Bcl-2 Inhibitors

Abstract
Disclosed herein is a compound of Formula (I) for inhibiting Bcl-2 and treating disease associated with undesirable bcl-2 activity (Bcl-2 related diseases), a method of using the compounds disclosed herein for treating dysregulated apoptotic diseases including cancers and treating autoimmune disease, and a pharmaceutical composition comprising the same.
Description
FIELD OF THE INVENTION

Disclosed herein is a compound of Formula (I) for inhibiting Bcl-2 and treating disease associated with undesirable bcl-2 activity (Bcl-2 related diseases), a method of using the compounds disclosed herein for treating dysregulated apoptotic diseases including neurodegenerative conditions. e.g., Alzheimer's disease; and proliferative diseases, e.g., cancers, autoimmune diseases and pro-thrombotic conditions, and a pharmaceutical composition comprising the same.


BACKGROUND OF THE INVENTION

Programmed cell death or apoptosis occurs in multicellular organisms to dispose damaged or unwanted cells, which is critical for normal tissue homeostasis. (Br. J. Cancer 1972, 26, 239). However defective apoptotic processes have been implicated in a wide variety of diseases. Excessive apoptosis causes atrophy, whereas an insufficient amount results in uncontrolled cell proliferation, such as cancer (Cell 2011, 144, 646). Resistance to apoptotic cell death is a hallmark of cancer and contributes to chemoresistance (Nat Med. 2004. 10, 789-799). Several key pathways controlling apoptosis are commonly altered in cancer. Some factors like Fas receptors and caspases promote apoptosis, while some members of the B-cell lymphoma 2 (Bcl-2) family of proteins inhibit apoptosis. Negative regulation of apoptosis inhibits cell death signaling pathways, helping tumors to evade cell death and developing drug resistance.


There are two distinct apoptosis pathways including the extrinsic pathway and the intrinsic pathway. The extrinsic pathway is activated in response to the binding of death-inducing ligands to cell-surface death receptors (Nat Rev Drug Discov. 2017 16, 273-284). The B cell lymphoma 2 (BCL-2) gene family, a group of proteins homologous to the Bcl-2 protein, encodes more than 20 proteins that regulate the intrinsic apoptosis pathway. Bcl-2 family proteins are characterized by containing at least one of four conserved Bcl-2 homology (BH) domains (BH1, BH2, BH3 and BH4) (Nat. Rev. Cancer 2008, 8, 121, Mol. Cell 2010, 37, 299; Nat. Rev. Mol. Cell Biol. 2014, 15, 49). Bcl-2 family proteins, consisting of pro-apoptotic and anti-apoptotic molecules, can be classified into the following three subfamilies according to sequence homology within four BH domains: (1) a subfamily shares sequence homology within all four BH domains, such as Bcl-2, Bcl-XL and Bcl-w which are anti-apoptotic; (2) a subfamily shares sequence homology within BH1, BH2 and BH4, such as Bax and Bak which are pro-apoptotic; (3) a subfamily shares sequence homology only within BH3, such as Bik, Bid and HRK which are pro-apoptotic. One of the unique features of Bcl-2 family proteins is heterodimerization between anti-apoptotic and pro-apoptotic proteins, which is considered to inhibit the biological activity of their partners. This heterodimerization is mediated by the insertion of a BH3 region of a pro-apoptotic protein into a hydrophobic cleft composed of BH1, BH2 and BH3 from an anti-apoptotic protein. In addition to the BH1 and BH2, the BH4 domain is required for anti-apoptotic activity. In contrast, BH3 domain is essential and, itself, sufficient for pro-apoptotic activity.


Similar to oncogene addiction, in which tumor cells rely on a single dominant gene for survival, tumor cells may also become dependent on Bcl-2 in order to survive. Bcl-2 overexpress is found frequently in acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), relapsed/refractory chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), non-Hodgkin lymphoma (NHL) and solid tumors such as pancreatic, prostate, breast, and small cell and non-small cell lung cancers (Cancer 2001, 92, 1122-1129: Cancer Biol. 2003: 13:115-23: Curr. Cancer Drug Targets 2008, 8, 207-222: Cancers 2011, 3, 1527-1549). Dysregulated apoptotic pathways have also been implicated in the pathology of other significant diseases such as neurodegenerative conditions (up-regulated apoptosis), e.g., Alzheimer's disease, and proliferative diseases (down-regulated apoptosis), e.g., cancers, autoimmune diseases and pro-thrombotic conditions. Target to either Bcl-2 or Bcl-xL, a number of small-molecule BH3 mimetics have been reported in (Recent Patents on Anti-Cancer Drug Discovery, 2008, 3. 20-30; Bioorg. Med. Chem. Lett. 2016, 26, 2105-2114; Nature Reviews Drug Discovery 2017, 16, 273-284; WO2002024636; WO2005049593; WO2006127364; WO2006023778; WO2007040650; WO2008030836; WO2009152082; WO2009036051, WO2010065824; WO2010065865; WO2010083441; WO2010083442; WO2010067067; WO2011029842; WO2011068561; WO2011119345; WO2011149492; WO2011150016; WO2012058392; WO2012017251; WO2012162365; WO2012103059; WO2013053045; WO2013185202; WO2013096060; WO2013096059; WO2013096055; WO2013096051, WO2013096049; US2011312969; WO2014158528; WO2014113413; WO2018027097; WO2018041248; WO2018009444; CN106749233; CN106565706). Some of the Bcl-2 small molecule inhibitors have been investigated at various stages of drug development: the Bcl-2/Bcl-xL inhibitor ABT 263 (navitoclax, WO2009155386) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by platelet death and attendant thrombocytopenia caused by Bcl-xL inhibition (Lancet Oncol. 2010, 11, 1149; J. Clin. Oncol. 2011. 29, 909; J. Clin. Oncol. 2012, 30, 488). The new generation of the BCL-2 selective inhibitor venetoclax (ABT 199/GDC-0199) was proceeded, which demonstrated robust activity in these cancers but also spared platelets (Journal of Hematology & Oncology 2015, 8, 129; Clinical Advances in Hematology & Oncology 2017, 15, 210). S55746 (also known as BCL201), APG-101, APG-1252 are being studied at clinical trial stage. Currently, Venetoclax (formerly ABT 199) is the only Bcl-2 selective inhibitor approved by FDA for the treatment of patients who have relapsed or refractory chronic lymphocytic leukemia (CLL) with the 17p deletion. Recently, however, a novel Gly101 Val mutation in BCL2 was identified after the patients were treated with the Bcl-2 inhibitor venetoclax (ABT 199) for 19 to 42 months (Cancer Disco. 2019. 9, 342-353). This mutation dramatically reduced the binding affinity of Bcl-2 for Venetoclax (ABT-199) by about 180-fold in cell based assay.


Therefore, there is a need of new small molecules that selectively inhibit Bcl-2 proteins for the treatment of dysregulated apoptotic diseases such as cancers, autoimmune diseases and pro-thrombotic conditions. Unexpectedly, the inventors of the present application found some compounds disclosed herein show not only much higher potency and selectivity but also much lower CYP2C9 inhibition, indicating potential better efficacy and lower potential risk of drug-drug interaction (DDT). Also, the inventors of the present application found that the compounds disclosed herein exhibit inhibitory activity against both Bcl-2 wild type and Bcl-2 G101V mutation type, suggesting a type of new potential Bcl-2 inhibitors without resistance concern.


SUMMARY OF THE INVENTION

Disclosed herein is a




embedded image


or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof, wherein

    • L1, L2, L3 and L4 are each independently a direct bond, —(CRaRb)t—, —(CRaRb)t-1—(CRc═CRd)—(CRaRb)v-1—, —(CRaRb)t-1—(C≡C)—(CRaRb)v-1—, —O—, —S—, —S(O)—, —SO2—, —C(O)—, C(O)O—, —OC(O)—, —NRa—, —C(O)NRa—, —NRaC(O)—, —NRaC(O)O—, —NRaC(O)NRb—, —SO2NRa—, —NRaSO2—, —NRaS(O)2NRb—, —NRaS(O)NRc—, —C(O)NRaSO2—, —C(O)NRaSO—, or —C(═NRa)NRb—, wherein t and v, at each occurrence, are independently a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)t—, —(CRaRb)t-1, —(CRc═CRd)—(CRaRb)v-1—, —(CRaRb)t-1—(C≡C)—(CRaRb)v-1— are un-replaced or replaced with one or more moieties selected from O, S, SO, SO2, C(O) and NRa;
    • Ring A is cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heterocyclyl, or heteroaryl, each of which is optionally substituted with 1 to 4 substituents R2;
      • R2, at each occurrence, is independently selected from the group consisting of hydrogen, halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, oxo, —CN, —NO2, —OR2a, —SO2R2a, —COR2a, —CO2R2a, —CONR2aR2b—, —C(═NR2a)NR2bR2c, —NR2aR2b, —NR2aCOR2b, —NR2aCONR2bR2c, —NR2aCO2R2b, —NR2aSONR2bR2c, —NR2aSO2NR2bR2c, or —NR2aSO2R2b, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
        • R2a, R2b, and R2c, are each independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
    • Ring B is cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heterocyclyl, or heteroaryl, each of which is optionally substituted with 1 to 4 substituents R1;
      • R1, at each occurrence, is independently selected from the group consisting of hydrogen, halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, oxo, —CN, —NO2, —OR2a, —SO2R2a—COR2a, —CO2R2a, —CONR2aR2b, —C(═NR1a)NR1bR1c, —NR1aR1b, —NR1aCOR1b, —NR1aCONR1bR1c, —NR1aCO2R1b, —NR1aSONR1bR1c, —NR1aSO2NR1bR1c, or —NR1aSO2R1b; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents R1d,
        • R1a, R1b, and R1c, are each independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
        • R1d, at each occurrence, is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, oxo, —CN, —NO2, —ORBa, —SO2RBa, —CORBa, —CO2RBa, —CONR3RBb, —C(═NRBa)NRBbRBb, —NRBbRBb, —NRBaCORBb, —NRBaCONRBbRBc, —NRBaCO2RBb, —NRBaSONRBbRBc, —NRBaSO2NRBbRBc, or —NRBaSO2RBb wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd;
          • RBa, RBb, and RBc, are each independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy, —NH2 or —N(C1-6alkyl)2, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
          • RBd, at each occurrence, is independently hydrogen, halogen, oxo, —CN, —NO2. —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
    • R3 is hydrogen, halogen, C1-8alkyl, C2-8alkenyl, C2-8alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl, each of said C1-8alkyl, C2-8alkenyl, C2-8alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl is optionally substituted with 1 to 4 substituents R3;
      • R3a, at each occurrence, is independently selected from halogen, cyano, —NO2, —OR3b, —SR3b, —NR3bR3c, —COR3b, —SO2R3b, —C(═O)OR3b, —C(═O)NR3bR3c, —C(═NR3b)NR3cR3d, —N(R3b)C(═O)R3c, —N(R3b)C(═O)OR3c, —N(R3)C(O)NR3cR3d, —N(R3c)S(O)NR3cR3d, —N(R3b)S(O)2NR3cR3d, —NR3bSO2R3c, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl;
        • R3b, R3c, and R3d are independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
    • R4 is hydrogen, halogen, cyano, —NO2, —OR4a, —SR4a, —NR4aR4b, —COR4a, —SO2R4a, —C(═O)OR4a, —C(═O)NR4aR4a, —C(═NR4a)NR4bR4c, —N(R4a)C(═O)R4b, —N(R4a)C(═O)OR4b, —N(R4a)C(O)NR4bR4c, —N(R4a)S(O)NR4bR4c, —N(R4a)S(O)2NR4bR4c, —NR4aSO2R4b, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl is independently and optionally substituted with one or two substituents R4d;
      • R4a, R4b, and R4c are independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
      • R4d, at each occurrence, is independently hydrogen, oxo, —CN, —NO2, halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
    • m is an integer of 1-4;
    • R5 is -L5-CyC,
      • Wherein L5 is a direct bond, —(CRaRb)t—, —(CRaRb)t-1—(CRc═CRd)—(CRaRb)v-1—, —(CRaRb)t-1, —(C≡C)—(CRaRb)v-1, —O—, —S—, —S(O)—, —SO2—, —C(O)—, C(O)O—, —OC(O)—, —NRa—, —C(O)NRa—, —NRaC(O)—, —NRaC(O)O—, —NRaC(O)NRb—, —SO2NRa—, —NRaSO2—, —NRaS(O)2NRb—, —NRaS(O)NRb—, —C(O)NRaSO2—, —C(O)NRaSO—, or —C(═NRa)NRb—, wherein t and v, at each occurrence, are independently a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)t—, —(CRaRb)t-1—(CRc═CRd)—(CRaRb)v-1—, —(CRaRb)t-1—(C≡C)—(CRaRb)v-1— are un-replaced or replaced with one or more moieties selected from O, S, SO, SO2, C(O) and NRa;
      • CyC is cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is optionally substituted with one or two substituents R5a;
      • R5a, at each occurrence, is independently selected from hydrogen, halogen, cyano, oxo, —NO2, —OR5b, —SR5b, —NR5bR5c, —COR5b, —SO2R5b, —C(═O)OR5b, —C(═O)NR5bR5c, —C(═NR5b)NR5cR5d, —N(R5b)C(═O)R5c, —N(R5b)C(═O)OR5c, —N(R5b)C(O)NR5cR5d, —N(R5b)S(O)NR5cR5d, —N(R5b)S(O)2NR5cR5d, —NR5bSO2R5c, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or two substituents R5c:
        • wherein R5b, R5c, and R5d are each independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or two substituents R5e;
        • R5e, at each occurrence, is independently selected from hydrogen, halogen, cyano, oxo, —NO2, —OR5f, —SR5f, —NR5fR5g, —COR5f, —SO2R5f, —C(═O)OR5f, —C(═O)NR5fR5e, —C(═NR5f)NR5gR5h, —N(R5f)C(═O)R5g, —N(R5f)C(═O)OR5g, —N(R5f)C(O)NR5gR5h, —N(R5f)S(O)NR5gR5h, —N(R5f)S(O)2NR5gR5h, —NR5fSO2R5g, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl;
          • R5f, R5g, and R5h are each independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
    • or, two adjacent R5 on the phenyl ring together with the phenyl ring form a benzo ring, said ring is optionally substituted with halogen, oxo, cyano, —NO2, —OR5i, —SR5i, —NR5iR5j, —COR5i, —SO2R5i, —C(═O)OR5i, —C(═O)NR5iR5j, —C(═NR5i)NR5jR5k, —N(R5i)C(═O)R5j, —N(R5i)C(═O)OR5j, —N(R5i)C(O)NR5jR5k, —N(R5i)S(O)NR5jR5k, —N(R5i)S(O)2NR5jR5k, —NR5iSO2R5k, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, -cycloalkyl, heterocyclyl, aryl, or heteroaryl;
      • R5i, R5j, and R5k are independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
    • Ra, Rb, Rc, and Rd at each occurrence, are independently hydrogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl are each independently substituted with —CN, halogen, —NO2, —NReRf, oxo, —ORc, or —SRc; and
      • wherein Re and Rf are each independently hydrogen, C1-8alkyl, C1-8alkoxy-C1-8alkyl-, C2-8alkenyl, C2-8alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl.


In one embodiment, Ra, Rb, Rc and Rd, at each occurrence, are independently hydrogen or C1-6alkyl, preferably hydrogen or methyl.


In one embodiment, L1 is a direct bond or —(CRaRb)t—, wherein Ra, Rb and t are defined as with Formula (I). In some embodiment, t is a number of 1 or 2. In a preferred embodiment, L1 is a direct bond or —(CRaRb)—, wherein Ra and Rb are hydrogen or C1-6alkyl, preferably hydrogen. In a most preferred embodiment, L1 is a direct bond.


In one embodiment, L2 is a direct bond, —(CRaRb)t—, —(CRaRb)t-1—(CRc═CRd)—(CRaRb)v-1—, —(CRaRb)t-1—(C≡C)—(CRaRb)v-1—, —O— or —NRa—, wherein Ra, Rb, Rc, t, and v are defined as with Formula (I). In some embodiment, t or v is a number of 1-4. In a preferred embodiment, L2 is a direct bond, —(CRaRb)1-5—, —(CRaRb)1-3—(C≡C)—, —O— or —NRa—, wherein Ra, Rb and Rc, at each occurrence, are independently hydrogen or C1-6alkyl, and one or two CRaRb moieties in —(CRaRb)1-5—, —(CRaRb)1-3—(C≡C)— are replaced with one or two moieties from O, S, SO, SO2, C(O) and NRa. In an even preferred embodiment, L2 is a direct bond, —(CRaRb)1-5—, —(CRaRb)1-3 (C≡C)—, or —NRa—, wherein Ra, Rb and Rc, at each occurrence, are independently hydrogen or C1-6alkyl, and one or two CRaRb moieties in —(CRaRb)1-5—, —(CRaRb)H(C≡C)— are replaced with one or two heteroatoms from O or NRa, wherein Ra is hydrogen or C1-6alkyl, preferably hydrogen or CH3. In another embodiment, L2 is a direct bond, —CH2—, —O—, —NH—,




embedded image


wherein *3 refers to the position attached to ring A, **4 refers to the position attached to the phenyl ring. In a most preferred embodiment, L2 is a direct bond.


In a preferred embodiment, L1 and L2 are both direct bonds, or L1 is —CH2— or —CH2—CH2— and L2 is a direct bond.


In one embodiment, L3 is a direct bond, —(CRaRb)t—, —O—, —S—, —S(O)—, —SO2—, —C(O)—, C(O)O—, —OC(O)—, or —NRa—, wherein Ra, Rb and t are defined as with Formula (I). Preferably, Ra and Rb are independently hydrogen or C1-6alkyl, and t is 1 or 2. In a preferred embodiment, L3 is —O—, —CH2—, a direct bond, or —C(O)—. More preferably, L3 is —O—.


In one embodiment, R3 is heteroaryl optionally substituted with one or two substituents R3a as defined with Formula (I). Preferably, R3 is heteroaryl optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.


In one embodiment, R3 is a 5 to 7-membered nitrogen-containing monocyclic heteroaryl optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl. Preferably, R3 is tetrazolyl, trizolyl, pyrazolyl, pyrrolyl, pyridinyl, pyrimidinyl, each of which optionally substituted with one or two substituents R3selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.


In one embodiment, R3 is a 8- to 12-membered bicyclic heteroaryl comprising 1 or 2 or 3 nitrogen atoms. Preferably, R3 is indolyl, pyrrolopyridinyl, or pyrazolopyridinyl, each of which optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl. More preferably, R3 is indol-4-yl, pyrrolo[2,3-b]pyridin-5-yl, pyrazolo[4,3-b]pyridin-1-yl.


In one embodiment, R3 is 11- to 14-membered tricyclic heteroaryl comprising 1 or 2 or 3 or 4 or 5 nitrogen atoms optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl. Preferably, R3 is pyrazolo[4,3-b]pyrrolo[3,2-e]pyridine-1 (5i)-yl.


In one embodiment, L3 is —O—, and R3 is pyrrolo[2,3-b]pyridin-5-yl.


In one embodiment, L4 is —C(O)NRaSO2—, wherein Ra is hydrogen and C1-6alkyl; is preferably hydrogen. In a preferred embodiment, L4 is *—C(O)NRaSO2—**, wherein Ra is hydrogen and C1-6alkyl; is preferably hydrogen, wherein * refers to the position attached to Ring C, and **refers to the position attached to Ring D.


In one embodiment, R4 is —NO2, F, Cl, Br, cyano, or —SO2R4a, wherein R4a is defined as with Formula (I). In one embodiment, R4 is —NO2, F, Cl, Br, cyano, or —SO2R4a, wherein R4a is —C1-8alkyl optionally substituted with halogen, preferably —CF3. In a preferred embodiment, R4 is —NO2.


In one embodiment, ring A is cycloalkyl, cycloalkenyl, aryl, heterocyclyl, or heteroaryl, each of which is optionally substituted with 1 to 4 substituents R2. Preferably, R2 is hydrogen, halogen (e.g., F, Cl or Br) or C1-6alkyl (e.g., methyl) optionally substituted with halogen (e.g., F, Cl or Br).


In a preferred embodiment, ring A is a phenyl ring, which is 1,2-phenylene, 1,3-phenylene, or 1,4-phenylene.


In a preferred embodiment, ring A is a cycloalkyl ring which is C3-8cycloalkyl. In a more preferred embodiment, ring A is selected from cyclobutyl, cyclopentyl, cyclohexyl, or cycloheptyl. Specifically, ring A is 1,2-cyclobutylene, 1,3-cyclobutylene, 1,2-cyclopentylene, 1,3-cyclopentylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 1,2-cycloheptylene, 1,3-cycloheptylene or 1,4-cycloheptylene.


In a preferred embodiment, ring A is C3-8cycloalkenyl. Preferably, ring A is cyclohexenyl. More preferably, ring A is cyclohex-3-enyl or cyclohex-2-enyl.


In a preferred embodiment, ring A is heteroaryl. Preferably, ring A is a monocyclic 5- or 6-membered heteroaryl comprising one or two or three or four heteroatoms selected from nitrogen, oxygen, and sulfur. Specifically, ring A is pyridine, pyrazole, thiophene, or pyrimidine. Preferably, ring A is 8- to 12-membered bicyclic heteroaryl ring. Specifically, ring A is pyrazolopyrimidine (e.g., pyrazolo[1,5-a]pyrimidine), benzothiophene (benzo[b]thiophene), or pyrazolopyridine (e.g., pyrazolo[1,5-a]pyridine) group.


In a preferred embodiment, ring A is heterocyclyl. Preferably, ring A is selected from

    • a) monocyclic 4 to 9-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur as ring member;
    • b) 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members;
    • c) 5 to 12-membered fused heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members; and
    • d) 5 to 12-membered bridged heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members.


In a more preferred embodiment, ring A is 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members. Specifically, ring A is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members. Specifically, ring A is 4-membered/4-membered or 4-membered/6-membered mono-spiro heterocyclyl comprising one nitro en as ring member. More specifically, ring A is




embedded image


(7-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(2-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(3-azaspiro[5.5]undecan-3,9-di yl),




embedded image


(2-azaspiro[3.3]heptan-2,6-diyl),




embedded image


(8-azaspiro[4.5]decan-2,8-diyl),




embedded image


(2-azaspiro[4.5]decan-2,8-diyl).


