This invention relates to respirators and in particular to bayonet connectors suitable for connecting filter cartridges to respirators.
Respirators are items of Personal Protective Equipment (PPE) that a user wears to filter-out airborne contaminants in the air that they breathe. So-called passive respirators have an in-line filter through which inspired air passes before entering the user's nose and/or mouth. Other types of respirator exist, such as bottled air respirators whereby a supply of clean, bottled air is connected to a respirator unit worn by the user such that the user only breathes-in the bottled air, rather than filtered ambient air. Further types of respirators can combine these technologies and/or comprise a breathing apparatus that actively scrubs ambient air and/or mixes it with bottled air, so that the user only inhales safe air.
For any type of respirator to function correctly, it is necessary to form a good seal between the oral-nasal unit and around the wearer's nose and/or mouth so that contaminated, or potentially contaminated ambient air cannot be inhaled. This is usually achieved by the respirator comprising an oral-nasal unit that has a peripheral edge that seals against the user's face along a line surrounding the wearer's nose and mouth. Most oral-nasal units are manufactured from a resiliently deformable material, such as a rubber-like material (e.g. silicone), to facilitate forming a seal between the unit and the wearer's face, and a great deal of effort has been invested in developing the three-dimensional shape and profile of the peripheral edge of oral-nasal units to optimise the seal and the wearer's comfort.
Most well-designed oral-nasal units comprise an inlet aperture, through which, in use, clean or filtered air passes into the interior of the unit (i.e. the sealed-off void between the interior surface of the oral-nasal unit and the wearer's face). The inlet aperture can be directly connected to a filter or air supply hose (then hence to a pressure-regulated compressed air bottle or scrubber), or in some cases, to an air supply hose leading to a remotely-located filter.
To avoid oxygen depletion or undesirable moisture build-up within the oral-nasal unit, due to re-breathing exhaled air, an exhale valve is also often provided. The exhale valve can be arranged to vent exhaled air directly to atmosphere: to atmosphere via a filter; or back to an air scrubbing system, such as that previously described, to be scrubbed and re-oxygenated.
A further problem that exists with known respirators is that of in-use filter changes. In highly contaminated, and damp environments in particular, respirator filters can clog-up or become difficult to breathe through. Excessive respiratory strain can be tiring, and can be harmful over prolonged periods, and in situations where the wearer's concentration is paramount (e.g. in the case of fire-fighters, soldiers and the like), it is desirable to change the filter as soon as possible following an air transduction drop or filter failure. However, if the wearer is located in a contaminated environment when this occurs, the filter must be changed whilst the respirator is in-situ (i.e. on the wearer′ face). In-situ filter changes can be difficult because the filter is generally out of sight of the wearer (i.e. adjacent a wearer's cheek and/or out of direct eyesight). Since it is not always possible or practical to get another person to change the filter, a wearer needs to be able to remove and correctly replace the filter without sight of what he or she is doing. With bayonet-type filter connectors, in particular, it can be difficult to correctly align, engage and seat a replacement filter, and any time spent with a filter removed presents a finite risk of contamination ingress.
Various aspects of the invention are set forth in the appendent claims.
An aspect of the invention aims to provide a solution to this problem by way of an improved and/or alternative bayonet-type connector. More particularly, the invention aims to provide an offset bayonet connector, which provides a hit-and-miss alignment system that is virtually infallible.
Another aspect of the invention provides a bayonet connector comprising a male part and a female part, the male part comprising a tube having at least two radially-extending lugs formed on its outer sidewall adapted to engage with first and second engaging ribs located on an interior sidewall of the female part, characterised by the radially-extending lugs and the engaging ribs being located at different axial positions.
Another aspect of the invention provides a bayonet connector comprising a male part and a female part, the female part comprising a tube having at least two inwardly radially-extending lugs formed on its inner sidewall adapted to engage with first and second engaging ribs located on an exterior sidewall of the male part, characterised by the radially-extending lugs and the engaging ribs being located at different axial positions.
