1. Field of the Invention
This patent relates to work piece holding devices used to hold work pieces for machining or other purposes. Work pieces that are machined must be held or clamped to prevent their movement caused by forces acting against them.
It is generally desirable to have a high degree of rigidity and accurate work piece location so that the surfaces which are treated (usually by cutting) on the work piece is well within acceptable tolerance.
2. Description of Prior Art
Existing work piece holding devices range from a simple vice designed to hold one work piece, wedge lock side clamping of single or multiple work pieces located on a single base and dedicated fixtures constructed for a specific work piece.
Vertical hold down clamps (called swing down clamps) are available for clamping work pieces against their top surface. They swing out of the way when unclamped to permit removal of the work piece.
Exiting wedge clamps are generally fixed to a base with serrations or keys that are difficult to clean and difficult to determine the exact work piece location.
They generally require manual clamping.
Swing down clamps are generally located on dedicated fixtures. They are usually powered by hydraulic systems. Their hydraulic lines tend to collect chips and are difficult to clean.
Power clamping is usually accomplished using hydraulic systems. This complicates the systems need for decoupling the hydraulic lines when the clamping system is removed from a machine tool for off machine work piece handling.
This patent relates to a work piece holding system that provides rigid, powerful and accurate clamping of various sizes and shapes of work pieces. Work piece location in all three axes is easily read from the system. Power lines are located in channels below the clamping surface. Cleanliness is maintained by protective covers. Various clamps, (wedge and slide down) are used in a single system.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
The clamping system consists of three basic parts. These parts are identified by
The base
The locators are configured with a single locating surface
The locators
The keys 8 located in the wear resistant rails 7
When the locator is mounted to the base, one set of aligned keys 8 in the base will engage one set of aligned slots 19 in the locator. To determine the part location from zero reference, add the indicated location of the engaged key on the base to the indicated location of this key as marked on the locator.
The arrows marked on the base and locator must be pointed in the same direction when addition is used. Otherwise subtraction must be used.
Either or both ends of the base may be assigned as zero reference and marked with two rows of dimensions, each value ascending from its zero reference point. This allows the locator to be rotated to locate work pieces from their opposite side. Since the arrow directions of the base and locator will coincide on one side of the locator, addition may be used to calculate the distance from reference zero regardless of the locator orientation.
The locator
A wedge clamp 3 is shown mounted to a base
The clamp housing 23
A combination clamp/locator 18 is shown by
The wedge location is adjusted with respect to the locator housing to compensate for relative large incremental positioning of the locator and relatively small travel of the wedge clamp. The wedge 26 is forced against a tapered surface of wedge housing 27 contained by the locator housing 20. The wedge housing is located and retained by an adjusting screw 28. The wedge housing and locator housing are bolted to each other and the base by one or more bolts 29. The wedge is forced against the wedge housing taper by a threaded rod 24 either by manual rotation or vertical displacement by a power actuator. Thrust bearing 31 and 32 may be used with the wedge clamp or locator/clamp to reduce the manual torque required to achieve the desired wedge clamping force.
Spring plungers 33 are located in the wedge to retain work pieces before and after clamping
A hand tightening nut 34
Gauges 13 and 14 are used to locate work pieces from the T-slot 11 center
The gauge may be placed to locate work pieces from either side of the T-slot. This is the purpose of numbering both sides of the gauge to determine the work piece location from zero reference on either side of the T-slot. Add or subtract the gauge stop location to the T-slot location depending on which side of the T-slot that the gauge is extended.
The T-slot zero reference may be located from the center of rotation of a rotary base where applicable to facilitate machine programming with respect to the center of rotation of the work piece.
The stop gauge 14 distance from the T-slot centerline is indicated by the number aligned with the arrow located on the locator housing.
An alignment gauge 13 may be used as above with the exception that a work piece surface is visually aligned with a gauge surface for providing location. This enables machining a work piece surface that would otherwise be obstructed by the stop gauge.
