The present application claims priority under Japanese Patent Application No. 2021-186979 filed on Nov. 17, 2021, the entire contents whereof are incorporated into the present specification by reference.
The present disclosure relates to a battery.
A battery such as a lithium ion secondary battery is provided with for instance a power generation element that has a first electrode and a second electrode having a polarity different from that of the first electrode. Japanese Patent Application Publication No. 2018-06138 discloses an electrode made up of a rectangular sheet having a first edge and a second edge. The battery disclosed in Japanese Patent Application Publication No. 2018-06138 is provided with a power generation element in the form of an electrode body in which such rectangular sheet electrodes are laid up on each other across an interposed separator.
As a power generation element of this kind of battery, there may be used for instance a so-called wound electrode body in which a strip-shaped first electrode plate and a strip-shaped second electrode plate are wound in the longitudinal direction, across a strip-shaped separator. The inventors aim at reducing further the risk of short-circuits between positive and negative electrodes in a battery having a wound electrode body.
The art disclosed herein provides a battery having: a battery case; and a wound electrode body which is accommodated in the battery case, and in which a strip-shaped first electrode plate and a strip-shaped second electrode plate having different polarity from that of the first electrode plate are wound in a longitudinal direction, with a strip-shaped separator interposed therebetween. The first electrode plate has a first long edge, and a second long edge different from the first long edge, extending in the longitudinal direction. The first electrode plate has a first electrode core, and a first electrode active material layer provided on the first electrode core. The first electrode core has a first electrode active material layer existing section at which the first electrode active material layer is provided, and a first electrode active material layer non-existing section at which the first electrode active material layer is not provided. A plurality of first electrode tabs is provided on the first long edge. A first notch is provided at a first corner, on the first long edge side, of a winding initiation end portion of the first electrode plate. At least part of the first notch is provided in the first electrode active material layer non-existing section.
It is found that the first corner is one of the portions, of the first electrode plate, that bends particularly readily. In a battery having such a configuration, bending of the first corner that bends readily can be suppressed by providing thus the first notch portion at the first corner. By suppressing bending of the first corner, it becomes possible to prevent damage to separators in the wound electrode body, and by extension, to suppress short-circuits between the positive and negative electrodes.
In one implementation of the battery disclosed herein, the first electrode plate is a positive electrode plate, and the second electrode plate is a negative electrode plate. The first corner bends more readily in the positive electrode plate than in the negative electrode plate. Accordingly, the effect of the art disclosed herein can be suitably realized in a battery having the above configuration.
In another implementation of the battery disclosed herein, the first electrode active material layer non-existing section is provided with a protective layer; and the first notch is provided at a portion at which the protective layer is provided. Safety can be further improved by virtue of such a configuration.
In another implementation of the battery disclosed herein, a thickness of the protective layer is smaller than a thickness of the first electrode active material layer. The effect of the art disclosed herein can be suitably brought out in a battery having such a configuration.
In another implementation of the battery disclosed herein, the first notch is a portion formed by laser cutting. In addition to eliciting the above short-circuit suppression effect, such a configuration allows improving battery productivity.
In another implementation of the battery disclosed herein, the first notch is formed within the first electrode active material layer non-existing section. Such a configuration allows ensuring battery capacity.
In another implementation of the battery disclosed herein, the first notch has a rounded shape. Such a configuration allows suppressing bending in the first notch.
In another implementation of the battery disclosed herein, the first electrode plate is a positive electrode plate, and the second electrode plate is a negative electrode plate; the negative electrode plate has a negative electrode core, and a negative electrode active material layer formed on the negative electrode core; and an end of the first notch, on the second long edge side, opposes the negative electrode active material layer across the separator. Safety can be further improved by virtue of such a configuration.
In another implementation of the battery disclosed herein, the first electrode plate has a first electrode plate body; and the plurality of first electrode tabs provided on the first long edge. A length of the first electrode plate body, in a direction along a winding axis of the wound electrode body, is 20 cm or larger. The effect of the art disclosed herein can be suitably brought out in a battery having such a configuration.
In another implementation of the battery disclosed herein, a second notch is provided at a second corner, on the first long edge side, in a winding termination end portion of the first electrode plate; and a shape of the second notch and a shape of the first notch are dissimilar. In such a configuration, the first notch is a notch of less bendable share, and accordingly the above short-circuit suppression effect can be yet better brought out.
In another implementation of the battery disclosed herein, no notch is formed at a third corner, on the second long edge side, of a winding initiation end portion of the first electrode plate. Such a configuration allows ensuring battery capacity.