Suitably, by appropriately configuring the locations and dimensions of the ribs and lugs, the bayonet connector can provide an “any on, single lock position” connector, which is suitable for affixing a filter cartridge, say, to a respirator. As such, the invention may provide that a filter cartridge comprising a bayonet connector in accordance with the invention can be offered up to a respirator comprising the connector in any position and rotated about the axis of the connector to lock it. However, the bayonet connector suitably locks at a single position, thereby ensuring that the filter cartridge is correctly aligned with respect to the respirator.
The tube can be formed integrally with the respirator, or with the filter cartridge.
In other words, the bayonet connector of the invention may ensure, in certain embodiments, that the filter cartridge always lines-up with a pre-set orientation when locked in-situ, regardless of the angle of first placement. This may have major benefits inasmuch as the wearer can more easily affix a filter cartridge when wearing the mask (which can be very difficult with existing bayonet designs); the field of view is less likely to be obscured by an incorrectly-fitted filter; and the overall appearance and performance of the respirator can be preserved by ensuring that the alignment of the filter is always as designed.
Suitably, the corresponding sets of lugs and ribs are axially offset relative to one another such that during insertion of the male part into the female part, or vice-versa, a first one of lugs is configured to pass-by the rib corresponding to the other one of the lugs, and then to pass behind the rib corresponding to the first lug. Suitably, at least one of the ribs comprises an end-stop, such as a ridge or abutment surface, that prevents relative rotation of the male and female parts beyond a locking position. Thus, the male and female parts can be locked together by inserting the male part into the female part and by relatively rotating them until one of the lugs engages an end stop of its corresponding rib.
Suitably, each rib extends around the male or female part through an internal angle A, thus leaving a clearance angle B equal to 360 degrees minus A. If the lugs extend around the male or female part through an angle C of less than B, the two parts can be offered up to one through a range of orientations equal to B minus C. In known bayonet fittings, where the lugs are not axially-offset, the offering-up angle is half of B minus C, and so the invention provides a greatly increased range of offering-up orientations. Moreover, where the lugs are not axially-offset, it may be possible to incorrectly align the connection, for example, with the two components being relatively rotated through 180 degrees, 120 degrees, 90 degrees, etc. where each component comprises two, three or four lugs, respectively. In the present invention, because the lugs are axially-offset, there is only one locking position, and so the two components can only be locked together at a single, desired relative orientation.
Embodiments of respirators in general, and a bayonet connector in accordance with the invention shall now be described, by way of example only, with reference to the accompanying drawings in which:
As can be seen from
An oral-nasal unit 14 is connected to a harness assembly 102 by a relatively rigid, generally U-shaped plate 106 (when viewed from above), which seats against a correspondingly shaped surfaces of the interior of the oral-nasal unit 14. The plate 106 comprises a central portion 108 having a tubular extension 50 that forms part of an exhale valve assembly 54, and which extends through the exhale aperture 42 of the oral-nasal unit 14, as previously described. The oral-nasal unit 14 is thus sealingly clamped to the harness assembly 102 by connecting the tubular extension 50 to the harness assembly 102, i.e. by insertion and rotation.
The U-shaped plate 106 additionally comprises integrally formed wing portions 110 each comprising a through aperture to which a filter connection bayonet tube 112 clips from the inside of the oral-nasal unit 14, as shown more clearly in
The bayonet tube 112 comprises a main body portion 114 and a flange 116 that seats against the exterior surface of the wing portion 108 of the U-shaped plate 106. As can be seen in inset 9c of
Referring to inset 9d of
Referring now to insets 9a and 9b of
The filter cartridge 72 can thus be offered up to the bayonet tube 112 at any angle whereby the first lug 130 lies within the clearance angle B of the first rib 138. Because the second lug 132 is axially offset relative to the first 130, the second lug 132 does not need to clear the first rib 138. The filter cartridge 72 can thus be pushed home and rotated. If the lugs 130, 132 engage the outer surfaces of the ribs 136, 138, the filter cartridge can be rotated until a clearance is located whereupon it will push into position. Further rotation of the filter cartridge 72 results in the lugs 130, 132 sliding over the ribs 136, 138 until they locate behind their respective ribs 136, 138 until, eventually, the lugs 130, 132 abut the end stops 140 indicating that the filter cartridge 72 has been correctly attached. If, say, the filter cartridge 72 is offered-up at an incorrect angle, because the lugs 130, 132 and ribs 136, 138 are axially offset, there is only one locking position, and so the filter cartridge 72 cannot be affixed incorrectly.