Specifically, ring A is heterocyclic which is piperidine, pyrrolidine, and azetidine: 7-azaspiro[3.5]nonane, 2-azaspiro[3.5]nonane, 8-azabicyclo[3.2.1]octane; tetrahydrothienopyridine (e.g., 4,5,6,7-tetrahydrothieno[2,3-c]pyridine), tetrahydropyrrolopyrazine (e.g., 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine), tetrahydropyrrolopyrazine (e.g., 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine), hexahydroindolizine (e.g., 1,2,3,5,8,8a-hexahydroindolizine), dihydropyrrolothiazole (e.g., 5,6-dihydro-4H-pyrrolo[3,4-d]thiazole), or isoindoline.


In an even preferred embodiment, ring A is selected from the group consisting of:




embedded image


(7-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(2-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(8-azabicyclo[3.2.1]octan-3,8-diyl),




embedded image


(3-azaspiro[5.5]undecan-3,9-diyl),




embedded image


(2-azaspiro[3.3]heptan-2,6-diyl),




embedded image


(8-azaspiro[4.5]decan-2,8-diyl),




embedded image


(2 azaspiro[4.5]decan-2,8-diyl),




embedded image


wherein *1 refers to the position attached to L1, and **2 refers to the position attached to L2.


In a most referred embodiment, ring A is




embedded image


In one embodiment, Ring B is cycloalkyl, cycloalkenyl, aryl, or heterocyclyl, each of which is optionally substituted with 1 to 4 substituents R1;

    • R1, at each occurrence, is independently selected from the group consisting of halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, heteroaryl, oxo, —CN, or —OR1a; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents R1d,
      • R1a is hydrogen, or —C1-8alkyl, said —C1-8alkyl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;
      • R1d, at each occurrence, is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd;
        • RBa and RBb are each independently hydrogen, —C1-8alkyl, cycloalkyl, or aryl, each of said —C1-8alkyl, cycloalkyl, or aryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
        • RBd, at each occurrence, is independently hydrogen, halogen, —CN, —C1-8alkyl, —C2-8alkynyl, cycloalkyl, or aryl, each of said —C1-8alkyl, —C2-8alkynyl, or aryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl.


In one embodiment, cycloalkyl as Ring B is monocyclic C3-8cycloalkyl, preferably cyclopentyl or cyclohexyl, substituted with R1. In one embodiment, R1 is an aryl group (e.g., phenyl) optionally substituted with R1d which is monocyclic C3-8cycloalkyl.


In one embodiment, cycloalkenyl as Ring B is monocyclic C3-8cycloalkenyl, preferably cyclopentenyl or cyclohexenyl, substituted with one or two or three R1. In one embodiment, R1 is C1-8alkyl (e.g., C1-6alkyl, preferably methyl), or an aryl group (e.g., phenyl) optionally substituted with R1d which halogen.


In one embodiment, heterocyclyl as ring B is monocyclic 4 to 9-membered heterocyclyl, a 5 to 20-membered spiro heterocyclyl, a 5 to 20-membered fused heterocyclyl, or a 5 to 20-membered bridged heterocyclyl, each of which is optionally substituted with 1 to 4 substituents R1.


In one embodiment, monocyclic heterocyclic is a monocyclic 4 to 9-membered heterocyclyl comprising one or more heteroatoms selected from the group consisting of NH, O. S, SO or SO2 heteroatoms as ring members.


In one embodiment, monocyclic heterocyclyl is a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member. In a preferred embodiment, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is C-linked or N-linked. In an even preferred embodiment, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is saturated. Specifically, the saturated heterocyclyl is a N-linked saturated heterocyclyl, including, but not limited to aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, azepan-1-yl, and azocan-1-yl, preferably pyrrolidin-1-yl, Specifically, the saturated heterocyclyl is a C-linked saturated heterocyclyl, including but not limited to aziridin-2-yl, azetidin-2-yl, azetidin-3-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, azepan-2-yl, azepan-3-yl, azepan-4-yl, azocan-2-yl, azocan-3-yl, azocan-4-yl, and azocan-5-yl. In another even preferred embodiment, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is unsaturated. In a yet even preferred embodiment, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member contains one carbon-carbon double bond. Specifically, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is dihydropyrrolyl, e.g., 2,3-dihydro-1H-pyrrolyl and 2,5-dihydro-1H-pyrrolyl, or tetrahydropyridinyl.


In another embodiment, monocyclic heterocyclyl is a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom and one additional heteroatom selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members. In a preferred embodiment, the monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom and one additional heteroatom selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members is C-linked or N-linked. In an even preferred embodiment, the monocyclic heterocyclyl is saturated. In a yet even preferred embodiment, the saturated monocyclic heterocyclyl is N-linked. In another yet even preferred embodiment, the saturated monocyclic heterocyclyl is C-linked.


In a preferred embodiment, ring B is pyrrolidin-1-yl substituted with 1 to 4 substituents R1.


In one embodiment, R1 is a phenyl group.


In a more preferred embodiment, ring B is aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably pyrrolidin-1-yl which is substituted with a phenyl group at position 2 and further optionally substituted with 1 or 2 or 3 substituents R1 on the pyrrolidinyl ring, and said phenyl group at position 2 is optionally substituted with R1d as defined with Formula (I).


In one aspect of this embodiment, R1, at each occurrence, is independently selected from the group consisting of halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, heteroaryl, oxo, —CN, or —OR1a; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, or heteroaryl is optionally substituted with 1 to 4 substituents R1d, wherein R1a is hydrogen or C1-8alkyl, preferably methyl, and R1d is halogen, —C1-8alkyl, or —ORBa, wherein RBa is hydrogen or —C1-8alkyl. In another aspect, R1 is heteroaryl, preferably furanyl, more preferably furan-3-yl. In some embodiment, R1 is substituted at position 2 of the monocyclic heterocyclyl.


In one aspect of this embodiment, R1d, when substituted on the phenyl group at position 2 of ring B (including the aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably the pyrrolidin-1-yl group), is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NO2, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd as defined with Formula (I), preferably 1 or 2 substituents RBd as defined with Formula (I). In another aspect, one R1d is at position 2 of the phenyl ring at position 2 of ring B.


In one aspect, —C1-8alkyl as R1d is further optionally substituted with 1 to 4 substituents RBd, which is halogen, phenyl, cycloalkyl (e.g., C3-8cycloalkyl, preferably cyclopropyl), heterocyclyl (e.g., piperazinyl, piperidinyl) optionally substituted with C1-6alkyl. Specifically, R1d is —C1-8alkyl selected from methyl, ethyl, isopropyl, propyl, tert-butyl, and isobutyl, optionally substituted with RBd. In another aspect, two methyl groups are at position 2 of the phenyl ring at position 2 of ring B.


In one aspect, cycloalkyl as RId is further optionally substituted with 1 to 4 substituents RBd, which is halogen, cyano. C2-8alkynyl (preferably ethynyl), or C1-8alkyl optionally substituted with halogen (preferably CF3). Specifically, R1d is C3-8cycloalkyl selected from cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl, optionally substituted with RBd. In another aspect, one cyclopropyl is at position 2 of the phenyl ring at position 2 of ring B.


In one aspect, —C2-8alkenyl as R1d is prop-1-en-2-yl.


In one aspect, —C2-8alkynyl as R1d is ethynyl.


In one aspect, in the definition of —ORBa as R1d, RBa is hydrogen, C1-8alkyl (selected from methyl, ethyl, propyl, and isopropyl), C3-8cycloalkyl (preferably cyclopropyl or cyclohexyl), aryl (preferably phenyl), wherein C1-8alkyl, C3-8cycloalkyl and aryl are each independently substituted with halogen, heterocyclyl (preferably monocyclic 4- to 9-membered heterocyclyl, more preferably morpholino), hydroxy, or —C1-8alkoxyl (preferably methoxyl).


In one aspect, R1d is aryl which is phenyl.


In one aspect, R1d is heterocycle which is monocyclic 4 to 9-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur as ring member, preferably monocyclic 4 to 6-membered heterocyclyl comprising one oxygen atom as ring member or monocyclic 6-membered heterocyclyl comprising one or two nitrogen atoms as ring members.


In one aspect, R1d is heteroaryl, preferably thiophenyl or furanyl.


In one embodiment, ring B is pyrrolidin-1-yl substituted with a naphthyl group, preferably substituted with a naphthyl at position 2.


In one embodiment, ring B is pyrrolidin-1-yl substituted with a heteroaryl group, preferably substituted with a heteroaryl group at position 2. In one aspect, said heteroaryl is 5- to 6-membered heteroaryl comprising 1-4 heteroatoms selected from nitrogen, oxygen, and sulfur. Preferably, said heteroaryl is pyridinyl, furanyl, thiophenyl, or pyrazolyl. In another aspect, the heteroaryl is optionally substituted with halogen or C3-8cycloalkyl (preferably cyclopropyl).


In one embodiment, ring B is pyrrolidin-1-yl substituted with —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl, preferably substituted with —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl at position 2, each of said —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl is unsubstituted or substituted with a phenyl group, said phenyl group is optionally substituted with halogen or C3-8cycloalkyl (preferably cyclopropyl). In a preferred aspect, ring B is pyrrolidin-1-yl substituted with methyl, ethenyl, or ethynyl, each of which is optionally substituted with a phenyl group optionally substituted as above.


In a preferred embodiment, ring B is pyrrolidin-1-yl, optionally substituted with 1 to 4 substituents R1 as defined with Formula (I).


In a preferred embodiment,




embedded image


is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one preferred embodiment, ring B is a 2-substituted pyrrolidin-1-yl group. L1 is a direct bond, L2 is a direct bond, ring A is a 1,4-phenylene ring, or 5 to 12-membered spiro heterocyclic comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members, preferably 5 to 12-membered spiro heterocyclyl comprising one or two nitrogenz as ring member; more preferably a 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members; most preferably ring A is 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3,9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl. In a more preferred embodiment, ring B is a 2-(substituted phenyl)pyrrolidin-1-yl group. L1 is a direct bond, L2 is a direct bond, ring A is a 1,4-phenylene ring, , or 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members, preferably 5 to 12-membered spiro heterocyclyl comprising one or two nitrogenz as ring member: more preferably a 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members; most preferably ring A is 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3,9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl. In an even more preferred embodiment, ring B is a 2-(2-substituted phenyl)pyrrolidin-1-yl group or 2-(3-substituted phenyl)pyrrolidin-1-yl group. L1 is a direct bond, L2 is a direct bond, ring A is a 1,4-phenylene ring or 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3,9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl, wherein the phenyl group at position 2 of the pyrrolindin-1-yl is substituted with 1 to 4 substituents R1d as defined with Formula (I). In an alternative preferred embodiment, ring B is a 2-(2-substituted phenyl)pyrrolidin-1-yl group or 2-(3-substituted phenyl)pyrrolidin-1-yl group. L1 is a direct bond, ring A is a 1,4-cyclohexylene ring or 1,4-cyclohex-3-enyl or 1,4-cyclohex-2-enyl or 1,4-cyclohex-1-enyl or 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3,9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl, L2 is a direct bond, wherein the phenyl group at position 2 of the pyrrolindin-1-yl is substituted with 1 to 4 substituents R1d as defined with Formula (I). In one embodiment, one substituent R1d is substituted at position 2 of the phenyl group at position 2 of the pyrrolindin-1-yl.


In one embodiment, m is 1.


In one embodiment, L5 is a direct bond, —(CRaRb)t— or —NRa—, wherein t is a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)— are un-replaced or replaced with one or more moieties selected from O and NRa, wherein Ra and Rb are defined as with Formula (I).


In a preferred embodiment, L5 is a direct bond, —(CRaRb)1-4—, —O—(CRaRb)1-3—, —NH—(CRaRb)1-3, or —NH—, wherein Ra and Rb are defined as with Formula (I) so that the -L5-CyC moiety is CyC, —(CRaRb)1-4-CyC, —O—(CRaRb)1-3-CyC, —NH—(CRaRb)1-3-CyC, or —NH-CyC, respectively. More preferably, L5 is a direct bond, —(CH2)1-4—, —O—(CH2)1-3—, —NH—(CRaRb)—(CH2)2—, or —NH—, wherein Ra is hydrogen and Rb is C1-8alkyl optionally substituted with phenyl —S— so that the -L5-CyC moiety is CyC, —(CH2)1-4-CyC, —O—(CH2)1-3-CyC, —NH—(CRaRb)—(CH2)2-CyC, or —NH-CyC, respectively. More preferably, L5 is a direct bond, —CH2—, —O—CH2—, —NH—CH2—, or —NH— so that the -L5-CyC moiety is CyC, —CH2-CyC, —O—CH2-CyC, —NH—CH2—CyC, or —NH-CyC, respectively.


In one embodiment, CyC is cycloalkyl, or heterocyclyl, each of which is optionally substituted with one or two substituents R5a;

    • R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, -cycloalkyl, or heterocyclyl, each of said —C1-8alkyl, and heterocyclyl is optionally substituted with one or two substituents R5c which is selected from hydrogen, halogen, cyano, —OR5f, —C1-8alkyl, -cycloalkyl, or heterocyclyl;
      • wherein R5b, and R5c are each independently hydrogen, —C1-8alkyl or heterocyclyl, said —C1-8alkyl is optionally substituted with one or two substituents R5c which is hydrogen, —NR5fR5B, or -cycloalkyl;
        • R5f and R5g are each independently hydrogen or —C1-8alkyl:
    • or, two adjacent R5 on the phenyl ring together with the phenyl ring form a benzo ring, said ring is optionally substituted with heteroaryl.


In one embodiment, CyC is cycloalkyl selected from monocyclic C3-8cycloalkyl or bridged cycloalkyl




embedded image


each of which is optionally substituted with one or two substituents R5a, preferably, CyC is cyclopentyl or cyclohexyl, each of which is optionally substituted with one or two substituents R5a.


In one embodiment, CyC is heterocyclyl selected from:

    • a) monocyclic 4 to 9-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member;
    • b) monocyclic 4 to 9-membered heterocyclyl groups containing two heteroatoms selected from oxygen, sulfur and nitrogen as ring members; and
    • c) 5 to 20-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members, each of which is optionally substituted with one or two R5a.


In a preferred embodiment, CyC is monocyclic 4 to 6-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member. More preferably, Cyc is selected from oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, azetidinyl, pyrrolidinyl, and piperdinyl. Even more preferably, CyC is selected from □oxetan-2-yl, oxetan-3-yl, tetrahydrofuran-4-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, azetidin-3-yl, azetidin-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperdin-4-yl, piperdin-2-yl, and piperdin-3-yl.


In a preferred embodiment, CyC is monocyclic 6-membered heterocyclyl group containing two heteroatoms selected from oxygen and nitrogen as ring members. More preferably, CyC is dioxanyl, morpholino, morpholinyl, or piperzinyl. Even more preferably 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,4-dioxan-2-yl, morpholin-1-yl, morpholin-2-yl, or morpholin-3-yl.


In a preferred embodiment, CyC is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members. More preferably, CyC is




embedded image


(7-oxa-2-azaspiro[3.5]nonan-2-yl), (2-oxaspiro[3.5]nonan-7-yl).


In a preferred embodiment, R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, monocyclic C3-8cycloalkyl, or monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members, each of said —C1-8alkyl and monocyclic 4 to 9-membered heterocyclyl group is optionally substituted with one or two substituents R5a. Preferably, cycloalkyl as R5a is C3-6cycloalkyl: more preferably cyclopropyl. Preferably, heterocyclyl as R52 is 4 to 6-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members. More preferably, heterocyclyl as R5a is oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, piperzinyl, or morpholinyl. Even more preferably, heterocyclyl as R5a is oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydro-2H-pyran-4-yl, or morphin-4-yl.


In one embodiment, heterocyclyl as R5c is monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members. Preferably, heterocyclyl as R5c is tetrahydro-pyran-4-yl.


In one embodiment, R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is heterocyclyl.


In a more preferred embodiment, R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is tetrahydro-pyran-4-yl. In one embodiment, R5a is —NR5bR5c, wherein R5b and R5c are each independently hydrogen or —C1-6alkyl substituted with cycloalkyl, preferably —C1-6alkyl substituted with monocyclic C3-8cycloalkyl.


In one embodiment, R5a is —OR2b or —SO2R5b, wherein R5b is hydrogen or C1-6alkyl, preferably methyl.


In one embodiment, R5a is —COR5b, wherein R5b is hydrogen or C1-8alkyl optionally substituted with —NR5fR5g, wherein R5f and R5g are each independently hydrogen or C1-8alkyl, preferably methyl.


In one embodiment, two adjacent R5 on the phenyl ring together with the phenyl ring form indazolyl which is substituted with tetrahydropyranyl.


In a preferred embodiment, -L-CyC is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Also disclosed herein is a compound of Formula (II)




embedded image


or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof, wherein

    • Ring A is a phenyl ring, which is 1,4-phenylene: or 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members, each of which is optionally substituted with 1 to 4 substituents R2;
      • R2, at each occurrence, is independently selected from the group consisting of hydrogen, halogen, or —C1-8alkyl optionally substituted with halogen:
    • Ring B is a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member or a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom and one additional heteroatom selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members, said ring is N-linked;
    • R1, R5 and m are defined with formula (I).


The compound of formula (11) corresponds to the compound of formula (I), wherein

    • L1 and L2 are each independently a direct bond, and L4 is —C(O)NHSO2—;
    • L3 is —O—, and R3 is pyrrolo[2,3-b]pyridin-5-yl;
    • R4 is —NO2.


In some embodiment, ring A is 1,4-phenylene. In some embodiment, ring A is 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members: preferably ring A is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members, more preferably ring A is




embedded image


(7-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(2-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(3-azaspiro[5.5]undecan-3,9-diyl),




embedded image


(2-azaspiro[3.3]heptan-2,6-diyl, wherein *1 refers to the position attached to the pyrrolidinyl ring, and **2 refers to the position attached to the phenyl ring.


In some embodiment, ring B is aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably pyrrolidin-1-yl, which is substituted with a phenyl group at position 2 and further optionally substituted with 1 or 2 or 3 substituents R1 on the pyrrolidinyl ring, and said phenyl group at position 2 (i.e., ortho position) is optionally substituted with R1d as defined with Formula (I).


When ring B is pyrrolidin-1-yl, which is substituted with a phenyl group at position 2, and said phenyl group at position 2 (i.e., ortho position) is optionally substituted with R2d as defined with Formula (I), the compound has the following formula (III)




embedded image


In one embodiment for formula (III), ring A is




embedded image


(7-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(2-azaspiro[3.5]nonan-2,7-diyl),




embedded image


(3-azaspiro[5.5]undecan-3,9-diyl),




embedded image


(2-azaspiro[3.3]heptan-2,6-diyl, wherein *1 refers to the position attached to the pyrrolidinyl ring, and **2 refers to the position attached to the phenyl ring so that the compound of formula (III) may be represented by the following subgenus formulas (III-A), (III-B), (III-C), (III-D) or (III-E)




embedded image


embedded image


embedded image


wherein the variables R1d, R2, R5 and m are defined with formula (I).


In some embodiments for subgenus formulas (II), (III), (III-A), (III-B), (III-C), (III-D) or (III-E), wherein R2 is hydrogen.


In some embodiments for subgenus formulas (II), (III), (III-A), (III-B), (III-C), (III-D) or (III-E), R1d is defined with formula (I), preferably, R1d, when substituted on the phenyl group at position 2 of ring B (including the aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably the pyrrolidin-1-yl group), is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NO2, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd as defined with Formula (I), preferably 1 or 2 substituents RBb as defined with Formula (I). In another aspect, one R1d is at position 2 of the phenyl ring at position 2 of ring B.


In some preferred embodiments for subgenus formulas (II), (III), (III-A), (III-B), (III-C), (III-D) or (III-E), R1d is methyl, ethyl, isopropyl, propyl or methoxymethyl, or two methyl at position of the phenyl ring; or propenyl; or cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl, or ethoxy or isopropoxy; or amino or dimethylamino.


In some preferred embodiments for subgenus formulas (III), (III-A), (III-B), (III-C), (III-D) or (III-E), the 2-(2-substituted phenyl)pyrrolidin-1-yl moiety as ring B is selected from the group consisting of;




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some preferred embodiments for subgenus formulas (II), (III), (III-A), (III-B), (III-C), (III-D) or (III-E), m is 1; and L1 is a direct bond, —(CRaRb)t— or —NRa—, wherein t is a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)t— are un-replaced or replaced with one or more moieties selected from O and NRa, wherein Ra and Rb are defined as with Formula (I).


In a preferred embodiment, L1 is a direct bond, —(CRaRb)1-4—, —O—(CRaRb)1-3—, —NH—(CRaRb)1-3, or —NH—, wherein Ra and Rb are defined as with Formula (I) so that the -L5-CyC moiety is CyC, —(CRaRb)1-4-CyC, —O—(CRaRb)1-3-CyC, —NH—(CRaRb)1-3-CyC, or —NH-CyC, respectively. More preferably, L1 is a direct bond, —(CH2)1-4—, —O—(CH2)1-3—, —NH—(CRaRb)—(CH2)2—, or —NH—, wherein Ra is hydrogen and Rb is C1-8alkyl optionally substituted with phenyl-S— so that the -L1-CyC moiety is CyC, —(CH2)1-4-CyC, —O—(CH2)1-3-CyC, —NH—(CRaRb)y (CH2)2-CyC, or —NH-CyC, respectively. More preferably, L5 is a direct bond, —CH2—, —O—CH2—, —NH—CH2—, or —NH— so that the -L5-CyC moiety is CyC, —CH2-CyC, —O—CH2-CyC, —NH—CH2-CyC, or —NH-CyC, respectively.


In one embodiment, CyC is cycloalkyl, or heterocyclyl, each of which is optionally substituted with one or two substituents R5a;

    • R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, -cycloalkyl, or heterocyclyl, each of said —C1-8alkyl, and heterocyclyl is optionally substituted with one or two substituents R5c which is selected from hydrogen, halogen, cyano, —OR5f, —C1-8alkyl, -cycloalkyl, or heterocyclyl;
      • wherein R5b, and R5c are each independently hydrogen, —C1-8alkyl or heterocyclyl, said —C1-8alkyl is optionally substituted with one or two substituents R5c which is hydrogen, —NR5fR5e, or -cycloalkyl;
        • R5f and R5g are each independently hydrogen or —C1-8alkyl:
    • or, two adjacent R5 on the phenyl ring together with the phenyl ring form a benzo ring, said ring is optionally substituted with heteroaryl.