Preferred embodiments of the art disclosed herein will be explained next with reference to accompanying drawings. Needless to say, the embodiments described herein are not meant to limit the present invention in any particular way. Unless otherwise indicated, the art disclosed herein is not limited to the embodiments explained here. The drawings are drawn schematically, and do not necessarily reflect actual items. Members and portions eliciting identical effects are denoted by identical reference symbols, and a recurrent explanation thereof will be omitted. Any features other than the matter specifically set forth in the present specification and that may be necessary for carrying out the art disclosed herein (for instance general configurations and production processes of batteries (a secondary battery in the art disclosed herein) and not being characterizing features of the art disclosed herein) can be grasped as instances of design matter for a person skilled in the art based on known techniques in the relevant technical field. The art disclosed herein can be realized on the basis of the disclosure of the present specification and common technical knowledge in the relevant technical field. In the present specification a numerical value range notated as “A to B” denotes values “equal to or larger than A and equal to or smaller than B”, and may encompass instances of values being greater than A and smaller than B.
In the present specification, the term “secondary battery” denotes a power storage device in general capable of being repeatedly charged and discharged, and encompasses conceptually so-called storage batteries (chemical batteries) such as lithium ion secondary batteries, and nickel-metal hydride batteries, as well as capacitors such as electrical double layer capacitors. In the present specification a secondary battery may also simply be referred to as a “battery”.
As illustrated in
The battery case 10 is a housing for accommodating the electrode body 20. The battery case 10 has herein a flat and bottomed cuboid (square) outer shape. The material of the battery case 10 is not particularly limited, and may be identical to conventionally used materials. The battery case 10 is preferably made of a metal, and is more preferably made up of for instance aluminum, an aluminum alloy, iron, or an iron alloy. Besides the electrode body 20, also an electrolyte solution (not shown) is accommodated within the battery case 10. Electrolyte solutions used in lithium ion secondary batteries may be used, without particular limitations, as the electrolyte solution. The electrolyte solution is not a characterizing feature of the art disclosed herein, and hence a detailed explanation thereof will be omitted.
The battery case 10 includes an exterior body 12 having an opening 12h, and a sealing plate (lid) 14 that plugs the opening 12h. As illustrated in
The sealing plate 14 is provided with a liquid injection hole 15, a gas discharge valve 17, and two terminal lead-out holes 18, 19. The purpose of the liquid injection hole 15 is to inject an electrolyte solution after assembly of the sealing plate 14 to the exterior body 12. The liquid injection hole 15 is sealed by a sealing member 16. The gas discharge valve 17 is a thin-walled portion configured to break, and release gas to the exterior of the battery case 10, when the pressure within the battery case 10 exceeds a predetermined value. The terminal lead-out holes 18, 19 are formed at either respective end of the sealing plate 14 in the width direction Y. The terminal lead-out holes 18, 19 run through the sealing plate 14 in the height direction Z. The terminal lead-out holes 18, 19 each have an inner diameter that is large enough as to enable insertion of the positive electrode terminal 30 and the negative electrode terminal 40 before attachment to the sealing plate 14 (before crimping).
The positive electrode terminal 30 and the negative electrode terminal 40 are attached to the sealing plate 14. The positive electrode terminal 30 is disposed on one side (left side in
The positive electrode terminal 30 has a flat plate-shaped base portion 31 disposed on the outer surface of the sealing plate 14, and a shaft portion 32 extending from the base portion 31 downwards in the height direction Z (towards the bottom wall 12a). The base portion 31 of the positive electrode terminal 30 is exposed on the outer surface of the sealing plate 14. The shaft portion 32 of the positive electrode terminal 30 extends from the exterior to the interior of the sealing plate 14, through the terminal lead-out hole 18. The shaft portion 32 is fixed to a below-described first collector portion 51 of the positive electrode collector 50 via a through-hole of the first collector portion 51, in the interior of the battery case 10. Herein, the positive electrode terminal 30 is fixed, by crimping, to the peripheral edge portion of the sealing plate 14 surrounding the terminal lead-out hole 18. Also, the negative electrode terminal 40 in the battery 1 has a structure substantially similar to that of the positive electrode terminal 30. Accordingly, a detailed depiction and explanation of the structure of the negative electrode terminal 40 will be omitted herein. The reference numeral 41 in
Plate-shaped external conductive members 35, 45 are attached to the outer surface of the sealing plate 14. The external conductive member 35 on the positive electrode side is electrically connected to the positive electrode terminal 30. The external conductive member 45 on the negative electrode side is electrically connected to the negative electrode terminal 40. The external conductive members 35, 45 are members to which respective bus bars are attached when multiple batteries 1 are electrically connected to each other. The external conductive members 35, 45 are made of for instance aluminum or an aluminum alloy. The external conductive members 35, 45 are insulated from the sealing plate 14 by respective external insulating members 92. The external conductive members 35, 45 are however not essential, and may be omitted in other embodiments. The resin materials illustrated as constituent materials of the below-described insulators 70 and gaskets 90 can be used herein as the constituent material of the external insulating members 92.