The lugs 130, 132 and/or the ribs 136, 138 comprise an inclined surface and/or a detent, which respectively serve to clamp the flange 116, and hence the wings 110 into sealing engagement with the oral-nasal unit 14; and to provide a positive “click” to indicate correct alignment and to inhibit disconnection of the filter-cartridge 72.
It will be appreciated that in the illustrated embodiment, the female part of the bayonet connector is formed integrally with the filter cartridge, whereas the male part is part of the respirator, i.e. the respirator plugs into the filter cartridge. However, this arrangement could be reversed with a male part of the filter cartridge plugging into a female part of the respirator.
The kit comprises a common set of components, namely an oral-nasal unit 14 and exhale valve components 106, 54, 56. A range of oral-nasal units 14 may be provided, for example, in different sizes and shapes and/or manufactured from different materials, such that each wearer can be individually fitted with a suitable oral-nasal unit appropriate to their face geometry. A set of components, including the visor 12 (which can also be provided in different sizes and shapes to fit different user's face geometries), face seal 22, face seal retaining clip 150 and the front cover components 152 can be attached to the common components to form the full-face respirator 10. A set of components, including the harness assembly components 102 can be added to the common components to form the half-face respirator 100. Further, consumable components, such as filter cartridges of various specifications can be included in the kit, or supplied separately.
By providing a range of oral-nasal units and visors/face seals, each user can have an oral-nasal unit and visor correctly fitted. The ability to mix and match different oral-nasal units and visors/face seals in a single system represents a significant step forward in the design and provision of respirators because it affords much greater flexibility in designing and fitting respirators. As such, each user can be issued with an individual “PPE kit” comprising an individually-fitted oral-nasal unit that can be worn as a half-mask respirator, and an individually-fitted visor/face seal that enables the half-mask respirator to be converted into a full-face respirator as and when required.
The following description is relevant to various applications of the invention in respirators and also to the background of the invention, without necessarily having direct relevance to the claims:
A known problem with many types of respirator is that of “fit”. Specifically, if the oral-nasal unit does not seat, and hence seal, correctly against the wearer's face, there is a risk of the wearer inhaling potentially contaminated air. However, every person has a different face shape, and thus it is difficult, if not impossible, to design an oral-nasal unit that will fit 100% of a given population. On the other hand, it is uneconomic, and generally undesirable from an inventory point of view, to manufacture and store oral-nasal units in a range of configurations (to fit different face shapes).
One solution is to offer wearers the choice of a full-face respirator (including a visor and a seal that seats around the periphery of the user's face) or a half-mask respirator, which comprises an oral-nasal unit only, which seals around the nose and mouth. As such, the wearer has two chances of obtaining a good fit and/or seal: either by using the oral-nasal unit, or the full-face mask option. However, if the oral-nasal unit fits a given wearer, but not the full-face mask, and if the user is required, according to prevailing PPE regulations, to wear a full-face mask, wearing a half-face mask is not permissible.
The respirator may comprise an oral-nasal unit and a full-face mask affixable, in use, thereto, the oral-nasal unit comprising an inlet aperture operatively connectable, in use, to a supply of breathable air, and a exhale aperture through which, in use, expired air is vented, characterised by the inlet aperture comprising a conduit extending through the full-face mask.