In one embodiment, CyC is cycloalkyl selected from monocyclic C3-8cycloalkyl or bridged cycloalkyl




embedded image


each of which is optionally substituted with one or two substituents R5a, preferably, CyC is cyclopentyl or cyclohexyl, each of which is optionally substituted with one or two substituents R5a.


In one embodiment, CyC is heterocyclyl selected from:

    • a) monocyclic 4 to 9-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member;
    • b) monocyclic 4 to 9-membered heterocyclyl groups containing two heteroatoms selected from oxygen, sulfur and nitrogen as ring members; and
    • c) 5 to 20-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members, each of which is optionally substituted with one or two R5a.


In a preferred embodiment. CyC is monocyclic 4 to 6-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member. More preferably, Cyc is selected from oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, azetidinyl, pyrrolidinyl, and piperdinyl. Even more preferably. CyC is selected from □oxetan-2-yl, Oxetan-3-yl, tetrahydrofuran-4-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, azetidin-3-yl, azetidin-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperdin-4-yl, piperdin-2-yl, and piperdin-3-yl.


In a preferred embodiment, CyC is monocyclic 6-membered heterocyclyl group containing two heteroatoms selected from oxygen and nitrogen as ring members. More preferably, CyC is dioxanyl, morpholino, morpholinyl, or piperzinyl. Even more preferably 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,4-dioxan-2-yl, morpholin-1-yl, morpholin-2-yl, or morpholin-3-yl.


In a preferred embodiment, CyC is 4-membered/4-membered, 3-membered/5-membered. 4-membered/5-membered. 4-membered/6-membered. 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members. More preferably, CyC is




embedded image


(7-oxa-2-azaspiro[3.5]nonan-2-yl), or




embedded image


2-oxaspiro[3.5]nonan-7-yl).


In a preferred embodiment, R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, monocyclic C3-8cycloalkyl, or monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members, each of said —C1-8alkyl and monocyclic 4 to 9-membered heterocyclyl group is optionally substituted with one or two substituents R. Preferably, cycloalkyl as R5a is C3-6cycloalkyl: more preferably cyclopropyl. Preferably, heterocyclyl as R5a is 4 to 6-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members. More preferably, heterocyclyl as R5a is oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, piperzinyl, or morpholinyl. Even more preferably, heterocyclyl as R5a is oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydro-2H-pyran-4-yl, or morphin-4-yl.


In one embodiment, heterocyclyl as R5c is monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members. Preferably, heterocyclyl as R5c is tetrahydro-pyran-4-yl.


In one embodiment, R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is heterocyclyl.


In a more preferred embodiment, R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is tetrahydro-pyran-4-yl. In one embodiment, R5a is —NR5bR5c, wherein R5b and R5c are each independently hydrogen or —C1-6alkyl substituted with cycloalkyl, preferably —C1-6alkyl substituted with monocyclic C3-8cycloalkyl.


In one embodiment, R5a is —OR5b or —SO2R5b, wherein R5b is hydrogen or C1-8alkyl, preferably methyl.


In one embodiment, R5a is —CORb, wherein R5b is hydrogen or C1-8alkyl optionally substituted with —NR5fR5g, wherein R5f and R5g are each independently hydrogen or C1-8alkyl, preferably methyl.


In one embodiment, two adjacent R5 on the phenyl ring together with the phenyl ring form indazolyl which is substituted with tetrahydropyranyl.


In some embodiment, m is 1, and R5 is -L5-CyC selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In a preferred embodiment, m is 1 and R5 is




embedded image


In some embodiment, the carbon atom at position 2 of the pyrrolidinyl ring, to which the phenyl ring in the subgenus formulas (III), (III-A), (III-B), (III-C), (III-D) or (III-E) is attached, is of (S)-configuration.


In some embodiment, compound of formula (I) has the formula (IV)




embedded image


wherein the variable R1, R1d, R5 and m are defined with Formula (I).


In some embodiment, the carbon atom at position 2 of the piperazinyl ring, to which the phenyl ring in the subgenus formula (IV) is attached, is of (S)- or (R)-configuration.


The inventors of the present application have found that the compounds of formula (III), including subgenus formulas (III-A), (III-B), (III-C), (III-D) or (III-E), and formula (IV) are more potent and highly selective due to the optimum combination of the spiro or phenylene moiety and substitution of a phenyl group at position of the nitrogen-linked heterocyclyl (in particular the 2-(2-substituted phenyl)pyrrolidin-1-yl moiety for formula (III) and 2-(2-substituted phenyl)piperazin-1-yl for formula (IV)) of the compounds disclosed herein.


Disclosed here are intermediate compounds selected from a compound selected from:




embedded image


Disclosed herein is a method for treating dysregulated apoptotic diseases, comprising administering a subject in need thereof a therapeutically effective amount of the compound disclosed herein, or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof. In one embodiment, the dysregulated apoptotic disease is cancer, such as, bladder cancer, brain cancer, breast cancer, bone marrow cancer, cervical cancer, chronic lymphocytic leukemia, colorectal cancer, esophageal cancer, hepatocellular cancer, lymphoblastic leukemia, follicular lymphoma, lymphoid malignancies of T-cell or B-cell origin, melanoma, myelogenous leukemia, myeloma, oral cancer, ovarian cancer, non-small cell lung cancer, prostate cancer, small cell lung cancer, spleen cancer published in WO2005049593 and WO2005049594.


In one embodiment, the dysregulated apoptotic disease is autoimmune disease, such as, Systemic Lupus Erythematosus (SLE).


Disclosed herein a pharmaceutical composition comprising the compound disclosed herein, or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof, and a pharmaceutically acceptable carrier.


DETAILED DESCRIPTION OF THE INVENTION
Definitions

The following terms have the indicated meanings throughout the specification:


As used herein, including the appended claims, the singular forms of words such as “a”, “an”, and “the”, include their corresponding plural references unless the context clearly dictates otherwise.


The term “or” is used to mean, and is used interchangeably with, the term “and/or” unless the context clearly dictates otherwise.


The term “alkyl” refers to a hydrocarbon group selected from linear and branched saturated hydrocarbon groups comprising from 1 to 18, such as from 1 to 12, further such as from 1 to 10, more further such as from 1 to 8, or from 1 to 6, or from 1 to 4, carbon atoms. Examples of alkyl groups comprising from 1 to 6 carbon atoms (i.e., C1-6alkyl) include, but not limited to, methyl, ethyl, 1-propyl or n-propyl (“n-Pr”), 2-propyl or isopropyl (“i-Pr”), 1-butyl or n-butyl (“n-Bu”), 2-methyl-1-propyl or isobutyl (“i-Bu”), 1-methylpropyl or s-butyl (“s-Bu”), 1,1-dimethylethyl or t-butyl (“t-Bu”), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 3-methyl-1-butyl, 2-methyl-1-butyl. 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 3-methyl-3-pentyl, 2-methyl-3-pentyl, 2,3-dimethyl-2-butyl and 3,3-dimethyl-2-butyl groups. The alkyl group can be optionally enriched in deuterium, e.g., —CD3, —CD2CD3 and the like.


The term “halogen” refers to fluoro (F), chloro (Cl), bromo (Br) and iodo (I).


The term “haloalkyl” refers to an alkyl group in which one or more hydrogen is/are replaced by one or more halogen atoms such as fluoro, chloro, bromo, and iodo. Examples of the haloalkyl include haloC1-8alkyl, haloC1-6alkyl or halo C1-4alkyl, but not limited to —CF3, —CH2Cl, —CH2CF3, —CCl2, CF3, and the like.


The term “alkenyl” refers to a hydrocarbon group selected from linear and branched hydrocarbon groups comprising at least one C≡C double bond and from 2 to 18, such as from 2 to 8, further such as from 2 to 6, carbon atoms. Examples of the alkenyl group, e.g., C2-6 alkenyl, include, but not limited to ethenyl or vinyl, prop-1-enyl, prop-2-enyl, 2-methylprop-1-enyl, but-1-enyl, but-2-enyl, but-3-enyl, buta-1,3-dienyl, 2-methylbuta-1,3-dienyl, hex-1-enyl, hex-2-enyl, hex-3-enyl, hex-4-enyl, and hexa-1,3-dienyl groups.


The term “alkynyl” refers to a hydrocarbon group selected from linear and branched hydrocarbon group, comprising at least one C≡C triple bond and from 2 to 18, such as 2 to 8, further such as from 2 to 6, carbon atoms. Examples of the alkynyl group, e.g., C2-6 alkynyl, include, but not limited to ethynyl, I-propynyl, 2-propynyl (propargyl), 1-butynyl, 2-butynyl, and 3-butynyl groups.


The term “alkyloxy” or “alkoxy” refers to an alkyl group as defined above attached to the parent molecular moiety through an oxygen atom. Examples of an alkyloxy, e.g., C1-6alkyloxy or C1-4 alkyloxy includes, but not limited to, methoxy, ethoxy, isopropoxy, propoxy, n-butoxy, tert-butoxy, pentoxy and hexoxy and the like.


The term “cycloalkyl” refers to a hydrocarbon group selected from saturated cyclic hydrocarbon groups, comprising monocyclic and polycyclic (e.g., bicyclic and tricyclic) groups including fused, bridged or spiro cycloalkyl.


For example, the cycloalkyl group may comprise from 3 to 12, such as from 3 to 10, further such as 3 to 8, further such as 3 to 6, 3 to 5, or 3 to 4 carbon atoms. Even further for example, the cycloalkyl group may be selected from monocyclic group comprising from 3 to 12, such as from 3 to 10, further such as 3 to 8, 3 to 6 carbon atoms. Examples of the monocyclic cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, and cyclododecyl groups. In particular, Examples of the saturated monocyclic cycloalkyl group, e.g., C3-8 cycloalkyl, include, but not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups. In a preferred embedment, the cycloalkyl is a monocyclic ring comprising 3 to 6 carbon atoms (abbreviated as C3-6cycloalkyl), including but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Examples of the bicyclic cycloalkyl groups include those having from 7 to 12 ring atoms arranged as a fused bicyclic ring selected from [4,4], [4,5], [5,5], [5,6] and [6,6] ring systems, or as a bridged bicyclic ring selected from bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and bicyclo[3.2.2]nonane. Further Examples of the bicyclic cycloalkyl groups include those arranged as a bicyclic ring selected from [5,6] and


ring systems, such as




embedded image


wherein the wavy lines indicate the points of attachment. The ring may be saturated or have at least one double bond (i.e. partially unsaturated), but is not fully conjugated, and is not aromatic, as aromatic is defined herein.


The term “spiro cycloalkyl” refers to a cyclic structure which contains carbon atoms and is formed by at least two rings sharing one atom. The term “7 to 10 membered spiro cycloalkyl” refers to a cyclic structure which contains 7 to 10 carbon atoms and is formed by at least two rings sharing one atom.


The term “fused cycloalkyl” refers to a fused ring which contains carbon atoms and is formed by two or more rings sharing two adjacent atoms. The term “4 to 10 membered fused cycloalkyl” refers to a fused ring which contains 4 to 10 ring carbon atoms and is formed by two or more rings sharing two adjacent atoms.


Examples include but are not limited to bicyclo[1.1.0]butyl, bicyclo[2.1.0]pentyl, bicyclo[3.1.0]hexyl, bicyclo[4.1.0]heptyl, bicyclo[3.3.0]octyl, bicyclo[4.2.0]octyl, decalin, as well as benzo 3 to 8 membered cycloalkyl, benzo C4-6cycloalkenyl, 2,3-dihydro-1H-indenyl, 1H-indenyl, 1,2,3,4-tetralyl, 1,4-dihydronaphthyl, etc. Preferred embodiments are 8 to 9 membered fused cyclyl, which refer to cyclic structures containing 8 to 9 ring atoms within the above examples.


The term “bridged cycloalkyl” refers to a cyclic structure which contains carbon atoms and is formed by two rings sharing two atoms which are not adjacent to each other. The term “7 to 10 membered bridged cycloalkyl” refers to a cyclic structure which contains 7 to 12 carbon atoms and is formed by two rings sharing two atoms which are not adjacent to each other.


The term “cycloalkenyl” refers to non-aromatic cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple rings and having at least one double bond and preferably from 1 to 2 double bonds. In one embodiment, the cycloalkenyl is cyclopentenyl or cyclohexenyl, preferably cyclohexenyl.


The term “cycloalkynyl” refers to non-aromatic cycloalkyl groups of from 5 to 10 carbon atoms having single or multiple rings and having at least one triple bond.


The term “aryl” used alone or in combination with other terms refers to a group selected from:

    • a) 5- and 6-membered carbocyclic aromatic rings, e.g., phenyl;
    • b) bicyclic ring systems such as 7 to 12 membered bicyclic ring systems, wherein at least one ring is carbocyclic and aromatic, e.g., naphthyl and indanyl; and,
    • c) tricyclic ring systems such as 10 to 15 membered tricyclic ring systems wherein at least one ring is carbocyclic and aromatic. e.g., fluorenyl.


The terms “aromatic hydrocarbon ring” and “aryl” are used interchangeable throughout the disclosure herein. In some embodiments, a monocyclic or bicyclic aromatic hydrocarbon ring has 5 to 10 ring-forming carbon atoms (i.e., C5-10 aryl). Examples of a monocyclic or bicyclic aromatic hydrocarbon ring includes, but not limited to, phenyl, naphth-1-yl, naphth-2-yl, anthracenyl, phenanthrenyl, and the like. In some embodiments, the aromatic hydrocarbon ring is a naphthalene ring (naphth-1-yl or naphth-2-yl) or phenyl ring. In some embodiments, the aromatic hydrocarbon ring is a phenyl ring.


The term “heteroaryl” refers to a group selected from:

    • a) 5-, 6- or 7-membered aromatic, monocyclic rings comprising at least one heteroatom, for example, from 1 to 4, or, in some embodiments, from 1 to 3, in some embodiments, from 1 to 2, heteroatoms, selected from nitrogen (N), sulfur (S) and oxygen (O), with the remaining ring atoms being carbon;
    • b) 8- to 12-membered bicyclic rings comprising at least one heteroatom, for example, from 1 to 4, or, in some embodiments, from 1 to 3, or, in other embodiments, 1 or 2, heteroatoms, selected from N, O, and S, with the remaining ring atoms being carbon and w % herein at least one ring is aromatic and at least one heteroatom is present in the aromatic ring; and
    • c) II— to 14-membered tricyclic rings comprising at least one heteroatom, for example, from 1 to 4, or in some embodiments, from 1 to 3, or, in other embodiments. 1 or 2, heteroatoms, selected from N, O, and S, with the remaining ring atoms being carbon and wherein at least one ring is aromatic and at least one heteroatom is present in an aromatic ring.


When the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another. In some embodiments, the total number of S and O atoms in the heteroaryl group is not more than 2. In some embodiments, the total number of S and O atoms in the aromatic heterocycle is not more than 1. When the heteroaryl group contains more than one heteroatom ring member, the heteroatoms may be the same or different. The nitrogen atoms in the ring(s) of the heteroaryl group can be oxidized to form N-oxides. The term “C-linked heteroaryl” as used herein means that the heteroaryl group is connected to the core molecule by a bond from a C-atom of the heteroaryl ring


The terms “aromatic heterocyclic ring” and “heteroaryl” are used interchangeable throughout the disclosure herein. In some embodiments, a monocyclic or bicyclic aromatic heterocyclic ring has 5-, 6-, 7-, 8-, 9- or 10-ring forming members with 1, 2, 3, or 4 heteroatom ring members independently selected from nitrogen (N), sulfur (S) and oxygen (O) and the remaining ring members being carbon. In some embodiments, the monocyclic or bicyclic aromatic heterocyclic ring is a monocyclic or bicyclic ring comprising 1 or 2 heteroatom ring members independently selected from nitrogen (N), sulfur (S) and oxygen (O). In some embodiments, the monocyclic or bicyclic aromatic heterocyclic ring is a 5- to 6-membered heteroaryl ring, which is monocyclic and which has 1 or 2 heteroatom ring members independently selected from nitrogen (N), sulfur (S) and oxygen (O). In some embodiments, the monocyclic or bicyclic aromatic heterocyclic ring is a 8- to 10-membered heteroaryl ring, which is bicyclic and which has 1 or 2 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.


Examples of the heteroaryl group or the monocyclic or bicyclic aromatic heterocyclic ring include, but are not limited to, (as numbered from the linkage position assigned priority 1) pyridyl (such as 2-pyridyl, 3-pyridyl, or 4-pyridyl), cinnolinyl, pyrazinyl, 2,4-pyrimidinyl, 3,5-pyrimidinyl, 2,4-imidazolyl, imidazopyridinyl, isoxazolyl, oxazolyl, thiazolyl, isothiazolyl, thiadiazolyl (such as 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, or 1,3,4-thiadiazolyl), tetrazolyl, thienyl (such as thien-2-yl, thien-3-yl), triazinyl, benzothienyl, furyl or furanyl, benzofuryl, benzoimidazolyl, indolyl, isoindolyl, indolinyl, oxadiazolyl (such as 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, or 1,3,4-oxadiazolyl), phthalazinyl, pyrazinyl, pyridazinyl, pyrrolyl, triazolyl (such as 1,2,3-triazolyl, 1,2,4-triazolyl, or 1,3,4-triazolyl), quinolinyl, isoquinolinyl, pyrazolyl, pyrrolopyridinyl (such as 1H-pyrrolo[2,3-b]pyridin-5-yl), pyrazolopyridinyl (such as 1H-pyrazolo[3,4-b]pyridin-5-yl), benzofuranyl, benzoxazolyl (such as benzo[d]oxazol-6-yl), pteridinyl, purinyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, furazanyl (such as furazan-2-yl, furazan-3-yl), benzofurazanyl, benzothiophenyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, furopyridinyl, benzothiazolyl (such as benzo[d]thiazol-6-yl), indazolyl (such as 1H-indazol-5-yl) and 5,6,7,8-tetrahydroisoquinoline.


“Heterocyclyl”, “heterocycle” or “heterocyclic” are interchangeable and refer to a non-aromatic heterocyclyl group comprising one or more heteroatoms selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members, with the remaining ring members being carbon, including monocyclic, fused, bridged, and spiro ring, i.e., containing monocyclic heterocyclyl, bridged heterocyclyl, spiro heterocyclyl, and fused heterocyclic groups.


The term “monocyclic heterocyclyl” refers to monocyclic groups in which at least one ring member is a heteroatom selected from the group consisting of NH, O, S. SO or SO2. A heterocycle may be saturated or partially saturated.


Exemplary monocyclic 4 to 9-membered heterocyclyl groups include, but not limited to, (as numbered from the linkage position assigned priority 1) pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, imidazolidin-2-yl, imidazolidin-4-yl , pyrazolidin-2-yl, pyrazolidin-3-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, 2,5-piperazinyl, pyranyl, morpholinyl, morpholino, morpholin-2-yl, morpholin-3-yl, oxiranyl, aziridin-1-yl, aziridin-2-yl, azocan-1-yl, azocan-2-yl, azocan-3-yl, azocan-4-yl, azocan-5-yl, thiiranyl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, oxetanyl, thietanyl, 1,2-dithietanyl, 1,3-dithietanyl, dihydropyridinyl, tetrahydropyridinyl, thiomorpholinyl, thioxanyl, piperazinyl, homopiperazinyl, homopiperidinyl, azepan-1-yl, azepan-2-yl, azepan-3-yl, azepan-4-yl, oxepanyl, thiepanyl, 1,4-oxathianyl, 1,4-dioxepanyl, 1,4-oxathiepanyl, 1,4-oxaazepanyl, 1,4-dithiepanyl, 1,4-thiazepanyl and 1,4-diazepanyl, 1,4-dithianyl, 1,4-azathianyl, oxazepinyl, diazepinyl, thiazepinyl, dihydrothienyl, dihydropyranyl, dihydrofuranyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, tetrahydrothiopyranyl, 1-pyrrolinyl, 2-pyrrolinyl, 3-pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, 1,4-dioxanyl, 1,3-dioxolanyl, pyrazolinyl, pyrazolidinyl, dithianyl, dithiolanyl, pyrazolidinyl, imidazolinyl, pyrimidinonyl, or 1,1-dioxo-thiomorpholinyl.


The term “spiro heterocyclyl” or “heterospirocyclyl” refers to a 5 to 20-membered polycyclic heterocyclyl with rings connected through one common carbon atom (called a spiro atom), comprising one or more heteroatoms selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members, with the remaining ring members being carbon. One or more rings of a spiro heterocyclyl group may contain one or more double bonds, but none of the rings has a completely conjugated pi-electron system. Preferably a spiro heterocyclyl is 6 to 14-membered, and more preferably 7 to 10-membered. According to the number of common spiro atoms, a spiro heterocyclyl is divided into mono-spiro heterocyclyl, di-spiro heterocyclyl, or poly-spiro heterocyclyl, and preferably refers to mono-spiro heterocyclyl or di-spiro heterocyclyl, and more preferably 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl. Representative examples of spiro heterocyclyls include, but not limited to the following groups: 2,3-dihydrospiro[indene-1,2′-pyrrolidine] (e.g., 2,3-dihydrospiro[indene-1,2′-pyrrolidine]-1′-yl), 1,3-dihydrospiro[indene-2,2′-pyrrolidine] (e.g., 1,3-dihydrospiro[indene-2,2′-pyrrolidine]-1′-yl), azaspiro[2.4]heptane (e.g., 5-azaspiro[2.4]heptane-5-yl), azaspiro[3.4]octane (e.g., 6-azaspiro[3.4]octane-6-yl). 2-oxa-6-azaspiro[3.4]octane (e.g., 2-oxa-6-azaspiro[3.4]octane-6-yl), azaspiro[3.4]octane (e.g., 6-azaspiro[3.4]octan-6-yl), azaspiro[3.4]octane (e.g., 6-azaspiro[3.4]octan-6-yl), 7-azaspiro[3.5]nonane (e.g., 7-azaspiro[3.5]nonan-7-yl), 2-azaspiro[3.5]nonane (e.g., 2-azaspiro[3.5]nonan-2-yl),1,7-dioxaspiro[4.5]decane, 2-oxa-7-aza-spiro[4.4]nonane (e.g., 2-oxa-7-aza-spiro[4.4]non-7-yl), 7-oxa-spiro[3.5]nonyl and 5-oxa-spiro[2.4]heptyl.