A respective insulator 70 is disposed between the positive electrode collector 50 (for instance the terminal connection portion 51a of the first collector portion 51) and the inner surface of the sealing plate 14. A through-hole is formed in the insulator 70. A respective gasket 90 is disposed between the positive electrode terminal 30 (specifically, the base portion 31) and the outer surface of the sealing plate 14. The gasket 90 has a cylindrical protrusion that is inserted into the terminal lead-out hole 18 of the sealing plate 14. The protrusion of the gasket 90 is disposed along the inner periphery of the through-hole of the insulator 70. By providing the insulator 70 and the gasket 90 thus configured it becomes possible to prevent contact between the positive electrode collector 50 and the sealing plate 14, and contact between the positive electrode terminal 30 and the sealing plate 14. Although a detailed explanation thereof will be omitted herein, the same insulating structure relying on an insulator and a gasket is provided on the negative electrode terminal 40 side. The constituent materials of the insulators 70 and the gaskets 90 are not particularly limited, and may be for example a polyolefin resin (for instance polypropylene (PP) or polyethylene (PE)), a fluororesin (for instance a perfluoroalkoxy alkane (PFA) or polytetrafluoroethylene) (PTFE)).
As illustrated in
Each electrode plate that makes up the wound electrode body has for instance a strip-shaped electrode core and an electrode active material layer formed on the electrode core. The electrode core has for instance an electrode active material layer existing section in which the electrode active material layer is formed, and an electrode active material layer non-existing section in which the electrode active material layer is not formed. By virtue of not having the electrode active material layer formed thereon, the electrode active material layer non-existing section is softer and more readily bendable than the electrode active material layer existing section.
For instance in the process of producing the wound electrode body, the corners of the electrode plates at the end portions in the longitudinal direction (winding direction) are interfered with, by equipment, to a greater degree (for instance in terms of contact with a jig) than other portions. The corners may be brought to a state of being more readily bendable, therefore, when the corners are made up of by the electrode active material layer non-existing section. In an endeavor to reduce the risk of short-circuits between the positive and negative electrodes due to separator damage derived from bent corners, in the interior of the wound electrode body, the inventors studied configurations that allowed suppressing bending of corners at the winding initiation end portion of the electrode plates.
The length of the positive electrode plate body 22x in the transverse direction Q of the positive electrode plate 22 is for instance from 10 cm to 60 cm. Such a length is 20 cm or larger (for instance 25 cm or larger, or 30 cm or larger) in the present embodiment. The greater the length of the positive electrode plate body 22x, the more difficult it becomes to wind stably the positive electrode plate body 22x, for instance in the production process of the wound electrode body 20. In the positive electrode plate 22 having the positive electrode plate body 22x such as that described above, the corners at the ends of the positive electrode plate 22 in the longitudinal direction P are readily bent. Accordingly, the effect of the art disclosed herein can be suitably brought out in a case where such a positive electrode plate 22 is used.
The positive electrode plate 22 has the positive electrode core 22c and a positive electrode active material layer 22a formed on at least one surface of the positive electrode core 22c.
The positive electrode core 22c is for instance strip-shaped. The positive electrode core 22c is a metal foil made of for instance aluminum, an aluminum alloy, nickel or stainless steel. As illustrated in
The positive electrode active material layer 22a contains a positive electrode active material (for instance a lithium-transition metal complex oxide such as a lithium-nickel-cobalt-manganese complex oxide) capable of reversibly storing and releasing a charge carrier. The positive electrode active material layer 22a contains for instance 80 mass% or more (preferably 90 mass% or more, more preferably 95 mass% or more) of the positive electrode active material, relative to 100 mass% as the total solids of the positive electrode active material layer 22a. The positive electrode active material layer 22a may contain optional components, for instance a conductive material, a binder and various additional components, besides the positive electrode active material. Examples of the conductive material include carbon materials such as acetylene black (AB). Examples of the binder include polyvinylidene fluoride (PVdF).