Suitably, the respirator provides a full-face mask and an oral-nasal unit, in combination. This configuration enables a seal to be formed, in use, between the wearer's face and the oral nasal unit and/or a peripheral seal of the full-face mask, thereby ensuring that the wearer inhales only clean air if only one or the other of the oral-nasal unit and the full-face mask forms an adequate seal against the wearer's face. This provides a double fail safe, when the respirator is used as a full face mask, and/or provides the option for the seals of the oral-nasal unit and the full-face mask to be optimised to fit the profiles of different groups of a given population. Further, the invention provides that the respirator can be provided in kit form, whereby a wearer can opt to use the oral-nasal unit alone, as a half-face mask, or the oral-nasal unit and the full-face mask, in combination, depending on the prevailing PPE requirements and/or wearer's preferences.
The oral-nasal unit suitably comprises a peripheral edge adapted to form, in use, a seal against the wearer's face, in use. The peripheral edge of the oral-nasal unit suitable comprises a three-dimensional profile, which is optimised to fit a given sample of a given population of wearers. The peripheral edge of the oral-nasal unit suitably comprises a resiliently deformable lip, or a plurality of spaced-apart resiliently deformable lip portions, which deform to form a seal, in use, against the wearer's face. The oral nasal unit is suitably manufactured from a single piece of resiliently deformable material, which reduces the number of possible air ingress points (by reducing the number of joints). The oral-nasal unit is suitably manufactured from a sterilisable, cleanable, durable, hypoallergenic material, such as silicone rubber.
The oral-nasal unit suitably comprises one or more fixing points for a retaining strap or harness, such that the oral-nasal unit can be worn as a half-face mask. The fixing point or points are suitably integrally formed with the oral-nasal unit, for example, by comprising integrally-formed projections. In one embodiment of the invention, a harness attachment is provided, to which one or more head adjustable straps are affixable. The harness attachment, in a preferred embodiment, is adapted to connect to the oral-nasal unit around the conduit. Suitably, the conduit can be inserted through an aperture in the harness attachment and can be retained in-situ by a retainer, such as a bayonet-type fitting cooperating between the harness attachment and either or both of the conduit and oral-nasal unit. Additionally or alternatively, the conduit can be inserted through an aperture in the harness attachment and can be retained in-situ by a detachable filter cartridge affixed to the conduit, such that the harness attachment is sandwiched between the oral-nasal unit and the filter.
The full-face mask suitably comprises a transparent visor portion, through which, in use, the wearer can see when wearing the mask. The visor is suitably manufactured of a tough, impact-resistant, scratch-resistant polymer. The choice of material for the visor may be dictated by other factors as well, such as resistance to chemical attach, abrasion, temperature resistance and so forth, as will be readily apparent to those concerned with PPE.
The inlet aperture is operatively connectable, in use, to a supply of breathable air. Suitably, the conduit is detachably affixable to a filter cartridge and/or to an air supply tube. A releasable locking interconnector, such as a bayonet-type fitting, is suitably provided to enable filter cartridges, air supply tubes and the like to be readily affixed to, and detached from, the conduit.
The exhale aperture suitably comprises a one-way valve to inhibit and/or prevent inhalation of contaminated air, but to permit relatively low-resistance exhalation of exhaled air.
Likewise, the inhale aperture may comprise a temporary shut-off valve, which acts to selectively close the inlet aperture when there is no filter cartridge and/or air supply tube connected thereto. Such a configuration conveniently closes-off the inlet aperture when the wearer's airway is unprotected, for example, during filter cartridge changes and the like.