Multi face bases are called tombstones
Small, flexible air lines 44 are used to convey the compressed air to the actuators from the three way valve 43. These lines are long enough to enable the actuators to be positioned at any location along the station without the need to modify the air line length. Excess air line length can be stored in the chamber or located at the end of the chamber.
The power actuator 55 can be connected to a clamp 3 or locator/clamp 18
The lever 49 is provided with an oval hole to permit a bolt 29 to pass through and engage threads located in the actuator housing 56. This bolt 29 is used to clamp the actuator to the wedge clamp and clamp/locator.
Power clamping reduces operator fatigue and the time for clamping and unclamping work pieces. Power clamping is often used when pallets are transferred to and from the machine for work piece clamping/unclamping. In this case compressed air is the preferred power source for the following reasons:
When a three way valve 43 is opened, air flows to all the power actuators located on a single face. This causes the actuator pistons 50 to act against the levers 49 causing the threaded rods 24 to displace the wedges 26 to clamp the work pieces. When the three way valve is rotated to the exhaust position, air flows from the pistons to the atmosphere, relieving the force on the piston and allowing the springs 52 to retract the levers, pistons, threaded rods and wedges to unclamp the work pieces.
The hydraulic fluid acts on a piston 58 that retracts a threaded rod 59 to force the wedge against a taper surface to cause clamping. Hydraulic clamping may be a good alternative where pallets are not used and fluid coupling is not needed.
The piston 77 is fastened to a rectangular bar 81 by fasteners 75. The bar 81 extends into the channel 6 and is guided by a bearing 82. The bolts 87 and 94 clamp the slide down housing 79, slide down cover 80, and bearing 82 to the base 1 when located by a key 8. Seals 76, 88 and 73 prevent air from escaping from the top side 90 of the piston. A guide rail 96 is fastened to the piston 77. A slide bar 84 is keyed to the guide rail 96 and is able to slide left and right as viewed by
A bearing 74 is used to guide the top half of the piston 77. Springs 78 are used to retract the piston 77. Air lines 44 are used to transport compressed air to the slide down clamp as described for the actuator 55. See
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This patent relates to a Provisional Patent Application filed 11/10/2004. (Application Ser. No. 60/626,431) This application varies from the preference application in the following ways: The grooves located along the T-shots in the pallet are spaced a greater distance apart. Hardened keys are permanently fixed to these grooves and project above the surface to engage one of many grooves located in a clamping and/or locating device. The grooves located in the locators are larger and spaced a greater distance apart than described in the first referenced application. Since the slots in the bases and locators are further apart, the incremental positioning of the locators along the T-slot is much greater. Since this incremental distance exceeds the practical maximum travel of the wedge clamp, means are provided to pre-adjust the clamping wedge to provide the optimum wedge clamping travel. The optimum clamping travel must provide enough displacement to account for the width tolerance of the work piece to be clamped plus any deflection encountered by the clamping force plus a small clearance to allow placement and removal of the work piece in the unclamp position. Since the wedge clamp depends on vertical force and displacement to provide horizontal force and displacement to clamp the work piece, the vertical height of the wedge in the clamped condition can be controlled by the pre-adjustment of the wedge. This is particularly important when the work piece to be clamped is very thin. The base grooves are marked with their location from a zero reference point. Location grooves are marked with their distance from the work piece location surface. Adding or subtracting the locations of the base locator as marked at the key engagement, provides the work piece location from zero reference. A second provisional application was filed May 15, 2006 (application Ser. No. 60/800,321). The present non provisional patent application includes additional features not found in either provisional application.
Number | Name | Date | Kind |
---|---|---|---|
4174828 | Bergman | Nov 1979 | A |
4445678 | George | May 1984 | A |
5060920 | Engibarov | Oct 1991 | A |
5931726 | Peters | Aug 1999 | A |
6126158 | Engibarov | Oct 2000 | A |
7156384 | Varnau | Jan 2007 | B1 |
7712401 | Greenwald | May 2010 | B1 |
20020153650 | Sawdon et al. | Oct 2002 | A1 |
20070262507 | Bayer et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070262507 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60800321 | May 2006 | US |