The protective layer 22p is for instance a layer of higher resistance than that of the positive electrode active material layer 22a. The protective layer 22p contains for instance inorganic particles and a resin (binder). Examples of the inorganic particles include inorganic oxides such as alumina, boehmite, magnesia, silica and titania. Examples of the resin (binder) include polyvinylidene fluoride (PVdF). Alternatively, the protective layer 22p may be a layer made up of a resin. The protective layer 22p may contain a conductive material such as a carbon material, as needed. The effect of suppressing short-circuits between the positive electrode plate 22 and the negative electrode plate 24 in the wound electrode body 20 can be enhanced by providing the protective layer 22p.
For instance the thickness of the protective layer 22p is smaller than the thickness of the positive electrode active material layer 22a. The corners at the ends of the positive electrode plate 22 in the longitudinal direction P are more readily bendable when the thickness of the protective layer 22p is smaller than the thickness of the positive electrode active material layer 22a. Accordingly, the effect of the art disclosed herein can be suitably realized in a case where the thickness of the protective layer 22p is smaller than the thickness of the positive electrode active material layer 22a. The smaller the thickness of the protective layer 22p, the more readily bendable are the corners at the ends of the positive electrode plate 22 in the longitudinal direction P. The effect of the art disclosed herein is preferably brought out in a case where the thickness of the protective layer 22p is 0.7 or less, and more preferably in a case where the above thickness is 0.5 or less, relative to 1 as the thickness of the positive electrode active material layer 22a. Formation of the protective layer 22p is not essential, and may be omitted in other embodiments.
As illustrated in
In the present embodiment at least part of the first notch N1 is provided in the positive electrode active material layer non-existing section 22c2. It is considered that the first corner C1 is one of the portions, of the positive electrode plate 22, that bends particularly readily. Bending of the first corner C1 can be suppressed by providing thus the first notch N1 at the first corner C1 that bends readily. By curtailing bending of the first corner C1 an effect can thus be elicited of suppressing damage to the separators 26 in the wound electrode body 20, which in turn allows eliciting the effect of suppressing short-circuits between the positive and negative electrodes.
In the present embodiment the first notch N1 is formed within the positive electrode active material layer non-existing section 22c2. For instance, a first end portion N1a, on the second long edge 222 side, of the first notch N1 and a second end portion N1b on the first long edge 221 side are provided within the positive electrode active material layer non-existing section 22c2. As illustrated in
In the present embodiment the first notch N1 is provided at each portion at which the protective layer 22p is provided. For instance, the first end portion N1a and the second end portion N1b are provided at portions where the protective layer 22p is provided. As illustrated in
In the present embodiment, moreover, the first notch N1 has a rounded shape. In the present specification the feature wherein “the first notch N1 has a rounded shape” signifies for instance that the first notch N1 is made up of a curve (for instance not a straight portion) between the first end portion N1a and the second end portion N1b. Accumulation of stress at the first notch N1 (for instance stress derived from contact with a jig during the production process of the wound electrode body 20) can be suppressed by imparting the first notch N1 with a rounded shape. As a result, it becomes possible to suppress bending in the first notch N1.
In the present embodiment, moreover, the first notch N1 exhibits an angle α, formed by the first notch N1 and the winding initiation end portion 22s (first short edge), in the range from 90 degrees to 160 degrees. Such an angle is preferably 95 degrees or larger, more preferably 100 degrees or larger, and yet more preferably 120 degrees or larger. In a case where the first notch N1 has a rounded shape, the angle α can be defined by for instance the angle formed by a tangent line T1 passing through the first end portion N1a and the winding initiation end portion 22s (first short edge).
As illustrated in
In the present embodiment the shape of the second notch N2 and the shape of the first notch N1 are different from each other. For instance, the first notch N1 is formed so that the angle α is 90 degrees or larger, while an angle β formed by the second notch N2 and the winding termination end portion 22e is set to be smaller than 90 degrees. In a case where the second notch N2 has a rounded shape, the angle β can be defined for instance by the angle formed by a tangent line T2 passing through a third end portion N2a on the second long edge 222 side of the second notch N2, and the winding termination end portion 22e (second short edge). Alternatively, the surface area of the cutout for forming the first notch N1 can be set to be smaller than the surface area of the cutout for forming the second notch N2.