The inlet aperture comprises a conduit that extends through the full-face mask. Such a configuration enables the oral-nasal unit to function as a half-face mask, even when the full-face mask is fitted as well. This is a significant departure from known full-face masks, in which the “oral-nasal unit” does not form a seal with the wearer's face, in use, thereby ensuring that all inhaled air sealingly passes through the oral-nasal unit. On the contrary, existing full-face masks comprise an oral-nasal unit that merely serves to guide the airflows of inhaled and exhaled air to prevent and/or minimise re-breathe, but do not actually form an airtight seal against the wearer's face. As such, the invention provides an oral-nasal unit that functions and performs in the same manner as a half-face mask whether or not the full-face mask is affixed thereto.
Suitably, a seal is provided between the conduit and the oral-nasal unit and/or between the conduit and the full-face mask. Such a seal suitably comprises an O-ring seal surrounding the conduit, or in an embodiment of the invention, a flange that clamps a portion of the resiliently deformable oral-nasal unit to a relatively solid component of the respirator.
The respirator may comprise an oral-nasal unit having an inlet aperture in fluid communication, in use, with a supply of breathable air, and an outlet aperture, characterised by the outlet aperture being in fluid communication with an outlet conduit extending through an aperture of a full-face mask, and a seal interposed between the outlet conduit and the full-face mask.
Suitably, the oral-nasal unit comprises a peripheral seal adapted to seal, in use, around the nose and mouth of a wearer's face. The inlet aperture or apertures of the oral-nasal unit communicate with a supply of breathable air, which can be provided via a filtration unit (such as a filter cartridge) or to a breathable air supply tube. In certain embodiments of the invention, the inlet apertures of the oral-nasal unit communicate with an interior volume of the full-face mask. In such a situation, the full-face mask suitably comprises a secondary inlet connectable, in use, to a supply of breathable air (for example, to the outlet of an air filter cartridge and/or to a breathable air supply tube). Provided, therefore, that the full-face mask comprises a seal that seals to the wearer's face, in use, effective separation of the inhaled and exhaled air flows can be achieved. Specifically, a wearer can inhale through the oral-nasal unit, drawing breathable air in from within the interior of the full-face mask, which breathable air enters the full-face mask via the secondary inlet aperture. The breathable air is sealingly retained within the full-face mask by the full-face mask's peripheral seal to the wearer's face. Upon exhaling, the exhaled air is vented via the outlet aperture, through the outlet conduit, to the exterior of the respirator. The seal interposed between the outlet conduit and the full-face mask therefore serves to separate the breathable air within the full-face mask from the exhaled air in the conduit, and from the potentially contaminated air outside the respirator.
In an embodiment of the invention, the outlet conduit provides a detachable connection between the oral-nasal unit and the full-face mask, which detachable connection may comprise a bayonet-type fitting. Further, in an embodiment of the invention, a flange is provided that clamps a portion of the resiliently deformable oral-nasal unit to a relatively solid component of the respirator, thereby forming the seal.
Suitably, the respirator provides a full-face mask and an oral-nasal unit, in combination. This configuration enables a seal to be formed, in use, between the wearer's face and the oral nasal unit and/or a peripheral seal of the full-face mask, thereby ensuring that the wearer inhales only clean air if only one or the other of the oral-nasal unit and the full-face mask forms an adequate seal against the wearer's face. This can provide a double fail safe, when the respirator is used as a full face mask, and/or provides the option for the seals of the oral-nasal unit and the full-face mask to be optimised to fit the profiles of different groups of a given population.
Further, the invention provides that the respirator can be provided in kit form, whereby a wearer can opt to use the oral-nasal unit alone, as a half-face mask, or the oral-nasal unit and the full-face mask, in combination, depending on the prevailing PPE requirements and/or wearer's preferences.
The oral-nasal unit suitably comprises a peripheral edge adapted to form, in use, a seal against the wearer's face, in use. The peripheral edge of the oral-nasal unit suitably comprises a three-dimensional profile, which is optimised to fit a given sample of a given population of wearers. The peripheral edge of the oral-nasal unit suitably comprises a resiliently deformable lip, or a plurality of spaced-apart resiliently deformable lip portions, which deform to form a seal, in use, against the wearer's face. The oral nasal unit is suitably manufactured from a single piece of resiliently deformable material, which reduces the number of possible air ingress points (by reducing the number of joints). The oral-nasal unit is suitably manufactured from a sterilisable, cleanable, durable, hypoallergenic material, such as silicone rubber.