The term “fused heterocyclic group” refers to a 5 to 20-membered polycyclic heterocyclyl group, wherein each ring in the system shares an adjacent pair of atoms (carbon and carbon atoms or carbon and nitrogen atoms) with another ring, comprising one or more heteroatoms selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members, with the remaining ring members being carbon. One or more rings of a fused heterocyclic group may contain one or more double bonds, but none of the rings has a completely conjugated pi-electron system. Preferably, a fused heterocyclyl is 6 to 14-membered, and more preferably 7 to 10-membered. According to the number of membered rings, a fused heterocyclyl is divided into bicyclic, tricyclic, tetracyclic, or polycyclic fused heterocyclyl, preferably refers to bicyclic or tricyclic fused heterocyclyl, and more preferably 5-membered/5-membered, or 5-membered/6-membered bicyclic fused heterocyclyl.


Representative examples of fused heterocycles include, but not limited to, the following groups octahydrocyclopenta[c]pyrrole (e.g., octahydrocyclopenta[c]pyrrol-2-yl), octahydropyrrolo[3,4-c]pyrrolyl, octahydroisoindolyl, isoindolinyl (e.g., isoindoline-2-yl), octahydro-benzo[b][1,4]dioxin, dihydrobenzofuranyl, benzo[d][1,3]dioxolyl.


The term “bridged heterocyclyl” refers to a 5 to 14-membered polycyclic heterocyclic alkyl group, wherein every two rings in the system share two disconnected atoms, comprising one or more heteroatoms selected from the group consisting of NH O, S, SO or SO2 heteroatoms as ring members, with the remaining ring members being carbon. One or more rings of a bridged heterocyclyl group may contain one or more double bonds, but none of the rings has a completely conjugated pi-electron system. Preferably, a bridged heterocyclyl is 6 to 14-membered, and more preferably 7 to 10-membered. According to the number of membered rings, a bridged heterocyclyl is divided into bicyclic, tricyclic, tetracyclic or polycyclic bridged heterocyclyl, and preferably refers to bicyclic, tricyclic or tetracyclic bridged heterocyclyl, and more preferably bicyclic or tricyclic bridged heterocyclyl. Representative examples of bridged heterocyclyls include, but not limited to, the following groups: 2-azabicyclo[2.2.1]heptyl, azabicyclo[3.1.0]hexyl, 2-azabicyclo[2.2.2]octyl and 2-azabicyclo[3.3.2]decyl.


The heterocyclyl ring may be fused to aryl, heteroaryl or cycloalkyl ring, wherein the ring structure is connected to the parent heterocyclic group together.


“C-linked heterocyclyl” as used refers to a heterocyclyl group which is connected to the other part of the molecule by a direct bond from a carbon atom of the heterocyclyl ring.


“N-linked heterocyclyl” as used refers to a heterocyclyl group which is connected to the other part of the molecule by a direct bond from a nitrogen atom of the heterocyclyl ring.


Compounds disclosed herein may contain an asymmetric center and may thus exist as enantiomers. “Enantiomers” refer to two stereoisomers of a compound which are non-superimposable mirror images of one another. Where the compounds disclosed herein possess two or more asymmetric centers, they may additionally exist as diastereomers. Enantiomers and diastereomers fall within the broader class of stereoisomers. All such possible stereoisomers as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers are intended to be included. All stereoisomers of the compounds disclosed herein and/or pharmaceutically acceptable salts thereof are intended to be included.


Unless specifically mentioned otherwise, reference to one isomer applies to any of the possible isomers. Whenever the isomeric composition is unspecified, all possible isomers are included.


The term “substantially pure” as used herein means that the target stereoisomer contains no more than 35%, such as no more than 30%, further such as no more than 25%, even further such as no more than 20%, by weight of any other stereoisomer(s). In some embodiments, the term “substantially pure” means that the target stereoisomer contains no more than 10%, for example, no more than 5%, such as no more than 1%, by weight of any other stereoisomer(s).


When compounds disclosed herein contain olefinic double bonds, unless specified otherwise, such double bonds are meant to include both E and Z geometric isomers.


When compounds disclosed herein contain a di-substituted cyclohexyl or cyclobutyl group, substituents found on cyclohexyl or cyclobutyl ring may adopt cis and trans formations.


Cis formation means that both substituents are found on the upper side of the 2 substituent placements on the carbon, while trans would mean that they were on opposing sides.


It may be advantageous to separate reaction products from one another and/or from starting materials. The desired products of each step or series of steps is separated and/or purified (hereinafter separated) to the desired degree of homogeneity by the techniques common in the art. Typically such separations involve multiphase extraction, crystallization from a solvent or solvent mixture, distillation, sublimation, or chromatography.


Chromatography can involve any number of methods including, for example: reverse-phase and normal phase; size exclusion: ion exchange: high, medium and low pressure liquid chromatography methods and apparatus: small scale analytical: simulated moving bed (“SMB”) and preparative thin or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography. One skilled in the art will apply techniques most likely to achieve the desired separation.


“Diastereomers” refers to stereoisomers of a compound with two or more chiral centers but which are not mirror images of one another. Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereoisomers to the corresponding pure enantiomers. Enantiomers can also be separated by use of a chiral HPLC column.


A single stereoisomer, e.g., a substantially pure enantiomer, may be obtained by resolution of the racemic mixture using a method such as formation of diastereomers using optically active resolving agents (Eliel. E and Wilen. S Stereochemistry of Organic Compounds. New, York: John Wiley & Sons. Inc., 1994: Lochmuller. C. H., et al. “Chromatographic resolution of enantiomers: Selective review.” J. Chromatogr., 113 (3) (1975); pp. 283-302). Racemic mixtures of chiral compounds of the invention can be separated and isolated by any suitable method, including: (1) formation of ionic, diastereomeric salts with chiral compounds and separation by fractional crystallization or other methods, (2) formation of diastereomeric compounds with chiral derivatizing reagents, separation of the diastereomers, and conversion to the pure stereoisomers, and (3) separation of the substantially pure or enriched stereoisomers directly under chiral conditions. See: Wainer. Irving W, Ed. Drug Stereochemistry: Analytical Methods and Pharmacology New York: Marcel Dekker. Inc. 1993.


“Pharmaceutically acceptable salts” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A pharmaceutically acceptable salt may be prepared in situ during the final isolation and purification of the compounds disclosed herein, or separately by reacting the free base function with a suitable organic acid or by reacting the acidic group with a suitable base.


In addition, if a compound disclosed herein is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, such as a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used without undue experimentation to prepare non-toxic pharmaceutically acceptable addition salts.


As defined herein, “a pharmaceutically acceptable salt thereof” include salts of at least one compound of Formula (I), and salts of the stereoisomers of the compound of Formula (I), such as salts of enantiomers, and/or salts of diastereomers.


The terms “administration”. “administering”, “treating” and “treatment” herein, when applied to an animal, human, experimental subject, cell, tissue, organ, or biological fluid, mean contact of an exogenous pharmaceutical, therapeutic, diagnostic agent, or composition to the animal, human, subject, cell, tissue, organ, or biological fluid. Treatment of a cell encompasses contact of a reagent to the cell, as well as contact of a reagent to a fluid, where the fluid is in contact with the cell. The term “administration” and “treatment” also means in vitro and ex vivo treatments, e.g., of a cell, by a reagent, diagnostic, binding compound, or by another cell.


The term “subject” herein includes any organism, preferably an animal, more preferably a mammal (e.g., rat, mouse, dog, cat, rabbit) and most preferably a human.


The term “effective amount” or “therapeutically effective amount” refers to an amount of the active ingredient, such as compound that, when administered to a subject for treating a disease, or at least one of the clinical symptoms of a disease or disorder, is sufficient to affect such treatment for the disease, disorder, or symptom. The “therapeutically effective amount” can vary with the compound, the disease, disorder, and/or symptoms of the disease or disorder, severity of the disease, disorder, and/or symptoms of the disease or disorder, the age of the subject to be treated, and/or the weight of the subject to be treated. An appropriate amount in any given instance can be apparent to those skilled in the art or can be determined by routine experiments. In some embodiments, “therapeutically effective amount” is an amount of at least one compound and/or at least one stereoisomer thereof, and/or at least one pharmaceutically acceptable salt thereof disclosed herein effective to “treat” as defined above, a disease or disorder in a subject. In the case of combination therapy, the “therapeutically effective amount” refers to the total amount of the combination objects for the effective treatment of a disease, a disorder or a condition.


The pharmaceutical composition comprising the compound disclosed herein can be administrated via oral, inhalation, rectal, parenteral or topical administration to a subject in need thereof. For oral administration, the pharmaceutical composition may be a regular solid formulation such as tablets, powder, granule, capsules and the like, a liquid formulation such as water or oil suspension or other liquid formulation such as syrup, solution, suspension or the like: for parenteral administration, the pharmaceutical composition may be solution, water solution, oil suspension concentrate, lyophilized powder or the like. Preferably, the formulation of the pharmaceutical composition is selected from tablet, coated tablet, capsule, suppository, nasal spray or injection, more preferably tablet or capsule. The pharmaceutical composition can be a single unit administration with an accurate dosage. In addition, the pharmaceutical composition may further comprise additional active ingredients.


All formulations of the pharmaceutical composition disclosed herein can be produced by the conventional methods in the pharmaceutical field. For example, the active ingredient can be mixed with one or more excipients, then to make the desired formulation. The “pharmaceutically acceptable excipient” refers to conventional pharmaceutical carriers suitable for the desired pharmaceutical formulation, for example; a diluent, a vehicle such as water, various organic solvents, etc, a filler such as starch, sucrose, etc a binder such as cellulose derivatives, alginates, gelatin and polyvinylpyrrolidone (PVP), a wetting agent such as glycerol, a disintegrating agent such as agar, calcium carbonate and sodium bicarbonate; an absorption enhancer such as quaternary ammonium compound; a surfactant such as hexadecanol: an absorption carrier such as Kaolin and soap clay; a lubricant such as talc, calcium stearate, magnesium stearate, polyethylene glycol, etc. In addition, the pharmaceutical composition further comprises other pharmaceutically acceptable excipients such as a decentralized agent, a stabilizer, a thickener, a complexing agent, a buffering agent, a permeation enhancer, a polymer, aromatics, a sweetener, and a dye.


The term “disease” refers to any disease, discomfort, illness, symptoms or indications, and can be interchangeable with the term “disorder” or “condition”.


Throughout this specification and the claims which follow, unless the context requires otherwise, the term “comprise”, and variations such as “comprises” and “comprising” are intended to specify the presence of the features thereafter, but do not exclude the presence or addition of one or more other features. When used herein the term “comprising” can be substituted with the term “containing”, “including” or sometimes “having”.


Throughout this specification and the claims which follow, the term “C . . . ” indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C1-8, C1-6, and the like.


Unless specifically defined elsewhere in this document, all other technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention belongs.





BRIEF DESCRIPTIONS OF THE DRAWINGS


FIG. 1 shows Co-crystal structure of A4a.



FIG. 2 shows ABT-199 analog (PDB code: 4MAN).



FIG. 3 shows binding pose comparison of A4a with ABT-199 analog (PDB code: 4MAN) to Bcl2 protein.



FIG. 4 shows a. Co-crystal structure of F22 with Bcl-2, b. Co-crystal structure of an ABT-199 analog with Bcl-2 (PDB code: 4MAN), c. Binding pose alignment between F22 and ABT-199 analog.



FIG. 5 shows a. Induced sub-pocket of Bcl-2 by cyclopropyl of F22 in crystal structure, b. No substituent in ABT-199 analog induces a similar sub-pocket at the same position (PDB code: 4MAN), c. Pocket surface alignment between F22 and ABT-199 analog.



FIG. 6 shows a. Water bridge between F22 and Bcl-2 protein, b. No such water bridge can be observed between ABT-199 analog and Bcl-2.



FIG. 7 show a. Sulfur-n interaction (4.41 Å) between Met115 and 2-cyclopropylphenyl of F22, b. Similar interaction (5.00 Å) between Met115 and 4-chlorophenyl of ABT-199 analog.





EXAMPLES

The examples below are intended to be purely exemplary and should not be considered to be limiting in any way. Efforts have been made to ensure accuracy with respect to numbers used (for example, amounts, temperature, etc.), but some experimental errors and deviations should be accounted for, Unless indicated otherwise, temperature is in degrees Centigrade. Reagents were purchased from commercial suppliers such as Sigma-Aldrich, Alfa Aesar, or TCI, and were used without further purification unless indicated otherwise.


Unless indicated otherwise, the reactions set forth below were performed under a positive pressure of nitrogen or argon or with a drying tube in anhydrous solvents; the reaction flasks were fitted with rubber septa for the introduction of substrates and reagents via syringe; and glassware was oven dried and/or heat dried. 1H NMR spectra were recorded on a Agilent instrument operating at 400 MHz. 1HNMR spectra were obtained using CDCl3, CD2Cl2, CD3OD, D2O, d6-DMSO, d6-acetone or (CD3)2CO as solvent and tetramethylsilane (0.00 ppm) or residual solvent (CDCl3: 7.25 ppm; CD3OD: 3.31 ppm; D2O: 4.79 ppm; d6-DMSO: 2.50 ppm; d6-acetone: 2.05; (CD3)2CO: 2.05) as the reference standard. When peak multiplicities are reported, the following abbreviations are used: s (singlet), d (doublet), t (triplet), q (quartet), qn (quintuplet), sx (sextuplet), m (multiplet), br (broadened), dd (doublet of doublets), dt (doublet of triplets). Coupling constants, when given, are reported in Hertz (Hz).


LC-MS spectrometer (Agilent 1260) Detector: MWD (190400 nm), Mass detector; 6120 SQ

    • Mobile phase: A: acetonitrile with 0.1% Formic acid, B: water with 0.1% Formic acid
    • Column: Poroshell 120 EC-C18, 4.6×50 mm, 2.7 μm
    • Gradient method: Flow: 1.8 mL/min














Time (min)
A (%)
B (%)

















0.00
5
95


1.5
95
5


2.0
95
5


2.1
5
95


3.0
5
95









Preparative HPLC was conducted on a column (150×21.2 mm ID, 5 μm, Gemini NX—C18) at a different flow rate and injection volume, at room temperature and UV Detection at 214 nm and 254 nm.


In the following examples, the abbreviations below are used:

    • AcOH or HOAc Acetic acid
    • aq. aqueous
    • BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl)
    • BH3 Borane
    • Brine Saturated aqueous sodium chloride solution
    • Boc2O di(tert-butyl) carbonate
    • BSA Bovine serum albumin
    • DAST Diethylaminosulfur trifluoride
    • DBN 1,5-Diazabicyclo[4.3.0]non-5-ene
    • DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
    • DCE 1,2-Dichloroethane
    • DCM Dichloromethane
    • DMAP 4-Dimethylaminopyridine
    • CH3MgBr Methyl magnesium bromide
    • DIPEA N,N-Diisopropylethylamine
    • DMF N,N-Dimethylformamide
    • DMAC Dimethylacetamide
    • DMSO Dimethyl sulfoxide
    • EA Ethyl acetate
    • EDCI I-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride
    • EDTA Ethylenediaminetetraacetic acid
    • EtOH Ethyl alcohol
    • h or hr hour
    • HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate
    • Hex Hexane
    • 1H NMR Proton Nuclear Magnetic Resonance
    • H2O2 Hydrogen peroxide
    • HOBt Hydroxybenzotriazole
    • IPA (i-PrOH) Isopropyl alcohol
    • KOAc Potassium Acetate
    • LAH Lithium aluminum hydride
    • LC-MS Liquid chromatography-mass spectrometry
    • LDA Lithium diisopropylamide
    • MeOH Methanol
    • MsOH Methanesulfonic acid
    • min minutes
    • MTBE Methyl tert-butyl ether
    • n-BuLi n-Butyllithium
    • NaH Sodium hydride
    • NaBH(OAc)3 Sodium triacetoxyborohydride
    • NaBH3CN Sodium cyanoborohydride
    • NH4Cl Ammonium chloride
    • Pd/C Palladium on carbon powder
    • Pd(dppf)Cl2 [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
    • Pd(PPh3)-4 Tetrakis(triphenylphosphine)palladium(0)
    • Pd(OAc) Palladium acetate
    • Pd(OH)2/C Palladium hydroxide on carbon powder
    • PE Petroleum ether
    • pH ˜lg (hydrogen ion concentration)
    • Prep-HPLC Preparative high-pressure liquid chromatography
    • Prep-MPLC Preparative medium pressure liquid chromatography
    • Prep-SFC Preparative supercritical fluid chromatography
    • Pre-TLC Preparative thin layer chromatography
    • p-TsOH p-Toluenesulfonic acid
    • r.t. or RT room temperature
    • sat. Saturated
    • t-BuOK Potassium tert-butoxide
    • TBS tert-butyldimethylsilyl
    • THF Tetrahydrofuran
    • TEA Triethylamine
    • TFA Trifluoroacetic acid
    • TMSCF3 Trimethyl(trifluoromethyl)silane


Preparation of Intermediates
Intermediate 1-a: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate



embedded image


A mixture of methyl 4-bromo-2-fluorobenzoate (116.5 g, 0.5 mol), 1H-pyrrolo[2,3-b]pyridin-5-ol (67 g. 0.5 mol) and K2CO3 (138 g, 1.0 mol) in DMF (500 mL) was heated at 95° C. for about 16 h. The reaction mixture was cooled to ambient temperature, filtered and the filtrate was diluted with DCM (1 L). The resulting solution was washed with H2O (500 mL×2) and concentrated. The residue was recrystallized from EA (200 mL) and PE (400 mL), the cake (68 g) was collected as the first batch. The filtrate was concentrated and dissolved in EA (500 mL). The solution was washed with H2O (200 mL×2), concentrated, and slurried with EA (25 mL) and PE (25 mL) at reflux for 1 h, cooled to ambient temperature, filtered to give the product (38 g) as the second batch. The two batches of product were combined to afford the product (106 g, 61.3%) as a brown solid. MS (ESI, m/e) [M+1]+346.9, 348.9.


Intermediate 1-b: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate



embedded image


A mixture of tert-butyl 4-bromo-2-fluorobenzoate (238.5 g, 867.3 mmol), 1H-pyrrolo[2,3-b]pyridin-5-ol (116.2 g, 867.3 mmol) and K2CO3 (239.4 g, 1734.5 mmol) in DMF (1 L) was heated at 80° C. for about 16 h. Another batch of K2CO3 (100 g, 724.6 mmol) and 1H-pyrrolo[2,3-b]pyridin-5-ol (10 g, 74.6 mmol) were added into the reaction mixture, the reaction mixture was stirred at 100° C. for another 4 h. The reaction mixture was cooled to ambient temperature, filtered and the mother liquid was concentrated to remove about half volume of DMF. DCM (200 mL) and EA (200 mL) were added and stirred, the resulting mixture was filtered, the filtrate was concentrated, the residue was slurried in EA (200 mL) and PE (200 mL) at ambient temperature for 1 h. The precipitate was filtered and dried to afford the product (155 g, 46.1%) as a yellow solid. MS (ESI, m/e) [M+1]+389.0, 391.0.


Intermediate 1-c: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate



embedded image


To a mixture of tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate (130 g, 334.2 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (127 g, 501.3 mmol) and KOAc (98.3 g, 1002.3 mmol) in 1,4-dioxane (1.3 L) was added Pd(dppf)Cl2 (24.5 g, 66.8 mmol), the mixture was stirred at 85° C. under N2 for about 4 h. The reaction mixture was cooled to ambient temperature and concentrated, the residue was slurried in DCM (1 L), filtered, the mother liquid was concentrated, purified by chromatography column on silica (EA/DCM=1/1) to give the crude product. The crude product was recrystallized from EA (100 mL)/PE (100 mL) and dried to give the product as a brown powder (114.5 g, 78.6%). MS (ESI, m/e) [M+1]+437.2, 355.1


Intermediate 1-d: methyl 2-6-amino-5-chloropyridin-3-yl)oxy)-4-fluorobenzoate



embedded image


Step 1: methyl 4-fluoro-2-((6-nitropyridin-3-yl)oxy)benzoate

A mixture of 5-chloro-2-nitropyridine (2.5 g, 15.75 mmol), methyl 4-fluoro-2-hydroxybenzoate (2.44 g, 14.38 mmol), K2CO3 (3.96 g, 28.65 mmol) in DMSO (30 mL) was stirred at 110° C. for 1 hour. TLC showed the reactant was consumed completely. The reaction mixture was cooled to room temperature and was poured into water and was then extracted with EA (40 mL×3). The combined organic layers were washed with brine (50 mL×2), dried over Na2SO4, filtered and concentrated to give a residue. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 1/1) to obtain methyl 4-fluoro-2-((6-nitropyridin-3-yl)oxy)benzoate (1.3 g). MS (ESI, m/e) [M+1]+293.5.


Step 2: methyl 2-((6-aminopyridin-3-yl)oxy)-4-fluorobenzoate

The mixture of methyl 4-fluoro-2-((6-nitropyridin-3-yl)oxy)benzoate (50 g, 3.42 mmol) and Pd/C (0.8 g) in EtOH (20 mL) was stirred at 25° C. for 3 hours under H2 (50 Psi). TLC showed the reactant was consumed completely. The mixture was filtered and concentrated to remove solvent. The residue was purified by prep-MPLC (eluent: PE/EA=20/1 to 5/1) to obtain methyl 2-((6-aminopyridin-3-yl)oxy)-4-fluorobenzoate (1.3 g, 4.96 mmol, yield: 72.49%). MS (ESI, m/e) [M+1]+263.3.


