
Therefore, the total cell reaction is:
The theoretical capacity of the NaAl2Cl7 catholyte can be expressed as the number of coulombs generated per gram (g) of active material C=nF/M (M the molecular weight in g), but is more commonly reported as the time needed to pass this charge as a current (1 amp=1 coulomb/second) in units, such as hours of time at mA current, so that:
C=nF/M coulombs g−1=nF/M Amp−sec g−1=nF/M×1000/3600 mAhg−1 (4)
Substitution of n=6, F=96,500, and M=325.5 g, yields C=494 mAhg−1.
It may be preferable that the aluminum in the NaAl2Cl7 catholyte not be fully deposited, such that liquid NaAlCl4 is present to serve as the electrolyte for Na+ flux in the subsequent re-charge process. That is, according to the phase diagram in
A Na—Al battery was constructed as depicted in
Working at 200° C., discharge and charge behaviors at 0.1 C were recorded and are shown in
In some implementations, a low-melting component such as the “ionic liquid” EMIAlCl4 is added to the electrolyte to increase the liquid volume and improve wetting. EMIAlCl4 is inactive in the charge/discharge process and the aluminum in it generally cannot be deposited. It is in the liquid state, but causes the conductivity of the NaAl2Cl7-EMIAlCl4 (mole ratio 4:1) mixture to become lower than for pure NaAl2Cl7 due at least in part to an alkali cation trapping phenomenon, as shown in
An improved charge/discharge profile with this catholyte is shown in
In some implementations, the discharge is limited to a shallow value such that the cell process can be described by the equation
in which no solid NaCl is generated.
Some implementations include, in the cathode chamber, a supply of an adduct of AlCl3 with some appropriate (molecular) base chosen to maintain the activity of AlCl3 at about the same value as that in liquid NaAl2Cl7. This effectively buffers the electrolyte against NaCl precipitation and removes the volume change in the electrolyte from cell design consideration. The cell design can be modified to use a minimum electrolyte volume, and the capacity can be determined by the amount of AlCl3 in the adduct. The AlCl3 adduct, unlike NaCl, would be a soft solid that would readily release AlCl3 to the electrolyte to maintain an optimum activity for Al deposition. To minimize the effect on the capacity, the base may have a low molecular weight, and may be inorganic. The cell reaction may reduce to the transfer of AlCl3 to the electrolyte as NaAl2Cl7 to accommodate the in-migration of Na+, effectively making the cell reaction
3Na+AlCl3=Al+3NaCl (6)
coupled with the acid-base process using AlCl3 from the bank, viz.,
3NaCl+6AlCl3=3NaAl2Cl7 (7)
to maintain the liquid state of the electrolyte at 110° C., and give an overall cell reaction
3Na+7AlCl3=Al+3NaAl2Cl7 (8)
Alternatively, it could be
3Na+4AlCl3=Al+3NaAlCl4 (9)
if a higher operating temperature (T>158° C.) is used.
The mass of AlCl3 needed to keep the NaCl in the low temperature (chloroaluminate) liquid state at constant AlCl3 activity is included in the cell capacity calculation. Using an AlCl3 storage bank can simplify the cell design because the volume change (formerly entirely residing in the electrolyte) is shared with the volume change in the AlCl3 bank.
Table 1 provides a comparison with the lithium-ion battery and Na—NiCl2 (ZEBRA) battery. The theoretical energy density can be obtained as the product of cell capacity in Coulombs per gram of active material from the cell equation and cell voltage, E=QV/M=nF/M×V, where the units will be Jg−1, but is usually expressed in units of Whkg−1, and obtained from the product of cell voltage and capacity, the latter expressed in the practical units of mAhg−1. Thus the theoretical energy density, assuming the cell voltage remains steady at the observed value of 1.6 V until all Al is consumed, would be 494 mAhg−1×1.60 V (the average of charge and discharge voltages) or 790 Whkg−1. However, as seen in
For the Na—Al cell, both the sodium and aluminum are earth-abundant and inexpensive. It should therefore be much cheaper than the lithium-ion battery, and in view of the greater cost of Ni over Al, it should also be cheaper than the ZEBRA battery. In the charged state, both the catholyte and the anolyte are liquid, so they can be replaced after the performance degrades without discarding the whole battery. This would offer a further cost advantage over other battery types. Concerning safety, if the Na+ conducting separator should crack, sodium would react with NaAl2Cl7, to form NaCl and Al, being in this respect as safe as the ZEBRA battery.
In summary, molten NaAl2Cl7 can serve as a catholyte and can deliver a high capacity of 296.4 mAhg−1 at 60% depth of discharge; a 1.55 V discharge voltage, which is higher than expected from aqueous solution potential data, can be obtained with the molten salt medium. NaAl2Cl7 as catholyte and molten sodium as anolyte yields a high energy efficiency Na—Al battery. Its high energy density, low cost, high safety, and replenishable reserves make the Na—Al battery particularly promising in the grid-storage market.
Materials and catholyte preparation: NaCl, anhydrous AlCl3 and 1-ethyl-3-methylimidazolium chloride (EMICl), were purchased from Sigma-Aldrich. Al wool was purchased from Lustersheen. NaSICON was supplied gratis by Ceramatec. The preparation of the NaAl2Cl7 and EMIAlCl4 mixed electrolyte was achieved by mixing of NaCl, AlCl3 and EMICl according to the molar ratio needed. The mixing of AlCl3 and NaCl cannot produce a liquid NaAl2Cl7 until the temperature is raised above the liquidus temperature, about 158° C. After cooling down, solid NaAl2Cl7 (a mixture of NaAlCl4 and AlCl3 according to the phase diagram) was obtained and ground into powder for later use.
The electrochemical property of the catholyte was investigated by cyclic voltammetry (CV) using a potentiostat/galvanostat (Princeton Applied Research, VMP2). A three-electrode cell was employed with platinum as the working and counter electrodes, as well as the reference electrode. The scan was made at 200° C. with a scan rate of 10 mV s−1.
Conductivity determinations: Conductivities of NaAl2Cl7, EMIAlCl4, and their mixtures were surveyed using twin platinum wire dip-type electrodes sealed into a stainless steel threaded caps that were screwed onto glass vials containing the samples loaded under argon in a drybox. Data were taken using a PAR VMP2 potentiostat (Princeton Applied Research) in the frequency range 10-100K Hz, during slow heating from ambient to 200° C.
The battery depicted in
Only a few implementations are described and illustrated. Variations, enhancements and improvements of the described implementations and other implementations can be made based on what is described and illustrated in this document.
This application claims the benefit of U.S. Patent Application No. 62/487,406 entitled “BATTERY WITH ALUMINUM CATHODE” and filed on Apr. 19, 2017, which is incorporated by reference herein in its entirety.
This invention was made with government support under 1111357 awarded by the Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62487406 | Apr 2017 | US |