The oral-nasal unit suitably comprises one or more fixing points for a retaining strap or harness, such that the oral-nasal unit can be worn as a half-face mask. The fixing point or points are suitably integrally formed with the oral-nasal unit, for example, by comprising integrally-formed projections. In one embodiment of the invention, a harness attachment is provided, to which one or more head adjustable straps are affixable. The harness attachment, in a preferred embodiment, is adapted to connect to the oral-nasal unit around the conduit. Suitably, the conduit can be inserted through an aperture in the harness attachment and can be retained in-situ by a retainer, such as a bayonet-type fitting cooperating between the harness attachment and either or both of the conduit and oral-nasal unit. Additionally or alternatively, the conduit can be inserted through an aperture in the harness attachment and can be retained in-situ by a detachable filter cartridge affixed to the conduit, such that the harness attachment is sandwiched between the oral-nasal unit and the filter.
The full-face mask suitably comprises a transparent visor portion, through which, in use, the wearer can see when wearing the mask. The visor is suitably manufactured of a tough, impact-resistant, scratch-resistant polymer. The choice of material for the visor may be dictated by other factors as well, such as resistance to chemical attach, abrasion, temperature resistance and so forth, as will be readily apparent to those concerned with PPE.
The inlet aperture is operatively connectable, in use, to a supply of breathable air. Suitably, the conduit is detachably affixable to a filter cartridge and/or to an air supply tube. A releasable locking interconnector, such as a bayonet-type fitting, is suitably provided to enable filter cartridges, air supply tubes and the like to be readily affixed to, and detached from, the conduit.
The exhale aperture suitably comprises a one-way valve to inhibit and/or prevent inhalation of contaminated air, but to permit relatively low-resistance exhalation of exhaled air.
Likewise, the inhale aperture may comprise a temporary shut-off valve, which acts to selectively close the inlet aperture when there is no filter cartridge and/or air supply tube connected thereto. Such a configuration conveniently closes-off the inlet aperture when the wearer's airway is unprotected, for example, during filter cartridge changes and the like.
The inlet aperture comprises a conduit that extends through the full-face mask. Such a configuration enables the oral-nasal unit to function as a half-face mask, even when the full-face mask is fitted as well. This is a significant departure from known full-face masks, in which the “oral-nasal unit” does not form a seal with the wearer's face, in use, thereby ensuring that all inhaled air sealingly passes through the oral-nasal unit. On the contrary, existing full-face masks comprise an oral-nasal unit that merely serves to guide the airflows of inhaled and exhaled air to prevent and/or minimise re-breathe, but do not actually form an airtight seal against the wearer's face. As such, the invention provides an oral-nasal unit that functions and performs in the same manner as a half-face mask whether or not the full-face mask is affixed thereto.
Referring once more to the drawings, in
The visor 16 comprises a profiled lip 18 to which a silicone rubber face seal 20 is sealingly affixed, for example, via a mechanical and/or adhesive connection (not visible). The face seal 20 has a three-dimensional profile that has been optimised to form an effective seal against the faces of a designated population of people, and it will be appreciated that different visor-seal combinations could be used to fit different groups of a given population of people.
The face seal 20 has an inwardly turned lip portion 22, which allows the seal 20 to flex to seat correctly against the face of a wearer, thus forming an effective airtight seal.
The respirator 10 is affixed to the wearer's head (not shown) in use, by a head harness (not shown), which connects to the respirator 10 via a set of adjustable straps (not shown) that connect to five, in the illustrated embodiment, strap buckles 24. The strap buckles 24 detachably affix, in the illustrated embodiment, to a corresponding set of tabs 26, which project rearward from the visor 16.