Step 3: methyl 2-((6-amino-5-chloropyridin-3-yl)oxy)-4-fluorobenzoate

To the solution of methyl 2-((6-aminopyridin-3-yl)oxy)-4-fluorobenzoate (1 g, 38.14 umol) in DMF (10 mL) was added NCS (1 g, 76.28 umol). The mixture was stirred at 25° C. for 4 hours. TLC showed the reactant was consumed completely. The mixture was concentrated to remove solvent. The residue was purified by prep-MPLC (eluent: PE/EA=20/1 to 5/1) to obtain methyl 2-((6-amino-5-chloropyridin-3-yl)oxy)-4-fluorobenzoate (169 mg). 1H NMR (400 MHz, CDCl3) S ppm: 7.84-7.98 (m, 2H), 7.77 (d, J=2.6 Hz, 1H), 7.26 (d, J=2.6 Hz, 1H), 6.77 (ddd, J=8.7, 7.6, 2.4 Hz, 1H), 6.48 (dd, J=10.0. 2.4 Hz, 1H), 4.88 (s, 2H), 3.81 (s, 3H). MS (ESI, m/e) [M+1]+297.2.


Intermediate 2-a: 2-(2-cyclopropylphenyl)pyrrolidine



embedded image


Step 1: tert-butyl 2-(2-bromophenyl)pyrrolidine-1-carboxylate



embedded image


A mixture solution of 2-(2-bromophenyl)pyrrolidine (1.13 g, 5 mmol), Boc2O (2.16 g, 10 mmol), TEA (1.01 g, 10 mmol) and DMAP (cat) in DCM (20 mL) was stirred at room temperature for 16 hrs. Then the mixture solution was concentrated, and the residue was purified by chromatography on silica-gel (eluting with 100% PE to PE/EA=5/1) to give the product (1.6 g, 98.1%) as a colorless oil. MS (ESI, m/e) [M+1]+270.0, 272.0


Step 2: tert-butyl 2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate



embedded image


Under a nitrogen atmosphere, a mixture of tert-butyl 2-(2-bromophenyl)pyrrolidine-1-carboxylate (1.56 g, 4.7 mmol), cyclopropyl boronic acid (1.23 g, 14.3 mmol), Pd(PPh3)-4 (540 mg. 0.47 mmol) and K2CO3 (1.99 g, 14.3 mmol) in 1,4-dioxane/H2O (9:1. 20 mL) was stirred at 90° C. for 16 hours. Then the reaction mixture was filtered and concentrated, the crude product (1.4 g) was used directly in next step without purification. MS (ESI, m/e) [M+1]+232.1.


Step 3: 2-(2-cyclopropylphenyl)pyrrolidine



embedded image


A mixture solution of tert-butyl 2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate (1.4 g) and TFA (5 mL) in DCM (50 mL) was stirred at room temperature for 16 hours. Then the mixture was concentrated to give a product (1.2 g, crude) as a yellow oil. MS (ESI, m/e) [M+1]+188.1.


Intermediate 2-b: 2-(2-isopropylphenyl)pyrrolidine



embedded image


Step 1: tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate



embedded image


tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate was prepared using the similar procedure as tert-butyl 2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate. 1H NMR (400 MHz, DMSO-d6) δ ppm: 7.32-7.14 (m, 2H), 7.14-6.99 (m, 2H), 5.25 (s, 1H), 4.95-4.81 (m, 2H), 3.67-3.54 (m, 1H), 3.53-3.40 (m, 1H), 2.29-2.23 (M, 1H), 2.05 (s, 3H), 1.92-1.73 (m, 2H), 1.64 (s, 1H), 1.36 (s, 3H), 1.07 (s, 6H), MS (ESI, m/e) [M+1]+232.1.


Step 2: tert-butyl 2-(2-isopropylphenyl)pyrrolidine-1-carboxylate



embedded image


A mixture of tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate (983 mg, 3.41 mmol) and Pd(OH)2/C (100 mg) in MeOH (20 mL) was stirred overnight at room temperature under a balloon of H2. Then the reaction mixture was filtered and concentrated to give the desired product as a colorless oil (803 mg, 81%) without further purification for the next deprotection step with TFA 1H NMR (400 MHz, DMSO-d6) δ ppm: 7.27 (d, J=7.0 Hz, 1H), 7.15 (t, J=2.5, 7.0 Hz, 2H), 6.97 (d, J=7.0 Hz, 1H), 5.10-5.05 (m, 1H), 3.64-3.52 (m, 1H), 3.49-3.43 (m, 1H), 3.24-3.10 (m, 1H), 2.31-2.26 (m, 1H), 1.84-1.80 (m, 2H), 1.59-1.53 (m, 1H), 1.38 (s, 3H), 1.28-1.16 (m, 6H), 1.09 (s, 3H), 1.08 (s, 3H).


Step 3: 2-(2-isopropylphenyl)pyrolidine



embedded image


A solution of tert-butyl 2-(2-isopropylphenyl)pyrrolidine-1-carboxylate (803 mg, 2.77 mmol) in DCM (5 mL) and TFA (2 mL) was stirred at r.t. for 4 h. After solvents were removed, the resulted residue was dissolved with DCM (50 mL) and washed with aq. NaHCO3 (30 mL×2). The organic layer was collected and dried over anhydrous Na2SO4, filtered and concentrated to give the desired product as a colorless oil (522 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm: 7.52 (d, J=6.7 Hz, 1H), 7.24-7.22 (m, 1H), 7.19-7.05 (m, 2H), 4.29 (t, J=7.6 Hz, 1H), 3.30-3.23 (m, 1H), 3.27-3.02 (m, 1H), 2.91-2.82 (m, 1H), 2.14-2.06 (m, 1H), 1.79-1.71 (m, 2H), 1.41-1.32 (m, 1H), 1.19 (s, 3H), 1.17 (s, 3H), MS (ESI, m/e) [M+1]+190.1.


Intermediate 2-c: 2-(4-cyclopropylphenyl)pyrrolidine



embedded image


Step 1: tert-butyl 2-(4-bromophenyl)pyrrolidine-1-carboxylate



embedded image


A mixture of 2-(4-bromophenyl)pyrrolidine (2.0 g, 8.85 mmol), Boc2O (2.9 g, 13.3 mmol), Et3N (1.8 g, 17.7 mmol). DMAP (110 mg, 0.9 mmoL) in 20 mL of DCM was stirred for 16 hours at room temperature. The mixture was concentrated and purified by column chromatograph on silica gel using EA/PE (1/10) as an eluent to get 2.2 g (78.6%) of tert-butyl 2-(4-bromophenyl)pyrrolidine-1-carboxylate as a yellow oil. MS (ESI) m/e [M+1]+325.0, 327.0.


Step 2: tert-butyl 2-(4-cyclopropylphenyl)pyrrolidine-1-carboxylate



embedded image


A mixture of tert-butyl 2-(4-bromophenyl)pyrrolidine-1-carboxylate (1.0 g. 3.07 mmol), cyclopropyl boronic acid (790 mg, 9.21 mmol), Pd(PPh3)-4 (358 mg, 0.31 mmol) and K2CO3 (1.27 g, 9.21 mmol) in dioxane (10 mL) was heated to 100° C. for 16 hours under N2. The mixture was filtrated and the filtrate was concentrated to get crude product and further purification by column chromatograph on silica gel using EA/PE (1/10, v/v) as eluent afforded 600 mg (68.1%) of tert-butyl 2-(4-cyclopropylphenyl)pyrrolidine-1-carboxylate as a yellow oil. MS (ESI) m/e [M+1-56]+232.1.


Step 3: 2-(4-cyclopropylphenyl)pyrrolidine



embedded image


A solution of tert-butyl 2-(4-cyclopropylphenyl)pyrrolidine-1-carboxylate (1.2 g, 4.18 mmol) in TFA/DCM (2 mL/10 mL) was stirred at RT for 16 hr. The mixture was concentrated to remove solvent and the residue was partitioned between NaHCO3solution (10 mL) and DCM (10 mL). The organic layer was collected and dried over Na2SO4, concentrated to get 620 mg (79.2%) of 2-(4-cyclopropylphenyl)pyrrolidine. MS (ESI, m/e) [M+1]+188.0.


Intermediate 2-d: 2-(2-methoxyphenyl)pyrrolidine



embedded image


To a solution of 2-(2-bromophenyl)pyrrolidine (500 mg, 2.2 mmol) in MeOH (50 mL) was added Cuprous bromide (158.6 mg, 1.1 mmol) and sodium methanolate (358 mg, 6.6 mmol). The mixture was heated to reflux and stirred overnight. After cooled to room temperature, the mixture was filtered and concentrated, purified by chromatography column on silica (EA/PE=1/1) to give the product (300 mg, 76.6%) as a yellow oil. MS (ESI, m/e) [M+1]+178.1.


Intermediate 2-e: 2-(2-chloro-6-fluorophenyl)pyrrolidine



embedded image


Step 1: 3-(2-chloro-6-fluorobenzoyl-1-vinylpyrrolidin-2-one



embedded image


A dry, 100 mL three-necked, round-bottomed flask equipped with a mechanical stirrer, addition funnel, heating mantle, and reflux condenser, was charged with 60% sodium hydride (0.6 g, 15 mmol) and 25 mL of dry toluene. The stirred suspension was heated at reflux while a mixture of 1.1 g (10 mmol) of vinylpyrrolidin-2-one and 1.9 g (10 mmol) of methyl 2-chloro-6-fluorobenzoate was slowly added. Heating was continued for 10 hr. The reaction mixture was cooled to room temperature and the resultant thick slurry was carefully diluted with 25 mL of saturated aqueous ammonium chloride. The layers were separated, and the aqueous layer was extracted again with 25 mL of toluene. The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to afford 3-(2-chloro-6-fluorobenzoyl)-1-vinylpyrrolidin-2-one as a crude product. [M+1]+268.0.


Step 2: 5-(2-chloro-6-fluorophenyl-3,4-dihydro-2H-pyrrole



embedded image


A mixture of 3-(2-chloro-6-fluorobenzoyl)-1-vinylpyrrolidin-2-one (lg, crude) and HCl (6 M. 10 ml) was heated to reflux for 10 h. the mixture was cooled to r.t and basified to pH=10 and extracted with DCM. The organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was used in next step without further purification (300 mg, crude). MS (ESI, m/e) [M+1]+198.0


Step 3: 2-(2-chloro-6-fluorophenyl)pyrrolidine



embedded image


To a solution of 5-(2-chloro-6-fluorophenyl)-3,4-dihydro-2H-pyrrole (300 mg, crude) in MeOH was added NaBH4 (50 mg) and stirred at r.t for 1 h. then excess MeOH was removed under reduced pressure. The residue was added into water and extracted with DCM. The organic layers were concentrated to afford 2-(2-chloro-6-fluorophenyl)pyrrolidine, which was used in next step without further purification (100 mg, crude). MS (ESI, m/e) [M+1]+200.1.


Intermediate 2-f: 2-cyclohexylpyrrolidone



embedded image


A mixture of 2-phenylpyrrolidine (3.5 g, 23.77 mmol), PtO2 (1.08 g, 4.75 mmol), AcOH (1.14 g, 19.02 mmol, 1.09 mL) in THF (60 mL) was degassed and purged with H2 for 3 times, and then the mixture was stirred at 65° C. for 12 hr under H2 atmosphere (50 psi). LC-MS showed the reaction was completed and one main peak with desired mass was detected. The reaction mixture was filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (TFA condition) to give the product (4 g, TFA salt) as a yellow oil. The product (1 g, TFA salt) was freed by Amberlyst A-21 ion exchange resin in MeOH (60 mL), filtered and concentrated to give the product. The product was neutralized with sat. Na2CO3 (5 mL), extracted with DCM (80 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the product (640 mg) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 4.37 (br s, 1H), 3.13-3.01 (m, 1H), 2.95-2.90 (m, 1H), 2.83-2.72 (m, 1H), 2.00-1.59 (m, 8H), 1.48-1.06 (m, 5H), 1.06-0.88 (m, 2H).


Intermediate 2-g: 2-(2-(trifluoromethyl)phenyl)pyrrolidine



embedded image


Step 1: tert-butyl (4-oxo-4-(2-(trifluoromethyl)phenyl)butyl)carbamate



embedded image


To a solution of 1-bromo-2-(trifluoromethyl)benzene (2 g, 8.89 mmol, 1.21 mL) in THF (15 mL) at −78° C. was added n-BuLi (2.5 M, 3.56 mL). The reaction was stirred at −78° C. for 15 minutes, then added to a solution of tert-butyl 2-oxopyrrolidine-1-carboxylate (1.65 g, 8.89 mmol, 1.51 mL) in THF (15 mL) at −78° C. After addition, the reaction mixture was warmed to 15° C., and stirred at 15° C. for 1 hr. TLC showed the reaction was ok. The mixture was quenched with sat. NH4Cl (20 mL), extracted with EA (20 mL*2). The organic layer was separated, washed with brine, dried over with Na2SO4, filtered and concentrated. The residue was purified by silica gel (PE:EA=50:1 to 10:1) to afford tert-butyl (4-oxo-4-(2-(trifluoromethyl)phenyl)butyl)carbamate (2 g, 6.04 mmol, 67.91% yield) as yellow oil. 1H NMR (400 MHz. CDCl3) δ ppm: 7.72 (d, J=7.4 Hz, 1H), 7.64-7.53 (m, 2H), 7.44 (d, J=7.4 Hz, 1H), 4.63 (br s, 1H), 3.23 (q, J=6.4 Hz, 2H), 2.90 (t, J=7.0 Hz, 2H), 1.93 (quin, J=7.0 Hz, 2H), 1.44 (s, 9H).


Step 2: 4-amino-1-(2-(trifluoromethyl)phenyl)butan-1-one



embedded image


To the mixture solution of tert-butyl (4-oxo-4-(2-(trifluoromethyl)phenyl)butyl)carbamate (2.8 g, 8.45 mmol) in DCM (30 mL) was added TFA (30.80 g, 270.13 mmol, 20 mL). The mixture was stirred at 15° C. for 1 hr. The solvent was removed to afford 4-amino-1-(2-(trifluoromethyl)phenyl)butan-1-one (3.5 g, 7.24 mmol, 85.67%, TFA) as brown oil. 1H NMR (400 MHz, CDCl3) δ ppm: 9.14 (br s, 3H), 7.87-7.83 (m, 1H), 7.80-7.73 (m, 2H), 7.69-7.64 (m, 1H), 4.44-4.29 (m, 2H), 3.45 (t, J=7.9 Hz, 2H), 2.58-2.43 (m, 2H).


Step 3: 2-(2-(trifluoromethyl)phenyl)pyrrolidine



embedded image


To the mixture solution of 4-amino-1-(2-(trifluoromethyl)phenyl)butan-1-one (3 g, 6.53 mmol, 2TFA) in EtOH (72 mL) and AcOH (8 mL) was added NaBH3CN (697.85 mg, 11.10 mmol). The mixture was stirred at 15° C. for 12 hr. The reaction mixture was quenched with sat. NaHCO3solution in water (100 mL). The mixture was concentrated. The residue was dissolved with EA (100 mL), washed with water and brine, dried over with Na2SO4, filtered and concentrated to afford 2-(2-(trifluoromethyl)phenyl)pyrrolidine (0.71 g, 3.16 mmol, 48.33%) as yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.83 (d, J=7.8 Hz, 1H), 7.63-7.52 (m, 2H), 7.38-7.29 (m, 1H), 4.54 (t, J=7.8 Hz, 1H), 3.27-3.25 (m, 1H), 3.18-3.03 (m, 2H), 2.27 (td, J=4.9, 7.8 Hz, 1H), 2.07-1.97 (m, 1H), 1.94-1.80 (m, 1H), 1.69-1.59 (m, 1H), MS (ESI, m/e) [M+1]+216.1/217.1.


Intermediate 2-h: 4,4-dimethyl-2-phenylpyrrolidine



embedded image


Step 1: 2,2-dimethyl-4-oxo-4-phenylbutanoic acid



embedded image


To a solution of 3,3-dimethyldihydrofuran-2,5-dione (15.3 g, 120 mmol) and AlCl3 (31.92 g, 240 mmol) in DCM (200 mL) was added benzene (14.04 g, 180 mmol) dropwise with an ice-water bath. The mixture was warmed up to room temperature slowly and stirred overnight. I was poured into ice and diluted with DCM (400 mL) and conc. HCl acid (50 mL) was added and stirred until no precipitate. The organic layer was dried over anhydrous Na2SO4, filtered and concentrated. The residue was slurried with MTBE and PE to give the desired product as a white solid (22.52 g, 99%). 1H NMR (400 MHz, CDCl3) δ ppm: 7.95 (d, J=8.0 Hz, 2H), 7.56 (t, J=8.0 Hz, 1H), 7.46 (t, J=8.0 Hz, 2H), 3.31 (s, 2H), 1.36 (s, 6H), MS (ESI, m/e) [M+1]+205.1.


Step 2: N-(2,4-dimethoxybenzyl)-2,2-dimethyl-4-oxo-4-phenylbutanamide



embedded image


A solution of 2,2-dimethyl-4-oxo-4-phenylbutanoic acid (18.03 g, 87.5 mmol), (2,4-dimethoxyphenyl)methanamine (14.62 g, 87.5 mmol), HATU (33.25 g, 87.5 mmol) and Et3 (13.3 g, 131.25 mmol), in DCM (200 mL) was stirred at room temperature overnight. DCM was removed. The residue was purified by column flash in silica gel eluted with EA/PE=1/4 to 1/1 (v/v) to give the desired product as a brown oil (30.2 g, 97%). MS (ESI, m/e) [M+1]+356.1.


Step 3: 1-(2,4-dimethoxybenzyl)-3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one



embedded image


A solution of N-(2,4-dimethoxybenzyl)-2,2-dimethyl-4-oxo-4-phenylbutanamide (30.2 g, 85.1 mmol) in toluene (180 mL) and AcOH (10 mL) was refluxed overnight. It was cooled to r.t, and the solvent was removed. The residue was purified by column flash in silica gel eluted with EA/PE=1/10 to/l (v/v) to give the crude product as a yellow oil (10 g, 30% yield). MS (ESI, m/e) [M+1]+388.1.


Step 4: 3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one



embedded image


A solution of 1-(2,4-dimethoxybenzyl)-3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one (9 g, 26.6 mmol) in TFA (50 mL) was stirred at 95° C. for 1 h. It was cooled to r.t, and TFA was removed. The residue was purified by column flash in silica gel eluted with EA/PE=I/1 to give the crude product as a brown oil (4.4 g, 88% yield). MS (ESI, m/e) [M+1]+188.1.


Step 5: 4,4-dimethyl-2-phenylpyrrolidine



embedded image


A solution of 1-(2,4-dimethoxybenzyl)-3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one (2.4 g, 12.8 mmol) in THF (100 mL) and BH3-THF (64 mL, 1 mol/L) was refluxed for 2 h. It was cooled to r.t, and HCl acid (6 M. 20 mL) was added slowly. It was then refluxed for 30 min. The solvent was removed, and the residue was used for next step directly.


Intermediate 2-1: 1-phenylpyrrolidine-2-carbaldehyde



embedded image


Step 1: Phenylproline



embedded image


To a sealed tube flushed with nitrogen was added L-proline (11.5 g, 100 mmol), potassium carbonate (27.6 g, 200 mmol), copper (I) iodide (3.8 g, 20 mmol), iodobenzene (24.4 g, 120 mmol) and DMF (150 ml). The mixture was heated at 90° C. for 48 hours, then cooled to room temperature. Water was added, and the pH value was adjusted to <3 with concentrated HCl acid. The aqueous phase was extracted 4 times with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. Purification by silica gel chromatography (0 to 100% EtOAc/hexane gradient) afforded the crude product which was used directly in the next step. MS (ESI, m/e) [M+1]+192.1


Step 2: (1-phenylpyrrolidin-2-yl)methanol



embedded image


To a solution of phenylproline (1.5 g, 7.8 mmol) in THF (50 mL) was added BH3-THF (1M, 15.6 mL). The reaction was refluxed for 1 hour. Then the reaction was cooled to r.t and quenched with MeOH (5 mL). Solvent was removed and the residue was purified by chromatography to give (1-phenylpyrrolidin-2-yl)methanol (1.3 g) as a colorless oil. MS (ESI, m/e) [M+1]+192.1


Step 3: 1-phenylpyrrolidine-2-carbaldehyde



embedded image


To a solution of (1-phenylpyrrolidin-2-yl)methanol (531 mg, 3 mmol) in DCM (25 mL) was added Dess-Martin reagent (1.9 g, 4.5 mmol) in portions. The mixture was stirred overnight at r.t., then the mixture was washed with sat. NaHCO3 solution and the organic layers were concentrated and purified by chromatography to give 1-phenylpyrrolidine-2-carbaldehyde (100 mg) as a colorless oil. MS (ESI, me) [M+1]+176.1


Intermediate 2-j: 1-(4-bromphenyl)-2-methyl-2-phenylpyrrolidine



embedded image


Step 1: tert-butyl (4-oxo-4-phenylbutyl carbamate



embedded image


To a solution PhBr (8 g, 50.95 mmol, 5.37 mL) in THF (150 mL) was cooled to −78° C. and added n-BuLi (2.5 M, 26.50 mL). The mixture was stirred at −78° C. for 15 min. Then tert-butyl 2-oxopyrrolidine-1-carboxylate (10.38 g, 56.05 mmol, 9.52 mL) in THF (20 mL) was added at −78° C. The mixture was stirred at −78° C. for 15 min. TLC and LC-MS showed the reaction was completed and main peak was title product. H2O (100 mL) was added. The mixture was extracted with EA (200 mL). The organic layer was washed with water and brine, dried over with Na2SO4, filtered and concentrated to afford tert-butyl (4-oxo-4-phenylbutyl)carbamate (14 g, crude) as yellow solid.


Step 2: 5-phenyl-3,4-dihydro-2H-pyrrole



embedded image


To a mixture of tert-butyl (4-oxo-4-phenylbutyl)carbamate (12.3 g, 46.71 mmol) in Toluene (61.5 mL) was added HCl (12 M. 8.56 mL). The mixture was stirred at 65° C. for 12 hr. TLC showed the reaction was completed. The reaction mixture was extracted with EA (50 mL). The aqueous layer was collected, adjusted to pH=10 by saturated NaHCO3solution, extracted with EA (50 mL). The organic layer was washed with brine, dried over with Na2SO4, filtered and concentrated. The residue was purified by silica gel (eluent: PE:EA=50:1 to 10:1) to afford 5-phenyl-3,4-dihydro-2H-pyrrole (3.5 g, 22.90 mmol, 49.03% yield) as light yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.89-7.81 (m, 2H), 7.44-7.41 (m, 2H), 4.08 (br t, J=7.4 Hz, 2H), 2.96 (br t, J=8.2 Hz, 2H), 2.05 (dd, J=7.4, 8.5 Hz, 2H).