In the production of the positive electrode plate 22 for instance the second notch N2 can also be formed upon formation of the first notch N1 in accordance with the procedure described below. Formation of such notches may involve forming two notches of mutually dissimilar shapes, in the positive electrode plate 22. In the production process of the wound electrode body 20, the positive electrode active material layer non-existing section 22c2 at the winding initiation end portion 22s of the positive electrode plate 22 is unlikelier to be interfered with, by equipment, than the winding termination end portion 22e, for instance due to interference with a winding core of a winding machine or with an electrode plate draw-out chuck. Therefore, the first corner C1 bends more readily than the second corner C2. By configuring the first notch N1 in the form of a notch having a less bendable shape it becomes therefore possible to elicit yet better the effect of suppressing damage to the separators 26, and by extension the effect of suppressing short-circuits. Moreover, the productivity of the positive electrode plate 22 can be improved. The method of forming the notches will be further described below.
In the present embodiment the second notch N2 is formed within the positive electrode active material layer non-existing section 22c2. For instance, a third end portion N2a, and a fourth end portion N2b, on the first long edge 221 side, of the second notch N2 are provided in the positive electrode active material layer non-existing section 22c2. The second notch N2 is provided at a portion at which the protective layer 22p is provided. For instance, the third end portion N2a and the fourth end portion N2b are provided at a portion at which the protective layer 22p is provided.
In the present embodiment no notch is formed in a third corner C3, on the second long edge 222 side, of the winding initiation end portion 22s of the positive electrode plate 22. Also, no notch is formed in a fourth corner C4, on the second long edge 222 side, of the winding termination end portion 22e of the positive electrode plate 22. In the present specification, the “third corner C3” denotes a corner formed by the second long edge 222 and the first short edge (winding initiation end portion 22s). In the present specification, the “fourth corner C4” denotes a corner formed by the second long edge 222 and the second short edge (winding termination end portion 22e). Loss of the positive electrode active material layer 22a can be prevented, since no notch is formed in the third corner C3 or the fourth corner C4. Battery capacity can be secured as a result.
To prepare the positive electrode precursor 21, for instance, firstly a paste for positive electrode active material layer formation containing a constituent material of the positive electrode active material layer 22a is applied, on a region denoted the reference numeral 22a in
The positive electrode precursor 21 is cut next. Cutting of the positive electrode precursor 21 involves for instance cutting the positive electrode precursor 21 along a dotted line Lp1, a two-dot chain line Lp2, and a two-dot chain line Lp3 in
Cutting along the two-dot chain line Lp2, involves cutting the central portion of the positive electrode precursor 21 in the transverse direction Q, along the longitudinal direction P. Through cutting along the two-dot chain line Lp2 it becomes possible to produce the positive electrode plate 22 having the protective layer 22p and positive electrode tabs 22t formed only on one long edge (first long edge 221 in
Cutting along the two-dot chain line Lp3 involves cutting the recess depicted in frame A in the transverse direction Q. By cutting along the two-dot chain line Lp3, respective notches can be formed on the left side and the on right side of the two-dot chain line Lp3. either the left side or the right side of the two-dot chain line Lp3 is set as the winding initiation end portion 22s, and the other is set as the winding termination end portion 22e, for instance on the basis of the shape of the formed notch. The positive electrode plate 22 having the first notch N1 formed at the first corner C1 and the second notch N2 formed at the second corner C2 can be produced in this way.
As illustrated in
As illustrated in
The negative electrode core 24c is for instance strip-shaped. The negative electrode core 24c is a metal foil made of for instance copper or a copper alloy. The negative electrode core 24c has for instance a negative electrode active material layer existing section and a negative electrode active material layer non-existing section. The negative electrode active material layer existing section is for instance a section at which the negative electrode active material layer 24a is formed. In the present embodiment the negative electrode active material layer existing section is provided at a portion (for instance the negative electrode plate body) in the form of a strip between the first long edge 241 and the second long edge 242 of the negative electrode plate 24, along the longitudinal direction, and at part of the base end side (for instance the first long edge 241 side) of the negative electrode tabs 24t. The negative electrode active material layer non-existing section is for instance a section at which the negative electrode active material layer 24a is not formed. In the present embodiment the negative electrode active material layer non-existing section is part of a projecting end side of the negative electrode tabs 24t.