The oral-nasal unit 14 is manufactured from a unitary silicone rubber moulding, and can be seen more clearly in
The oral-nasal unit comprises a pair of circular inlet apertures 40 through which inspired air enters the hollow interior volume, and a circular exhale aperture 42 through which exhaled air passes, in use.
Turning now to
The exhale valve assembly 48 additionally comprises a flap valve diaphragm 54 that is retained by a retaining boss 56 that permits the diaphragm 54 to flex to allow exhaled air out of the respirator 10, but to prevent its inward flow.
The outlet of the exhale valve assembly 48 communicates with an intermediate chamber 58 formed by the outer end of the conduit portion and an external cover plate 60, which clips to the front of the respirator 10, as can be seen in
When a wearer inhales, air is drawn into the interior of the oral-nasal unit 14 via the inlet apertures 40, which (in the full-face respirator 10 embodiment shown in
The visor 16 additionally comprises three inhale apertures 70, each having a bayonet-type fitting to which a filter cartridge 72 can be affixed. One, two or three of the inhale apertures 70 can be used, depending on user requirements, however, in the illustrated embodiment, two filter cartridges 72 are used.
As can be seen most clearly from
The invention is not restricted to the details of the foregoing embodiments, which are merely exemplary of the invention. For example, the shape and configuration of various components, their dimensions and materials of manufacture may be changed without departing from the invention. Moreover, the respirator may be provided as a half-mask respirator, a full-face respirator, or a kit that can form either or both. The bayonet-type connection for the filter cartridges may be omitted in certain embodiments of the respirator, and/or the bayonet-type connector may be used in other applications.
The respirator is suitably a PPE device, which may be adapted for various applications, such as chemical handling, spray painting applications, fire-fighting activities, construction work (including woodworking and glass-fibre work) and so forth, but this is not an exhaustive list.
Number | Date | Country | Kind |
---|---|---|---|
1321369 | Dec 2013 | GB | national |
1411885 | Jul 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2014/053527 | 11/28/2014 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/082882 | 6/11/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2381568 | Booharin | Aug 1945 | A |
4276877 | Gdulla | Jul 1981 | A |
4574799 | Warncke | Mar 1986 | A |
5062421 | Burns et al. | Nov 1991 | A |
5924420 | Reischel et al. | Jul 1999 | A |
6016804 | Gleason | Jan 2000 | A |
6761169 | Eswarappa | Jul 2004 | B2 |
8354023 | Wallerstorfer | Jan 2013 | B2 |
20030217752 | Muller et al. | Nov 2003 | A1 |
20040196666 | Bina | Oct 2004 | A1 |
20040226563 | Xu et al. | Nov 2004 | A1 |
20050145249 | Solyntjes et al. | Jul 2005 | A1 |
20060090754 | Mittelstadt et al. | May 2006 | A1 |
20070212921 | Maschler | Sep 2007 | A1 |
20090272378 | Betz | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0511592 | Nov 1992 | EP |
222366 | Oct 1924 | GB |
1587812 | Apr 1981 | GB |
2173109 | Oct 1986 | GB |
0211816 | Feb 2002 | WO |
0213946 | Feb 2002 | WO |
02092170 | Nov 2002 | WO |
2005089876 | Sep 2005 | WO |
2007106809 | Sep 2007 | WO |
2009029364 | Mar 2009 | WO |
20090066833 | May 2009 | WO |
2013019764 | Feb 2013 | WO |
Entry |
---|
U.K. Search Report dated Jan. 2, 2014 for U.K. Application No. 1321369.9 filed Dec. 4, 2013. |
U.K. Search Report dated Jul. 11, 2014 for U.K. Application No. 1411885.5 filed Jul. 3, 2014. |
International Search Report dated Mar. 18, 2015 for International Application No. PCT/GB2014/053528 filed Nov. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20170021201 A1 | Jan 2017 | US |