Step 3: 2-methyl-2-phenylpyrrolidine



embedded image


To a stirred solution of 5-phenyl-3,4-dihydro-2H-pyrrole (2 g, 13.77 mmol) in THF (60 mL) was added BF3·Et2O (7.82 g, 55.10 mmol, 6.80 mL) at −78° C. The mixture was stirred at −78° C. for 45 min. Then MeLi (1.6 M, 34.44 mL) was added at −78° C. The mixture was stirred at −78° C. for 2.5 hours, then warmed to 15° C., and stirred at 15° C. for 12 hr. TLC showed the reaction was completed. The mixture was poured into water (100 mL), adjusted to pH=12 by saturated NaOH solution, extracted with DCM (100 mL×2). The organic layer was washed with brine, dried over with Na2SO4, filtered and concentrated. The residue was purified by silica gel (eluent: PE:EA=100:1 to 20:1) to afford 2-methyl-2-phenylpyrrolidine (0.9 g, 5.30 mmol, 38.50% yield) as red oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.52-7.46 (m, 2H), 7.36-7.29 (m, 2H), 7.2-7.18 (m, 1H), 3.17-3.09 (m, 1H), 3.04-2.96 (m, 1H), 2.14-2.05 (m, 11H), 1.94-1.85 (m, 2H), 1.80-1.70 (m, 2H), 1.45 (s, 3H).


Step 4: 1-(4-bromophenyl)-2-methyl-2-phenylpyrrolidine



embedded image


The solution of 1-bromo-4-iodobenzene (4.21 g, 14.88 mmol), 2-methyl-2-phenylpyrrolidine (0.6 g, 3.72 mmol), Pd2(dba)3 (340.75 mg, 372.11 umol), BINAP (463.40 mg, 744.22 umol), t-BuOK (1.25 g, 11.16 mmol) in Toluene (40 mL) was stirred at 90° C. for 12 hr. After cooled to room temperature, the reaction mixture was filtered and concentrated. The residue was purified by prep-HPLC. After removal of mobile phase, the residue was dissolved with EA (20 mL), adjusted to pH=8 with saturated NaHCO3solution, separated and concentrated to afford 1-(4-bromophenyl)-2-methyl-2-phenylpyrrolidine (0.43 g, 33.31% yield) as brown oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.34-7.29 (m, 2H), 7.27-7.22 (m, 3H), 7.14-7.12 (m, 2H), 6.31-6.26 (m, 2H), 3.64-3.55 (m, 2H), 2.15-2.10 (m, 2H), 2.01-1.96 (m, 2H), 1.77 (s, 3H), MS (ESI, m/e) [M+1]+316.1, 318.1.


Intermediate 2-k: 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine



embedded image


Step 1: tert-butyl 3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidine-1-carboxylate

2-(2-cyclopropylphenyl)pyrrolidine (0.195 g, 647.19 umol) was dissolved in DCE (6 mL), tert-butyl 3-formylazetidine-1-carboxylate (359.62 mg, 1.94 mmol) and NaBH(OAc)z (274.33 mg, 1.29 mmol) were added. After stirring at 15° C. for 4 h, HOAc (116.59 mg, 1.94 mmol) was added. Stirring was continued at 15° C. for 24 h. Then the reaction mixture was poured into saturated aqueous NaHCO3 (4 mL). The mixture was extracted three times with CH2Cl2 (3×5 mL). The combined organic phase extracts were washed with brine (5 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=20/1 to 5/1). Tert-butyl 3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidine-1-carboxylate (0.18 g) was obtained as a yellow liquid.


Step 2: 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine

To a solution of Tert-butyl 3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidine-1-carboxylate (0.7 g, 1.96 mmol) in CH2Cl2 (4.8 mL) was TFA (2.24 g, 19.64 mmol) at 0° C. under N2. The mixture was stirred at 15° C. for 2 hours. The solution was concentrated under reduced pressure. The residue was adjusted to pH=14 with IN NaOH solution and extracted with CH2C2 (3×5 mL). The combined organic layers were dried and concentrated under reduced pressure. 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine (475 mg) was obtained as a yellow liquid.


Intermediate 2-1: 1-methyl-4-2-pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine



embedded image


Step 1: 142-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one

Under inert N2 atmosphere, to a solution of 2-(2-bromophenyl)pyrrolidine (4 g, 17.68 mmol) in DCM (100 mL) was added TEA (3.57 g, 35.36 mmol) at 0° C., and then trifluoroacetic anhydride (4.46 g, 21.22 mmol) dropwise. The mixture was stirred for overnight at room temperature. The reaction mixture was then poured into 100 mL of water, extracted with DCM (100 mL), washed with 50 mL of brine, dried over anhydrous Na2SO4. The solution was filtered and concentrated to give crude 1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (5.0 g) as a brown oil, which was used into next step without further purification.


Step 2: tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate

To a solution of 1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (5 g, 15.5 mmol) in toluene (10 mL) was added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1 (2H)-carboxylate (7.2 g, 23.25 mmol), Pd(OAc)2 (350 mg, 1.55 mmol), Tricyclohexyl phosphine (870 mg, 3.1 mmol) and K3PO4 (11.5 g, 54.25 mmol). The suspension was stirred at 100° C. for 12 hours at N2 atmosphere. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was further purified by column chromatograph on silica gel (eluent: Petroleum ether/Ethyl acetate=50/1 to 10/1) to give tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate (6.1 g) as yellow oil.


Step 3: 2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To the solution of tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate (6.1 g, 14.5 mmol) in DCM (100 mL) was added TFA (20 mL) at 0° C., and then the mixture was stirred at room temperature for 1 hour. The reaction mixture was adjusted pH to 8-9 using aq. Na2CO3, and then was extracted with DCM. The organic layer was dried, filtered and the filtrate was concentrated under reduced pressure to give 2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (3.8 g) as a brown oil, which was used in next step without further purification.


Step 4: 2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To the solution of 2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (1 g, 3.08 mmol) in MeOH (50 mL) was added HCHO(37%, 1.5 g18.49 mmol) and NaBH3CN (774 mg, 12.32 mmol). The suspension was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure and then the residue was diluted water (15 mL) and EA (30 mL) under stirring. The organic layer was separated and washed with brine, and then dried, filtered and concentrated. The residue was purified by column chromatograph on silica gel (eluent: DCM/MeOH=20/1) to give 2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (0.8 g) as a brown oil.


Step 5: 1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine

To the solution of 2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (0.8 g, 2.36 mmol) in MeOH (50 mL) and H2O (50 mL) was added LiOH·H2O (0.2 g, 4.73 mmol). After the addition, the mixture was heated to 60° C. and stirred for 2 hours. The reaction mixture was concentrated under reduced pressure and then the residue was diluted water (15 mL) and EA (30 mL) under stirring. The organic layer was separated and washed with brine, and then dried, filtered and concentrated. The residue was purified by column chromatograph on silica gel (eluent: DCM/MeOH=50/1) to give 1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine (500 mg) as a brown oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.51 (dd, J=0.98, 7.83 Hz, 1H), 7.24-7.29 (m, 1H), 7.18 (dt, J=1.34, 7.40 Hz, 1H), 7.08 (dd, J=1.22, 7.58 Hz, 1H), 5.55 (td, J=1.60, 3.27 Hz, 1H), 4.29 (t, J=7.83 Hz, 1H), 3.23 (ddd, J=5.14, 7.43, 9.93 Hz, 1H), 3.10 (q, J=2.81 Hz, 2H), 2.94-3.04 (m, 1H), 2.63-2.70 (m, 2H), 2.43 (s, 3H), 2.12 (dtd, J=4.89, 7.81. 12.50 Hz, 1H), 1.80-1.90 (m, 1H), 1.59-1.70 (m, 1H), MS (ESI, m/e) [M+1]+243.1.


Intermediate 2-m: 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine



embedded image


Step 1: tert-butyl 2-(2-bromophenyl)-4-fluoropyrrolidine-1-carboxylate

To a solution of tert-butyl 2-(2-bromophenyl)-4-hydroxypyrrolidine-1-carboxylate (2.5 g, 7.31 mmol) in DCM (30 mL) was added DAST (1.77 g, 10.96 mmol) dropwise. Then the solution was stirred at 20° C. for 12 hours. The reaction mixture was quenched with ice water (30 mL). The organic layer was separated, then washed with saturated NaHCO3solution (30 mL), brine (30 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1 to 10/1) to give tert-butyl 2-(2-bromophenyl)-4-fluoropyrrolidine-1-carboxylate (1.6 g) as a yellow oil.


Step 2: tert-butyl 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine-1-carboxylate

To the solution of tert-butyl 2-(2-bromophenyl)-4-fluoropyrrolidine-1-carboxylate (1.5 g, 4.36 mmol) and cyclopropylboronic acid (1.1 g, 13.1 mmol) in toluene (20 mL) was added Pd(OAc)2 (98 mg, 0.436 mmol), tricyclohexylphosphine (245 mg, 0.872 mmol), K3PO4 (3.2 g, 15.3 mmol) and H2O (1 mL). The suspension was heated at 100° C., and stirred for 12 hours under N2 atmosphere. To the reaction mixture was added water (20 mL) and EtOAc (20 mL). The organic layer was separated, washed with brine (20 mL), dried over Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1) to give tert-butyl 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine-1-carboxylate (1.1 g) as a brown oil.


Step 3: 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine

A solution of tert-butyl 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine-1-carboxylate (1.1 g, 3.6 mmol) in HCl solution (20 mL, 4M in EA) was stirred at room temperature for 2 hours. The reaction mixture was concentrated. To the residue was diluted with saturated Na2CO3 solution (20 mL) and EA (20 mL). The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=4/1 to 1/1) to give 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine (620 mg) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.55 (dd, J=7.5, 1.4 Hz, 1H), 7.15-7.28 (m, 2H), 7.01-7.09 (m, 1H), 5.22-5.48 (m, 1H), 4.71-5.10 (m, 1H), 3.31-3.61 (m, 1H), 2.91-3.11 (m, 1H), 2.52-2.75 (m, 1H), 1.70-2.14 (m, 3H), 0.89-1.06 (m, 2H), 0.60-0.82 (m, 2H), MS (ESI, m/e) [M+1]+206.1.


Intermediate 2-n: 2-chloro-N-d -6 in-2-yl)aniline



embedded image


Step 1: tert-butyl (4-(3-chloro-2-(dimethylamino)phenyl)-4-oxobutyl)carbamate

To the solution of 2-bromo-6-chloro-N,N-dimethylaniline (3.5 g, 14.92 mmol) and tert-butyl 2-oxopyrrolidine-1-carboxylate (2.76 g, 14.92 mmol) in THF (50 mL) was added n-BuLi (6 mL, 2.5 M in hexane) at −70° C., and then stirred for 2 hours. The reaction mixture was added aq. NH4Cl (50 mL) and extracted with EA (50 mL×3). The combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: PE/EA=5/1) to give tert-butyl (4-(3-chloro-2-(dimethylamino)phenyl)-4-oxobutyl)carbamate (1.8 g) as a yellow oil.


Step 2: 4-amino-1-(3-chloro-2-(dimethylamino)phenyl)butan-1-one

To the solution of tert-butyl (4-(3-chloro-2-(dimethylamino)phenyl)-4-oxobutyl)carbamate (1.7 g, 4.99 mmol) in DCM (10 mL) was added TFA (1 mL) and stirred at room temperature for 4 hours. The reaction mixture was concentrated under reduced pressure to give crude 4-amino-1-(3-chloro-2-(dimethylamino)phenyl)butan-1-one (1.2 g, crude) as a yellow oil.


Step 3: 2-chloro-N,N-dimethyl-6-(pyrrolidin-2-yl)aniline

To the solution of 4-amino-1-(3-chloro-2-(dimethylamino)phenyl)butan-1-one (1.2 g, 4.98 mmol) in EtOH (20 mL) was added NaBH3CN (939.77 mg, 14.95 mmol) and HOAc (2 mL) and then stirred at room temperature for 36 hours. The reaction mixture was quenched with water (80 mL) and extracted with EA (50 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by prep-HPLC (HCl). The solution of target peak was adjusted pH to 10 and extracted with DCM (30 mL×3). The organic phase was dried over Na2SO4 and concentrated to give 2-chloro-N,N-dimethyl-6-(pyrrolidin-2-yl)aniline (297 mg) as colorless oil. 1H NMR (400 MHz CDCl3) δ ppm: 7.40 (dd, J=1.3, 7.7 Hz, 1H), 7.19 (dd, J=1.5, 7.9 Hz, 1H), 7.12-7.05 (m, 1H), 4.56 (t, J=7.9 Hz, 1H), 3.19 (ddd, J=5.4, 7.4, 9.9 Hz, 1H), 3.09-2.99 (m, 1H), 2.85 (s. 6H), 2.24 (dtd, J=5.0, 7.7, 12.6 Hz, 1H), 1.95-1.80 (m, 2H), 1.58-1.45 (m, 1H), MS (ESI, m/e) [M+1]+225.2.


Intermediate 2-o: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-2-(trifluoromethyl)pyrrolidine



embedded image


Step 1: N-(4-bromophenyl)-1-(2-cyclopropylphenyl)-2,2,2-trifluoroethan-1-imine

The solution of N-(4-bromophenyl)-1,1,1-triphenyl-15-phosphinimine (1.8 g, 4.16 mmol) and 1-(2-cyclopropylphenyl)-2,2,2-trifluoroethan-1-one (891.83 mg, 4.16 mmol) in toluene (20 mL) was stirred at 110° C. for 12 hours. The reaction mixture was cooled down and concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 10/1) to give N-(4-bromophenyl)-1-(2-cyclopropylphenyl)-2,2,2-trifluoroethan-1-imine (1.1 g, 2.99 mmol) as a yellow oil.


Step 2: 4-bromo-N-(2-(2-cyclopropylphenyl)-1,1,1-trifluoropent-4-en-2-yl)aniline

To a solution of N-(4-bromophenyl)-1-(2-cyclopropylphenyl)-2,2,2-trifluoroethan-1-imine (1.1 g, 2.99 mmol) in DCM (10 mL) was added allylmagnesium bromide (1 M, 14.94 mL) at −20° C., and stirred for 2 hours. The reaction mixture was then quenched with aq. HN4Cl (10 mL) and extracted EA (10 mL×3). The organic layer was dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE) to afford 4-bromo-N-(2-(2-cyclopropylphenyl)-1,1,1-trifluoropent-4-en-2-yl)aniline (1.20 g) as a white solid.


Step 3: 4-((4-bromophenyl)amino)-4-(2-cyclopropylphenyl)-5,5,5-trifluoropentan-1-ol

To a solution of 4-bromo-N-(2-(2-cyclopropylphenyl)-1,1,1-trifluoropent-4-en-2-yl)aniline (1.20 g, 2.92 mmol) in THF (10 mL) was added BH3·THF (1 M, 14.62 mL) at 0° C. and stirred for 1 hour. Then NaOH (2.5 M, 2.92 mL) and H2O2 (1.49 g, 43.87 mmol) was added into the reaction mixture at 0° C. After addition, the mixture was further stirred for 1.5 hours at room temperature. The reaction mixture was then quenched with aq. HN4Cl (10 mL) and extracted with EA (10 mL×3). The organic layer was dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 5/1) to afford 4-((4-bromophenyl)amino)-4-(2-cyclopropylphenyl)-5,5,5-trifluoropentan-1-ol (0.6 g) as a yellow oil.


Step 4: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-2-(trifluoromethyl)pyrrolidine

To a solution of 4-((4-bromophenyl)amino)-4-(2-cyclopropylphenyl)-5,5,5-trifluoropentan-1-ol (0.6 g, 1.55 mmol) in dioxane (10 mL) was added TEA (469.17 mg, 4.64 mmol) and MsCl (265.56 mg, 2.32 mmol) and the mixture was stirred at room temperature for 1.5 hours. Then the mixture was heated to 80° C., and stirred for 1 hour. The reaction mixture was then quenched with aq. NH4Cl (10 mL) and extracted with DCM (10 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=10/1) to afford 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-2-(trifluoromethyl)pyrrolidine (306 mg) as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.63 (td, J=2.6, 6.6 Hz, 1H), 7.26-7.22 (m, 2H), 7.06 (d, J=9.3 Hz, 2H), 6.88-6.83 (m, 1H), 6.32 (d, J=9.0 Hz, 2H), 3.73-3.56 (m, 2H), 2.94-2.68 (m, 2H), 2.44-2.31 (m, 1H), 2.27-2.16 (m, 1H), 1.63-1.58 (m, 1H), 0.96-0.85 (m, 1H), 0.60-0.47 (m, 3H), MS (ESI, m/e) [M+1]+410.0.


Intermediate 2-p: 2-(2-cyclopropylbenzyl)pyrrolidine




embedded image


Step 1: tert-butyl 2-((2-cyclopropylphenyl)(hydroxy)methyl)pyrrolidine-1-carboxylate

A solution of 1-bromo-2-cyclopropylbenzene (4.50 g, 22.84 mmol) in THF (50 mL) was added n-BuLi (9.84 mL, 2.5M) at −70° C. under N2 and stirred for 10 minutes, then tert-butyl 2-formylpyrrolidine-1-carboxylate (3.5 g, 17.57 mmol) was added into the mixture and further stirred for 2 hours. The mixture was quenched with saturated NH4Cl solution (30 mL) and extracted with Ethyl acetate (50 mL×3). The organic phase was dried over Na2SO4, filtered, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=200/1 to 5/1) to give tert-butyl 24 (2-cyclopropylphenyl)(hydroxy)methyl)pyrrolidine-1-carboxylate (3.40 g, 10.72 mmol) as a yellow oil.


Step 2: tert-butyl 2-(((1H-imidazole-1-carbonothioyl)oxy)(2-cyclopropylphenyl)methyl)pyrrolidine-1-carboxylate

A solution of tert-butyl 2-((2-cyclopropylphenyl)(hydroxy)methyl)pyrrolidine-1-carboxylate (3.40 g, 10.72 mmol), di(1H-imidazol-1-yl)methanethione (5.73 g, 32.16 mol) and DMAP (1.32 g, 1072 mmol) in DCM (30 mL) was stirred for 24 hours at room temperature. The mixture was poured into HCl acid (30 mL, 1M) and extracted with DCM (50 mL×3). The organic phase was dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=200/1 to 5/1) to give tert-butyl 2-(((1H-imidazole-1-carbonothioyl)oxy)(2-cyclopropylphenyl)methyl)pyrrolidine-1-carboxylate (3.0 g, 7.02 mmol) as a yellow oil.


Step 3: tert-butyl 2-(2-cyclopropylbenzyl)pyrrolidine-1-carboxylate

To a solution of tert-butyl 2-(((1H-imidazole-1-carbonothioyl)oxy)(2-cyclopropylphenyl)methyl)pyrrolidine-1-carboxylate (2.5 g, 5.852 mmol) in toluene (10 mL) was added tributyltin hydride (2.55 g, 8.778 mmol) and a catalytic amount of AIBN (192.06 g, 1.1704 mmol). The mixture was stirred at 100° C. for 2 hours. The mixture was washed with saturated aq. KF solution (50 mL) and extracted with EA (50 mL×3). The organic phase was dried over Na2SO4, filtered, and concentrated. The residue was purified by prep-HPLC (NaHCO3) to give tert-butyl 2-(2-cyclopropylbenzyl)pyrrolidine-1-carboxylate (650 mg) as a yellow oil.


Step 4: 2-(2-cyclopropylbenzyl)pyrrolidine

tert-butyl 2-(2-cyclopropylbenzyl)pyrrolidine-1-carboxylate (600.00 mg, 1.992 mmol) was added into a solution of MTBE/HCl (10 mL, 4M). The mixture was stirred for 2 hours at room temperature. The reaction mixture was concentrated and adjusted the pH to 10 with saturated Na2CO3 solution, then stirred for 15 mins, extracted with EA (30 mL×3). The organic phase was dried over Na2SO4 and filtered and concentrated to give 2-(2-cyclopropylbenzyl)pyrrolidine (302.00 mg) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.22-7.18 (m, 1H), 7.15-7.10 (m, 2H), 6.98-6.92 (m, 1H), 3.43-3.32 (m, 1H), 3.13-2.80 (m, 4H), 2.05-1.96 (m, 1H), 1.93-1.66 (m, 6H), 1.52-1.40 (m, 1H), 1.01-0.90 (m, 2H), 0.74-0.62 (m, 2H), MS (ESI, m/e) [M+1]+202.2.


Intermediate 2-q: 2-(2-(azetidin-1-yl)phenyl)-1-4-bromophenyl)pyrrolidine



embedded image


Step 1: 2-(azetidin-1-yl)benzaldehyde

To a solution of 2-fluorobenzaldehyde (10 g, 80.6 mmol) and azetidine (9.04 g, 96.7 mmol) in DMSO (50 mL) was added K2CO (33.4 g, 241.17 mmol) and stirred at 80° C. for 24 hours. The mixture was poured into water (300 mL) and was extracted with EA (100 mL×3). The combined organic phase was washed with brine (400 mL), dried with anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1 to 20/1) to give 2-(azetidin-1-yl)benzaldehyde (9 g, crude) as yellow oil.


Step 2: 142-(azetidin-1-yl)phenyl)-N-(4-bromophenyl)methanimine

To a mixture of 2-(azetidin-1-yl)benzaldehyde (4 g, 24.81 mmol) and 4-bromoaniline (4.27 g, 24.81 mmol) in toluene (40 mL) was added 4-methylbenzenesulfonic acid (854 mg, 4.96 mmol) and 4Å molecular sieve (4 g). The mixture was stirred at 140° C. for 6 hours and was then concentrated in vacuum. The crude 1-(2-(azetidin-1-yl)phenyl)-N-(4-bromophenyl)methanimine (9 g) was obtained as yellow solid which was used I next step without further purification.