The negative electrode active material layer 24a has a negative electrode active material (for instance a carbon material such as graphite, hard carbon, soft carbon or amorphous carbon; or a silicon-based material such as silicon or silicon oxide (silica)) capable of reversibly storing and releasing a charge carrier. The negative electrode active material layer 24a contains for instance 80 mass% or more (preferably 90 mass% or more, more preferably 95 mass% or more) of the negative electrode active material, relative to 100 mass% as the total solids of the negative electrode active material layer 24a. The negative electrode active material layer 24a may contain optional components, for instance a binder, a thickener and various additional components, besides the negative electrode active material. Examples of the binder include styrene-butadiene rubber (SBR). Examples of the thickener include carboxymethyl cellulose (CMC).
Each separator 26 is a member that insulates the positive electrode active material layer 22a of the positive electrode plate 22 and the negative electrode active material layer 24a of the negative electrode plate 24. The separator 26 constitutes the outer surface of the wound electrode body 20. For instance, a porous sheet made up of a resin made up of a polyolefin resin such as polyethylene (PE) or polypropylene (PP) may be used as the separator 26. The separator 26 has for instance a base material portion made up of a resin-made porous sheet and a heat resistance layer formed on at least one surface of the base material portion. The heat-resistant layer is for instance a layer containing an inorganic filler and a binder. Examples of the inorganic filler include alumina, boehmite, aluminum hydroxide and titania. Examples of the binder include polyvinylidene fluoride (PVdF).
The wound electrode body 20 is produced by laying up the positive electrode plate 22 and the negative electrode plate 24 across two separators 26, and winding then the resulting stack in the longitudinal direction. During such winding, preferably, the first end portion N1a of the first notch N1 does not face the negative electrode active material layer 24a, even across the separator 26. However, the first end portion N1a of the first notch N1 may oppose the negative electrode active material layer 24a across the separator 26. Bending of the first corner C1 is suppressed at the winding initiation end portion 22s of the positive electrode plate 22, as described above. In consequence, damage to the separators 26 is suppressed, even in a case where the first end portion N1a opposes the negative electrode active material layer 24a across the separator 26, and in consequence short-circuits between the positive and negative electrodes are suppressed. Also, even when the first end portion N1a is bent, direct contact with the negative electrode core 24c is suppressed, at a time where the bent portion of the first end portion N1a reaches the negative electrode plate 24. The safety of the battery 1 is further enhanced as a result.
Multiple positive electrode tabs 22t protruding from the first end face 201 of the main body 20a become stacked at the time of the above winding; a positive electrode tab group 23 is formed as a result that includes the plurality of positive electrode tabs 22t. As illustrated in
Also, multiple negative electrode tabs 24t protruding from the second end face 202 of the main body 20a become stacked at the time of the above winding; a negative electrode tab group 25 is formed as a result that includes the plurality of negative electrode tabs 24t. As illustrated in
The positive electrode collector 50 is a member that electrically connects the positive electrode plate 22 of the wound electrode body 20 and the positive electrode terminal 30, inside the exterior body 12. As illustrated in
As illustrated in
The negative electrode collector 60 is a member that electrically connects the negative electrode plate 24 of each wound electrode body 20 and the negative electrode terminal 40, in the interior of the exterior body 12. As illustrated in
The battery 1 can be used in various purposes, and for instance the battery can be suitably used as a power source (drive power source) for a motor, mounted on a vehicle such as a passenger car or a truck. The kind of vehicle is not particularly limited, and examples thereof include plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs) and electric vehicles (BEVs).
Concrete examples of the art disclosed herein have been explained in detail above, but these are merely illustrative in nature, and are not meant to limit the scope of the claims. The features set forth in the claims encompass various modifications and alterations of the concrete examples illustrated above.
In the above embodiments, for instance, the first notch N1 is produced through cutting of the recess depicted in frame A of the positive electrode precursor 21 illustrated in
For instance the recess depicted in frame C of
For instance, the recess depicted in frame D of
Alternatively, there need not be formed a recess for notch formation, in the cutting along the dotted line Lp1 in
In the above embodiment, the first electrode plate was the positive electrode plate 22, and the second electrode plate was the negative electrode plate 24. However, the invention is not limited thereto. The first electrode plate may be the negative electrode plate 24, and the second electrode plate may be the positive electrode plate 22. In the above embodiment, a battery case 10 was used that included the exterior body 12 and the lid 14. However, the invention is not limited thereto. The battery case of the battery 1 may be a laminate exterior body.
Number | Date | Country | Kind |
---|---|---|---|
2021-186979 | Nov 2021 | JP | national |