Step 3: N-(1-(2-(azetidin-1-yl)phenyl)but-3-en-1-yl)-4-bromoaniline

To a mixture of 1-(2-(azetidin-1-yl)phenyl)-N-(4-bromophenyl)methanimine (9 g, 28.55 mmol) in DCM (50 mL) was added allylmagnesium bromide (128.5 mL, 1 M) at −20° C. under N2. The mixture was stirred at room temperature for 2 hours. The mixture was then poured into sat. NH4Cl (200 mL) and was extracted with EA (200 mL×3). The combined organic phase was washed with brine (400 mL), dried with anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (PE/EA=20/1 to 1/1) to give N-(1-(2-(azetidin-1-yl)phenyl)but-3-en-1-yl)-4-bromoaniline (3 g) as yellow oil.


Step 4: 4-(2-(azetidin-1-yl)phenyl)-4-((4-bromophenyl)amino)butan-1-ol

To a solution of N-(1-(2-(azetidin-1-yl)phenyl)but-3-en-1-yl)-4-bromoaniline (3 g, 8.4 mmol) in THF (20 mL) was added BH3 THF (25 g, 25.19 mmol) at 0° C. under N2 atmosphere. The mixture was stirred at 25° C. for 2 hours. NaOH (1.01 g, 25.19 mmol) and H2O2 (9.5 g, 83.97 mmol) at 0° C. was added, then the mixture was stirred for 3 hours. The mixture was poured into H2O (50 mL) and was extracted with EA (100 mL×3). The combined organic phase was washed with brine (200 mL), dried with anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent:PE:EA=1/1 to 0/1) to give 4-(2-(azetidin-1-yl)phenyl)-4-((4-bromophenyl)amino)butan-1-ol (0.9 g) as yellow oil.


Step 5: 2-(2-(azetidin-1-yl)phenyl)-1-(4-bromophenyl)pyrrolidine

To a solution of 4-(2-(azetidin-1-yl)phenyl)-4-((4-bromophenyl)amino)butan-1-ol (0.9 g, 2.4 mmol) in THF (5 mL) was added TEA (960 mg, 9.59 mmol) and MsCl (329 mg, 2.88 umol) at 0° C. After stirred at 25° C. for 2 hours, the reaction mixture was concentrated in vacuum. The residue was purified by Pre-TLC (silica gel, eluent: PE/EA=1/1) to give 2-(2-(azetidin-1-yl)phenyl)-1-(4-bromophenyl)pyrrolidine (388.6 mg) as yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.24-7.18 (m, 2H), 7.17-7.11 (m, 1H), 6.94 (dd, J=1.4, 7.6 Hz, 1H), 6.74-6.66 (m, 1H), 6.55 (dd, J=0.8, 8.0 Hz, 1H), 6.39-6.31 (m, 2H), 4.80 (d, J=7.5 Hz, 1H), 4.11-3.91 (m, 4H), 3.69-3.57 (m, 1H), 3.36 (q, 0.1=8.8 Hz, 1H), 2.38-2.21 (m, 3H), 2.17-1.89 (m, 4H), MS (ESI, m/e) [M+1]+357.1.


Intermediate 2r: 2-(2-(1,1-difluoroethyl)phenyl)pyrrolidine



embedded image


Step 1: 1-bromo-2-(1,1-difluoroethyl)benzene

To DAST (25 mL) was added 1-(2-bromophenyl)ethan-1-one (5 g, 25.120 mmol) in portions at room temperature. The resulting mixture was stirred for overnight at 50° C. under nitrogen atmosphere. The reaction mixture was diluted with CH2Cl2 (100 mL) and was then poured into ice/saturated aq. NaHCO3 (250 mL) and was extracted with CH2Cl2 (2×100 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1) to obtain 1-bromo-2-(1,1-difluoroethyl)benzene (3.5 g) as a yellow liquid.


Step 2: tert-butyl 2-(2-(1,1-difluoroethyl)phenyl)-1H-pyrrole-1-carboxylate

To a stirred solution of 1-bromo-2-(1,1-difluoroethyl)benzene (1.5 g, 6.786 mmol) in THF (18 mL) and H2O (1.8 mL) were added [1-[(tert-butoxy)carbonyl]-1H-pyrrol-2-yl]boronic acid (1.44 g, 6.824 mmol), X-Phos (0.65 g, 1.363 mmol), K3PO4 (4.34 g, 20.446 mmol) and Pd(OAc)2 (152.8 mg, 0.680 mmol). After stirred for 4.5 hours at 70° C. under nitrogen atmosphere, the reaction mixture was diluted with water (50 mL), and was extracted with EA (3×30 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1) to obtain tert-butyl 2-[2-(1,1-difluoroethyl)phenyl]-1H-pyrrole-1-carboxylate 2.2729 g (crude) as a dark yellow oil.


Step 3: tert-butyl 2-(2-(1,1-difluoroethyl)phenyl)pyrrolidine-1-carboxylate

To a stirred solution of tert-butyl 2-[2-(1,1-difluoroethyl)phenyl]-1H-pyrrole-1-carboxylate (2.2729 g, 7.395 mmol) in EtOH (45 mL) were added PtO2 (1.1365 g, 5.005 mmol) and concentrated HCl acid (4 mL) in portions. The resulting mixture was stirred for 5 hours at room temperature under H2 atmosphere (1 atm). After PtO2 were filtered out, the filtrate was concentrated. The residue was diluted with saturated aq. NaHCO3 (200 mL) at 0° C., then was extracted with EA (3×100 mL). The combined organic layers were washed with brine (10) mL), dried over anhydrous Na2SO4 and concentrated to afford tert-butyl 2-[2-(1,1-difluoroethyl)phenyl]pyrrolidine-1-carboxylate 1.7408 g (crude) as a dark yellow oil.


Step 4: 2-(2-(1,1-difluoroethyl)phenyl)pyrrolidine

To a solution of tert-butyl 2-[2-(1,1-difluoroethyl)phenyl]pyrrolidine-1-carboxylate (1.7408 g, 5.591 mmol) in DCM (35 mL) was added HCl solution (4 mL, 4 N in 1,4-dioxane) in portions. The resulting mixture was stirred for 4 h at room temperature under N2 atmosphere. After adjusted PH value to 8 with saturated aq. NaHCO3, the resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (150 mL), dried over anhydrous Na2SO4 and concentrated. The residue was purified by reversed flash chromatography with the following conditions: column, C18 silica gel; mobile phase, CH3CN in water (0.05% NH4HCO3), 10% to 61% gradient in 25 min; detector, UV 220 nm. The resulting eluents was extracted with DCM (3×100 mL). Then the combined organic layers were concentrated to get (2-[2-(1,1-difluoroethyl)phenyl]pyrrolidine) (703.1 mg) as yellow oil. 1H NMR (400 MHz, Chloroform-d) δ ppm; 7.74 (d, J=7.9 Hz, 1H), 7.50-7.39 (m, 2H), 7.27 (t, J=7.7 Hz, 2H), 4.56 (t, J=7.8 Hz, 1H), 3.27 (ddd, J=9.8, 7.4, 5.1 Hz, 1H), 3.06 (dt, J=9.8, 7.4 Hz, 1H), 2.23 (dtd, J=12.8. 7.8, 4.9 Hz, 1H), 2.05 (s, 1H), 2.03-1.94 (m, 5H), 1.94-1.81 (m, 1H), 1.78-1.58 (m, 1H), MS (ESI, m/e) [M+1]+212.1.


Intermediate 2s: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)piperidine



embedded image


Step 1: 1-bromo-2-cyclopropylbenzene

To a stirred solution of 1-bromo-2-iodobenzene (40 g, 141.390 mmol) in dioxane (400 mL) were added K2CO3 (58.62 g, 424.151 mmol), cyclopropylboronic acid (36.44 g, 424.214 mmol) and Pd(dppf)Cl2 (10.35 g, 14.14 mmol). The mixture was stirred for 48 hours at 70° C. under N2 atmosphere. The mixture was diluted with water (1000 mL) and was extracted with EA (3-400 mL). The combined organic layers were washed with brine (400 mL), dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1) to obtain 1-bromo-2-cyclopropylbenzene (22.0 g) as a colorless oil.


Step 2: 2-(2-cyclopropylphenyl)pyridine

To a stirred solution of 1-bromo-2-cyclopropylbenzene (12 g, 60.891 mmol) in dioxane (120 mL) were added 2-(tributylstannyl)pyridine (26.90 g, 73.069 mmol) and Pd(PPh3)-4 (7.04 g, 6.089 mmol). The mixture was stirred for overnight at 100° C. under N2 atmosphere. The reaction was quenched by the addition of water (100 mL). The resulting mixture was extracted with EA (3×50 mL). The combined organic layers were washed with 50 mL of brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=70/1) to obtain 2-(2-cyclopropylphenyl)pyridine (5.80 g) as a light yellow oil.


Step 3: 2-(2-cyclopropylphenyl)piperidine

To a stirred solution of 2-(2-cyclopropylphenyl)pyridine (2.5 g, 12.820 mmol) in EtOH (100 mL) were added HCl acid (con., 3.5 mL) and PtO2 (0.875 g, 3.846 mmol). The resulting mixture was stirred for 4 hours at room temperature under H2 (1 atm) atmosphere.


After PtO2 was filtered out, the filtrate was concentrated. The residue was purified by reverse flash chromatography with the following conditions: column, C18 silica gel, mobile phase, 0.05% TFA in water and CH3CN, 0% to 10% gradient in 30 min; detector, UV 220 nm to afford 900 mg crude product, which was purified by Prep-HPLC with the following conditions (Column: XBridge Prep OBD C18 Column 30×150 mm 5 um: Mobile Phase A: Water (10 mMOL/L NH4HCO3), Mobile Phase B: CH3CN; Flow rate: 60 mL/min; Gradient: 25% B to 37% B in 9 min; 254&220 nm; Rt: 7.92 min) to afford 2-(2-cyclopropylphenyl)piperidine (280 mg) as a yellow oil.


Step 4: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)piperidine

To a stirred mixture of 2-(2-cyclopropylphenyl)piperidine (2.50 g, 12.437 mmol), (4-bromophenyl)boronic acid (4.975 g, 24.874 mmol), Cu(OAc)2 (5.627 g, 31.093 mmol) and activated 4 Å molecular sieves (2.0 g) in DCM (250 mL) was added DIPEA (4.011 g, 31.093 mmol) dropwise at room temperature. The resulting mixture was stirred for 3 hours at room temperature under 02 atmosphere. The reaction mixture was filtered, and the filtrate was concentrated in vacuum. The residue was purified by Prep-HPLC with the following conditions (Column: XBridge Prep OBD C18 Column 30×150 mm Sum; Mobile Phase A: Water (0.05% TFA ), Mobile Phase B: CH3CN; Flow rate: 60 mL/min; Gradient: 43% B to 46% B in 9 min; 254&220 nm; Rt: 7.40 min) to obtain 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)piperidine (310 mg) as a brown solid. 1H NMR (300 MHz, Methanol-d4) δ ppm: 7.46 (s, 2H), 7.31 (d, J=8.5 Hz, 2H), 7.21-7.09 (m, 2H), 6.91 (d, J=7.3 Hz, 1H), 5.30 (s, 1H), 3.78 (s, 2H), 2.20 (s, 1H), 2.13 (s, 4H), 1.00 (d, J=8.4 Hz, 2H), 0.60 (d, J=6.0 Hz, 1H), 0.50 (d, J=5.6 Hz, 1H), MS (ESI, m/e) [M+1]+357.9.


Intermediate 2-t: 2-(2-cyclopropylphenyl)-4-methylpyrrolidine



embedded image


Step 1: methyl 3-methyl-4-nitrobutanoate

To a solution of (E)-methyl but-2-enoate (20 g, 199.77 mmol), CH3NO2 (48.78 g, 799.07 mmol) in MeOH (200 mL) was added DBN (4.60 mg, 39.95 mmol). The mixture was stirred at 60° C. for 6 hours under N2 atmosphere. TLC indicated the reactant was consumed completely. The reaction mixture was added MTBE (700 mL), washed with 1 M HCl (500 mL) and H2O (500 mL). The organic phase was concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=50/1). Methyl 3-methyl-4-nitrobutanoate (23 g, yield: 71.44%) was obtained as a yellow liquid. 1H NMR (400 MHz, CDCl3) δ ppm: 4.27-4.49 (m, 2H), 3.66 (s, 3 H), 2.75 (m, 1H), 2.28-2.48 (m, 2H), 1.06 (d, J=6.84 Hz, 3H).


Step 2: 4-methylpyrrolidin-2-one

To a solution of methyl 3-methyl-4-nitrobutanoate (20 g, 124.10 mmol) in MeOH (200 mL) was added Raney Ni (728.41 mg, 12.41 mmol). The mixture was stirred at 50° C. for 4 hours under H2 atmosphere. TLC indicated the reaction was complete. The reaction mixture was filtered and concentrated under reduced pressure to give 4-methylpyrrolidin-2-one (10 g) as a yellow solid, which was used in next step without further purification.


Step 3: tert-butyl 4-methyl-2-oxopyrrolidine-1-carboxylate

To a mixture of 4-methylpyrrolidin-2-one (10 g, 100.88 mmol), DMAP (6.16 g, 50.44 mmol), TEA (10.21 g, 100.88 mmol) in THF (100 mL) was added (Boc)2O (44.03 g. 201.75 mmol). The mixture was stirred at 25° C. for 3 hours. TLC indicated the reaction was complete. The reaction mixture was filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=100/1 to 50/1). Tert-butyl 4-methyl-2-oxopyrrolidine-1-carboxylate (13 g, 64.68% yield) was obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 3.87 (dd, J=10.7, 7.6 Hz, 1H), 3.29 (dd, J=10.7, 6.9 Hz, 1H), 2.64 (dd, J=17.0, 8.1 Hz, 1H), 2.39 (dd, J=14.6, 7.5 Hz, 1H) 2.16 (dd, J=17.0, 8.1 Hz, 1H), 1.53 (s, 9H), 1.14 (d, J=6.6 Hz, 3H).


Step 4: tert-butyl (4-(2-cyclopropylphenyl)-2-methyl-4-oxobutyl)carbamate

A mixture of 1-bromo-2-cyclopropylbenzene (3.5 g, 17.76 mmol) in THF (50 mL) was degassed and purged with N2 for 3 times, and then n-BuLi (1.04 g, 16.28 mmol) was added dropwise into the mixture at −68° C. After stirred 10 min. Then tert-butyl 4-methyl-2-oxopyrrolidine-1-carboxylate (2.95 g, 14.80 mmol) in THF (10 mL) was added into the mixture. Then the mixture was stirred at −68° C. for 2 hours under N2 atmosphere. TLC indicated the reaction was complete. The reaction was quenched with aqueous NH4Cl (20 mL), extracted with EA (50 mL×3). The combined organic layer was washed with brine (20 mL), dried over Na2SO4, and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel. Petroleum ether/Ethyl acetate=50/1 to 10/1). Tert-butyl (4-(2-cyclopropylphenyl)-2-methyl-4-oxobutyl)carbamate (3.6 g, 76.63% yield) was obtained as a yellow oil. 1H NMR (400 MHz. CDCl4) δ ppm: 7.44 (dd, J=7.7, 1.10 Hz, 1H), 7.32-7.38 (m, 1H), 7.17-7.24 (m, 1H), 7.03 (d, J=7.9 Hz, 1H), 4.68 (s, 1H), 3.12 (t, J=6.3 Hz, 2H), 3.00 (dd, J=16.8, 5.51 Hz, 2H), 2.77 (dd, J=16.8, 7.72 Hz, 1H), 2.24-2.50 (m, 3H), 1.44 (s, 10H), 1.24-1.36 (m, 1H), 0.94-1.03 (m, 5H), 0.88-0.94 (m, 2H), 0.61-0.72 (m, 2H).


Step 5: 4-amino-1-(2-cyclopropylphenyl)-3-methylbutan-1-one

A solution of tert-butyl (4-(2-cyclopropylphenyl)-2-methyl-4-oxobutyl)carbamate (3.5 g, 11.03 mmol) in DCM (50 mL) was degassed and purged with N2 for 3 times, and then TFA (12.57 g, 110.26 mmol) was added. The mixture was stirred at 20° C. for 1 hour under N2 atmosphere. TLC indicated the reaction was complete. The reaction mixture was concentrated under reduced pressure to give a residue. The crude product (2.0 g) was used for next step without purification. 1H NMR (400 MHz, CDCl3) δ ppm: 7.52 (d, J=7.7 Hz, 1H), 7.27-7.44 (m, 8H), 7.24 (d, J=1.1 Hz, 1H), 7.08-7.19 (m, 4H), 6.97 (d, J=7.7 Hz, 3H), 4.46 (t, J=7.2 Hz, 1H), 4.11-4.25 (m, 3H), 3.61-3.75 (m, 3H), 3.08-3.19 (m, 3H), 2.48-2.71 (m, 9H), 2.37 (d, J=5.5 Hz, 3H), 1.08-1.20 (m, 12H), 0.89-0.98 (m, 9H), 0.65-0.71 (m, 4H).


Step 6: 2-(2-cyclopropylphenyl)-4-methylpyrrolidine

A solution of 4-amino-1-(2-cyclopropylphenyl)-3-methylbutan-1-one (2.0 g, 9.20 mmol) in EtOH (20 mL) and HOAc (2 mL) was degassed and purged with N2 for 3 times. Then NaBH3CN (983.23 mg, 15.56 mmol) was added into the solution in portions. The mixture was stirred at 25° C. for 2 hours under N2 atmosphere. LC/MS showed the reaction was completed. The reaction mixture was adjusted to pH=10 with aqueous Na2CO3 (1 N) and extracted with EA (20 mL×5). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (TFA condition). 2-(2-cyclopropylphenyl)-4-methylpyrrolidine (421 mg) was obtained as a yellow oil, 1H NMR (400 MHz, CDCl3) δ ppm: 7.48-7.59 (m, 1H), 7.11-7.25 (m, 2H), 7.01 (d, J=7.3 Hz, 1H), 4.82-4.91 (m, 1H), 3.39 (dd, J=9.9, 6.8 Hz, 1H), 3.24 (dd, J=10.1, 7.5 Hz, 1H), 2.77 (d, J=10.2, 7.8 Hz, 1H), 2.29-2.51 (m, 2H), 2.00 (dd, J=8.3, 5.5 Hz. 1H), 1.35 (d, J=9.8 Hz, 1H), 1.08-1.15 (m, 3H), 0.88-0.98 (m, 2H), 0.61-0.71 (m, 2H). MS (ESI, m/e) [M+1]+202.1.


Intermediate 2-u: (S)-2-(2-cyclopropylphenyl)-1-(7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[3.5]non-6-en-2-yl)pyrrolidine



embedded image


Step 1: (S)-2-(2-cyclopropylphenyl)-1-(8,11-dioxadispiro[3.2.47.24]tridecan-2-yl)pyrrolidine

The solution of 8,11-dioxadispiro[3.2.47.24]tridecan-2-one (2.5 g, 13.35 mmol), (S)-2-(2-cyclopropylphenyl)pyrrolidine (2.36 g, 12.01 mmol) and HOAc (2.4 g, 40.05 mmol) in DCE (30 mL) was stirred at 15° C. for 2 h. Then Na(OAc)3BH (5.6 g. 26.7 mmol) was added into the mixture and then stirred at 15° C. for 12 hours. TLC showed the reaction was completed. The mixture was adjusted to pH=10 with saturated aq. Na2CO3. The organic layer was washed with brine, dried over with Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1 to 7/1) to afford target product (2.5 g, crude) as yellow oil.


Step 2: (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]nonan-7-one

The solution of (S)-2-(2-cyclopropylphenyl)-1-(8,11-dioxadispiro[3.2.47.24]tridecan-2-yl)pyrrolidine (2 g, 5.45 mmol) in acetone (27 mL) was added 1 N HCl acid (27 mL, 27.25 mmol). The mixture was stirred at 15° C. for 6 hours. TLC showed the reaction was completed. After removal of solvent, the residue was dissolved with EA (20 mL), adjusted to pH=9 with saturated aq. NaHCO3. The organic layer was washed with water and brine, dried over with Na2SO4, filtered and concentrated to afford (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]nonan-7-one (1.7 g, crude) as yellow oil.


Step 3: (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl trifluoromethanesulfonate

The mixture solution of (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]nonan-7-one (1.6 g. 4.95 mmol) and 1,1,1-trifluoro-N-phenyl-N-((trifluoromethyl)sulfonyl)methanesulfonamide (2.12 g, 5.94 mmol) in THF (20 mL) was cooled to −78° C. Then LDA (2.97 mL, 5.94 mmol) was added and stirred 2 hours. The mixture was warmed to 15° C., and stirred for 12 hours. TLC shows the reaction was completed. The mixture was poured into saturated aq. NH4Cl, extracted with EA. The organic layer was washed with water and brine, dried over with Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 5/1) to afford (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl trifluoromethanesulfonate (2.4 g, crude) as yellow oil.


Step 4: (S)-2-(2-cyclopropylphenyl)-1-(7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[3.5]non-6-en-2-yl)pyrrolidine

The mixture solution of (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl trifluoromethanesulfonate (2.2 g, 4.83 mmol), B2PIN2 (1.84 g, 7.25 mmol), KOAc (1.42 g, 14.49 mmol) and Pd(dppf)Cl2 (351 mg, 0.48 mmol) in dioxane (20 mL) was stirred at 85° C. for 3 hours. TLC showed the reaction was completed. The mixture was filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=10/1 to 5/1) to afford (S)-2-(2-cyclopropylphenyl)-1-(7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[3.5]non-6-en-2-yl)pyrrolidine (700 mg, 33% yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.66 (t, J=6.1 Hz, 1H), 7.33-7.28 (m, 1H), 7.25-7.12 (n. 4H), 7.04-6.99 (m, 1H), 6.35 (s, 1H), 4.39 (s, 1H), 3.40 (s, 1H), 3.28-3.10 (m, 1H), 2.73 (s, 1H), 2.38-2.25 (m, 1H), 2.05 (s, 2H), 1.99-1.80 (m, 5H), 1.78-1.31 (m, 4H), 1.25 (s, 13H), 1.00-0.86 (m, 2H), 0.71-0.57 (m, 2H), MS (ESI, m/e) [M+1]+434.1.


Intermediate 2-v: tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperazine-1-carboxylate



embedded image


Step 1: tert-butyl 4-(2-formylphenyl)piperazine-1-carboxylate

To a solution of 2-fluorobenzaldehyde (13.33 g, 107.38 mmol) and tert-butyl piperazine-1-carboxylate (30.0 g, 161.07 mmol) in DMSO (150 mL) was added K2CO3 (44.52 g, 322.15 mmol). The mixture was stirred at 100° C. for 12 hr. TLC indicated the reactant was consumed completely. The reaction mixture was cooled to room temperature and poured into H2O (150 mL) and extracted with EA (150 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (Silica gel, PE/EA=100/1 to 30/1). Tert-butyl 4-(2-formylphenyl)piperazine-1-carboxylate (8.5 g) was obtained as a yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 1.50 (s, 9H), 3.02-3.08 (m, 4H), 3.61-3.66 (m, 4H), 7.11 (d, J=8.2 Hz, 1H), 7.17 (t, J=7.5 Hz, 1H), 7.52-7.58 (m, 1H), 7.83 (dd, J=7.7, 1.8 Hz., 1H), 10.36 (s, 1H).


Step 2: (E)-tert-butyl 4-(2-(((4-bromophenyl)imino)methyl)phenyl)piperazine-1-carboxylate

To a solution of tert-butyl 4-(2-formylphenyl)piperazine-1-carboxylate (8 g, 27.55 mmol) and 4-bromoaniline (4.74 g, 27.55 mmol) in toluene. (100 mL) was added 4 Å molecular sieve (5 g) and TsOH (474.45 mg, 2.76 mmol). The mixture was stirred at 120° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated under reduced pressure to remove solvent. (E)-tert-butyl 4-(2-(((4-bromophenyl)imino)methyl)phenyl)piperazine-1-carboxylate (8 g, crude) was obtained as an brown oil. 1H NMR (400 MHz, CDCl3) δ ppm: 1.49 (s, 9H), 2.98 (br, 4H), 3.60 (br, 4H), 7.08-7.13 (m, 3H), 7.17-7.26 (m, 2H), 7.46 (td, J=7.7, 1.6 Hz, 1H), 7.50-7.54 (m, 2H), 8.83 (s, 1H).


Step 3: tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenyl)piperazine-1-carboxylate

To a solution of (E)-tert-butyl-4-(2-(((4-bromophenyl)imino)methyl)phenyl)piperazine-1-carboxylate (8 g, 18.0 mmol) and in DCM (10 mL) was added allylmagnesium bromide (1 M, 18.0 mL) at −20° C. The mixture was stirred at −20° C. for 2 hr. TLC indicated Reactant was consumed completely. The reaction mixture was poured into aq. NH4Cl (150 mL) and extracted with EA (150 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (Silica gel, Petroleum ether), tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenyl)piperazine-1-carboxylate (6.0 g) was obtained as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 1.51 (s, 9H), 2.47-2.66 (m, 2H), 2.83-2.98 (m, 5H), 3.48-3.75 (m, 3H), 4.23 (s, 1H), 4.89 (dd, J=8.1, 4.9 Hz, 1H), 5.10-5.21 (m, 2H), 5.79 (ddt, J=17.0, 10.1. 6.9 Hz, 1H), 6.40-6.44 (m, 2H), 7.10-7.20 (m, 4H), 7.24 (dd, J=7.2, 1.5 Hz, 1H), 7.34 (dd, J=7.6, 1.5 Hz, 1H).


Step 4: tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenyl)piperazine-1-carboxylate

To a solution of tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenyl)piperazine-1-carboxylate (6 g, 12.33 mmol) in THF (100 mL) was added BH3·THF (1M, 185.02 mL) at 0° C. The mixture was stirred at 25° C. for 12 hr. And then NaOH (1.23 g, 30.84 mmol) and H2O2 (6.29 g, 185.02 mmol) was added into the mixture at 0° C. The mixture was stirred at 25° C. for 8 hr. TLC indicated Reactant 4 was consumed completely. The reaction mixture was poured into aq. NH4Cl (150 mL) and extracted with EA (150 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (Silica gel. PE/EA=100/1 to 30/1), tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenyl)piperazine-1-carboxylate (3.5 g) was obtained as a yellow sloid. 1H NMR (400 MHz, CDCl3) δ ppm: 1.50 (s, 10H), 1.56-1.80 (m, 3H), 1.83-1.99 (m, 2H), 2.80-2.94 (m, 4H), 3.38-3.76 (m, 5H), 4.88 (dd, J=7.9, 5.5 Hz, 1H), 6.46-6.51 (m, 2H), 7.11-7.18 (m, 4H), 7.21-7.24 (m, 1H), 7.31-7.34 (m, 1H).


Step 5: tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperazine-1-carboxylate

To a solution of tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenyl)piperazine-1-carboxylate (3.5 g, 6.94 mmol) in DCM (50 mL) and TEA (3.51 g, 34.69 mmol) was added MsCl (715.29 mg, 6.24 mmol) at 0° C., and the mixture was stirred at 25° C. for 1.5 hr. LCMS showed the reactant was consumed completely and one main peak with desired MS was observed. The reaction mixture was poured into aq. NH4Cl (150 mL) and extracted with EA (150 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (Silica gel, PE/EA=10/1). Tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperazine-1-carboxylate (3.0 g) was obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 1.47-1.54 (m, 9H), 1.90-1.98 (m, 1H), 1.98-2.17 (m, 2H), 2.40-2.52 (m, 1H), 2.86-3.02 (m, 4H), 3.35-3.43 (m, 1H), 3.55-3.67 (m, 3H), 3.67-3.75 (m, 1H), 5.07-5.12 (m, 1H), 6.27-6.34 (m, 2H), 7.01-7.07 (m, 1H), 7.08-7.12 (m, 1H), 7.15-7.26 (m, 4H), MS (ESI, m/e) [M+1]+486.1.


Intermediate 2-w: 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane



embedded image


Step 1: tert-butyl 2-(2-cyclopropylphenyl)-4-hydroxypyrrolidine-1-carboxylate

To a solution of 5-(2-cyclopropylphenyl)pyrrolidin-3-ol (1.8 g, 8.9 mmol) and Et3 (0.9 g, 8.9 mmol) in DCM (20 mL) was added Boc2O (1.9 g, 8.9 mmol). Then the mixture was stirred at 20° C. for 12 hours. TLC showed the reaction was complete. The reaction mixture was washed with HCl acid (1 N, 20 mL), saturated aq. NaHCO3solution (20 mL), brine (20 mL), dried over Na2SO4, and concentrated to give tert-butyl 2-(2-cyclopropylphenyl)-4-hydroxypyrrolidine-1-carboxylate (2.3 g, crude) as a yellow oil.


Step 2: tert-butyl 2-(2-cyclopropylphenyl)-4-oxopyrrolidine-1-carboxylate

To a solution of tert-butyl 2-(2-cyclopropylphenyl)-4-hydroxypyrrolidine-1-carboxylate (2.3 g, 7.6 mmol) in DCM (30 mL) was added NaHCO3 (640 mg, 7.6 mmol) and Dess-Martin periodinane (3.2 g, 7.6 mmol). The mixture was stirred at 20° C. for 12 hours. TLC showed the reaction was complete. The reaction mixture was quenched with saturated aq. Na2SO3 solution (30 mL). The organic layer was washed with brine (30 mL), dried over Na2SO4, and concentrated to give tert-butyl 24 (2-cyclopropylphenyl)-4-oxopyrrolidine-1-carboxylate (2.1 g, crude) as a yellow oil.


Step 3: tert-butyl 2-(2-cyclopropylphenyl)-4-methylenepyrrolidine-1-carboxylate

To a mixture of Ph3P+MeBr (5.5 g, 15.3 mmol) in THF (25 mL) was added t-BuOK (1.7 g, 15.3 mmol) in one portion. The mixture was stirred at 20° C. for 1 hour. Then tert-butyl 2-(2-cyclopropylphenyl)-4-oxopyrrolidine-1-carboxylate (2.3 g, 7.64 mmol) was added and the mixture was stirred at 20° C. for 12 hours. TLC showed the reaction was complete. The reaction mixture was quenched with saturated aq. NH4Cl solution (25 mL), and then extracted with EA (25 mL). The organic layer was washed with brine (25 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel eluted with PE/EA=10/1 to give tert-butyl 2-(2-cyclopropylphenyl)-4-methylenepyrrolidine-1-carboxylate (1.3 g, yield: 56%).


Step 4: tert-butyl 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane-5-carboxylate

To a mixture of tert-butyl 2-(2-cyclopropylphenyl)-4-methylenepyrrolidine-1-carboxylate (1.3 g, 4.3 mmol) and Et2Zn (1 M in toluene, 15 mL, 15 mmol) was added ClCH2I (5.3 g, 30 mmol) at 0° C. Then the mixture was stirred at 20° C. for 12 hours. TLC showed a new spot was produced and no material remained. The reaction mixture was quenched with saturated aq. NH4Cl solution (50 mL) and extracted with EA (50 mL). The organic layer was washed with brine (50 mL), dried over Na2SO4, and concentrated to give tert-butyl 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane-5-carboxylate (1 g, crude) as a yellow oil which was used in the next step directly.


Step 5: 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane

A solution of tert-butyl 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane-5-carboxylate (1 g, 3.2 mmol) in HCL/EA (10 mL, 4 M) was stirred at 20° C. for 2 h. LC/MS showed the reaction was complete. The mixture was concentrated. The residue was purified by prep-HPLC (0.1% TFA condition). The target eluent was basified with saturated aq. Na2CO3 solution to pH=10 and then extracted with EA (200 mL×4). The organic layers were combined, dried over Na2SO4, and concentrated to give 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane (293 mg) as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.60 (dd, J=7.6, 1.3 Hz, 1H), 7.13-7.25 (m, 2H), 7.01 (d, J=7.5 Hz, 1H), 4.97 (t, J=7.8 Hz, 1H), 3.02-3.13 (m, 2H), 2.34 (s, 1H), 2.14 (dd, J=12.3, 7.2 Hz, 1H), 2.04 (t, J=8.4, 1H), 1.81-1.90 (m, 1H), 0.87-1.02 (m, 2H), 0.53-0.76 (m, 6H), MS (ESI, m/e) [M+1]+214.1.


Intermediate 2-x: (R)-1-(2-(I-(4-bromophenyl)pyrrolidin-2-yl)benzyl)-4-methylpiperazine



embedded image


Step 1: (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethanone

To a mixture of (R)-2-(2-bromophenyl)pyrrolidine (10 g, 44.23 mmol) and TFAA (18.58 g, 88.45 mmol) in DCM (100 mL) was added TEA (13.5 g, 132.69 mmol) dropwise at 0° C. The mixture was stirred at 20° C. for 10 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with saturated aq. NH4Cl (100 mL×2) and the organic phase was dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography (Silica gel, PE/EA=100/1 to 50/1). (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethanone (13 g) was obtained as a yellow solid.


Step 2: (R)-2,2,2-trifluoro-1-(2-(2-vinylphenyl)pyrrolidin-1-yl)ethenone

To a mixture of (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethanone (5 g, 15.52 mmol), potassium trifluoro(vinyl)borate (2.91 g, 21.73 mmol) and Cs2CO3 (10.11 g. 31.04 mmol) in dioxane (120 mL), H2O (12 mL) was added Pd(dppf)Cl2 (567 mg, 776 umol) at 20° C. The mixture was purged with N2 for three times and then heated to 100° C. for 5 hours. TLC and LC/MS indicated the reactant was consumed completely. The reaction mixture was concentrated in vacuum (˜30 mL). The residue was poured into ice-water (50 mL). The aqueous phase was extracted with EA (50 mL×3). The combined organic phases were dried with anhydrous Na2SO4, filtered and concentrated. The crude product was purified by column chromatography (Silica gel, PE/EA=100/1 to 50/1). (R)-2,2,2-trifluoro-1-(2-(2-vinylphenyl)pyrrolidin-1-yl)ethanone (3.4 g, 12.63 mmol, 81.34% yield) was obtained as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.44-7.51 (m, 1H), 7.21-7.27 (m, 2H), 6.88-7.07 (m, 2H), 5.61-5.71 (m, 1H), 5.46-5.60 (m, 1H), 5.33-5.45 (m, 1H), 3.75-4.03 (m. 2H), 2.27-2.41 (m, 1H), 1.82-2.12 (m, 3H), MS (ESI, m/e) [M+1]+270.1.


Step 3: (R)-2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzaldehyde

To a mixture of (R)-2,2,2-trifluoro-1-(2-(2-vinylphenyl)pyrrolidin-1-yl)ethanone (3.4 g, 12.63 mmol) and K2O5O4·2H2O (186 mg, 505.1 umol) in THF (60 mL), H2O (60 mL) was added Na1O4 (10.8 g, 50.51 mmol) in portions at 10° C. The mixture was stirred at 10° C. for 2 hr. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated to remove THF. The aqueous phase was extracted with EA (50 mL×3). The combined organic phases were washed with brine, dried with anhydrous Na2SO4, filtered and concentrated. (R)-2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzaldehyde (3.4 g, crude) was obtained as a brown oil. MS (ESI, m/e) [M+1]+272.1.


Step 4: (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate

To a mixture of (R)-2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzaldehyde (3.4 g, 12.54 mmol) and tert-butyl piperazine-1-carboxylate (4.67 g, 25.07 mmol) in DCE (100 mL) was added NaBH(OAc)3 (10.6 g, 50.16 mmol) in portions at 10° C. The mixture was stirred at 10° C. for 10 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with NaHCO3 (50 mL) and then the organic phase was separated. The organic phase was dried with anhydrous Na2SO4, filtered and concentrated. (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (3.5 g) was obtained as a yellow oil. MS (ESI, m/e) [M+1]+442.3.


Step 5: (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate

To a solution of (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (3.3 g, 7.47 mmol) in EtOH (50 mL) was added NaBH4 (662.13 mg, 16.44 mmol) in portions at 20° C. The mixture was stirred at 20° C. for 4 hours.


TLC indicated the reactant was consumed completely. The reaction mixture was concentrated to remove EtOH (˜10 mL), poured into ice-water (20 mL). The aqueous phase was extracted with EA (50 mL×3). The combined organic phases were washed with brine, dried with anhydrous Na2SO4, filtered and concentrated. (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (2.55 g, crude) was obtained as a yellow oil. MS (ESI, m/e) [M+1]+346.3.


Step 6: (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate

To a mixture of (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (2.55 g, 7.38 mmol), 1-bromo-4-iodobenzene (3.13 g, 11.07 mmol), X-phos (703 mg, 1.48 mmol) and Cs2CO3 (4.81 g, 14.76 mmol) in toluene (100 mL) was added Pd(OAc)2 (166 mg, 738 umol) at 20° C. The mixture was purged with N2 for three times and then heated to 105° C. for 10 hours. TLC indicated the reactant was consumed completely. The reaction mixture was poured into ice-water (50 mL) and the organic phase was separated. The organic phase was dried with anhydrous Na2SO4, filtered and concentrated. (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (1.25 g) was obtained as an orange solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.05-7.24 (m, 6H) 6.40 (d, J=8.9 Hz, 2H) 5.28-5.37 (m, 1H) 3.68-3.86 (m, 2H) 3.29-3.53 (m, 6H) 2.35-2.59 (m, 5H) 1.98-2.15 (m, 2H) 1.79-1.88 (m, 1H) 1.41-1.51 (m, 9H).


Step 7: (R)-1-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine

A solution of (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine-1-carboxylate (1.25 g, 2.50 mmol) in TFA (20 mL) and DCM (60 mL) was stirred at 20° C. for 12 hours. LC/MS indicated the reactant was consumed completely and desired compound was generated. The reaction solution was concentrated. The residue was diluted with EA (50 mL). The organic phase was washed with saturated aq. NaHCO3 (50 mL) and the organic phase was separated. The organic phase was dried with anhydrous Na2SO4, filtered and concentrated. (R)-1-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine (1 g, crude) was obtained as a yellow oil. MS (ESI, m/e) [M+1] 400.2.


Step 8: (R)-1-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)-4-methylpiperazine

To a mixture of (R)-1-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperazine (1 g, 2.50 mmol) and HCHO (374.99 mg, 12.49 mmol) in DCE (50 mL) was added NaBH(OAc)3 (2.1 g, 10 mmol) in portions at 20° C. The mixture was stirred at 20° C. for 1 hour. LC/MS indicated the reactant was consumed completely and desired compound was generated. The reaction mixture was filtered and the filtrate was concentrated. The crude was purified by prep-HPLC (Phenomenex luna C18 250 mm*100 mm*10 um; mobile phase: [water (0.1% TAF)-ACN]). The purified solution was concentrated. The aqueous phase was based with saturated NaHCO3and then extracted with EA (50 mL×3). The combined organic phases were dried with anhydrous Na2SO4, filtered and concentrated. (R)-1-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)-4-methylpiperazine (440 mg) was obtained as a yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.01-7.24 (m, 6H), 6.36 (d, J=8.8 Hz, 2H), 5.22 (d, J=8.2 Hz, 1H), 3.88 (d, J=12.8 Hz, 1H), 3.72 (t, J=7.4 Hz, 1H), 3.33-3.50 (m, 2H), 2.34-3.14 (m, 12H), 2.06 (s, 2H), 1.84 (d, J=5.7 Hz, 1H), MS (ESI, m/e) [M+1]+414.2.


Intermediate 2-y: tert-butyl (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate




embedded image


Step 1: (E)-tert-butyl 4-((2-tosylhydrazono)methyl)piperidine-1-carboxylate

A mixture of tert-butyl 4-formylpiperidine-1-carboxylate (1.75 g, 9.38 mmol) and 4-methylbenzenesulfonohydrazide (2.0 g, 9.38 mmol) in EtOH (30 mL) was stirred at 20° C. for 15 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated in vacuum. (E)-tert-butyl 4-((2-tosylhydrazono)methyl)piperidine-1-carboxylate (3.4 g, crude) was obtained as a colorless oil.


Step 2: (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzylidene)piperidine-1-carboxylate

To a mixture of (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethanone (3 g, 9.31 mmol), (E)-tert-butyl 4-((2-tosylhydrazono)methyl)piperidine-1-carboxylate (5.33 g, 13.97 mmol) and t-BuOLi (2.98 g, 37.24 mmol) in dioxane (100 mL) was added Pd(PPh3)2Cl2 (670.5 mg, 931 umol) at 20° C. The mixture was purged with N2 for three times and then heated to 100° C. for 3 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated in vacuum (˜20 mL). The residue was poured into ice-water (30 mL) and was extracted with EA (50 mL×3). The combined organic phases were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated. The crude was purified by column chromatography (Silica gel, PE/EA=30/1 to 10/1). (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzylidene)piperidine-1-carboxylate (2.17 g, 4.95 mmol, 53.08% yield) was obtained as a red oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.16-7.25 (m, 2H), 7.04-7.11 (m, 1H), 6.92-7.01 (m, 1H), 6.29-6.46 (m, 1H), 5.29-5.45 (m, 1H), 3.75-4.00 (m, 2H), 3.12-3.69 (m, 4H), 2.16-2.41 (m, 4H), 1.83-2.15 (m, 3H), 1.70-1.82 (m, 1H), 1.47 (s, 9H), MS (ESI, m/e) [M+1]+339.2.


Step 3: (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate

To a solution of (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzylidene)piperidine-1-carboxylate (2.3 g, 5.25 mmol) in MeOH (30 mL) was added Pd/C (300 mg, 10% wet). The mixture was purged with H2 for three times and then stirred at 20° C. for 10 hours under 15 Psi H2. LC/MS indicated Reactant was consumed completely and desired compound was formed. The reaction mixture was filtered with Celite, washed with MeOH. The filtrate was concentrated. (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate (2.3 g, crude) was obtained as a brown solid. 1H NMR (400 MHz, CDCL3) δ ppm: 7.07-7.23 (m, 3H), 6.86-6.98 (m, 1H), 5.34-5.52 (m, 1H), 3.73-4.24 (m, 4H), 2.44-2.83 (m, 4H), 2.31-2.44 (m, 1H), 1.56-2.21 (m, 6H), 1.37-1.55 (m, 9H), 1.05-1.33 (m, 2H).


Step 4: (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate

To a solution of (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate (2.3 g, 5.22 mmol) in MeOH (10 mL), H2O (10 mL), THF (10 mL) was added LiOH·H2O (438.5 mg, 10.44 mmol) at 20° C. The mixture was heated to 50° C. for 1 hour. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated in vacuum to remove MeOH and THF. The aqueous phase was extracted with EA (30 mL×3). The combined organic phases were dried with anhydrous Na2SO4, filtered and concentrated. (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate (1.76 g, crude) was obtained as a yellow oil. MS (ESI, m/e) [M+1]+345.2.


Step 5: (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate

To a mixture of (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate (1.4 g, 4.06 mmol), 1-bromo-4-iodobenzene (1.72 g. 6.10 mmol), X-phos (387 mg, 812 umol) and Cs2CO3 (2.64 g, 8.12 mmol) in toluene (50 mL) was added Pd(OAc)2 (90 mg, 406 umol) at 20° C. The mixture was purged with N2 for three times and then heated to 100° C. for 5 hours. TLC indicated the reactant was consumed completely. The reaction mixture was cooled to room temperature and poured into ice-water (30 mL) and then separated. The organic phase was washed with brine, dried with anhydrous Na2SO4, filtered and concentrated. The crude was purified by column chromatography (silica gel, eluent: PE/EA=100/1 to 50/1). (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)benzyl)piperidine-1-carboxylate (720 mg) was obtained as a yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.00-7.24 (m, 6H) 6.27 (d. J=9.0 Hz, 2H) 4.80-4.92 (m, 1H) 4.02-4.27 (m, 2H) 3.65-3.78 (m, 1H) 3.35-3.47 (m, 1H) 2.57-2.83 (m, 4H) 2.36-2.51 (m, 1H) 1.97-2.12 (m, 2H) 1.80-1.95 (m, 2H) 1.71 (d, J=12.1 Hz, 2H) 1.48 (s, 9H) 1.23-1.31 (m, 2H), MS (ESI, m/e) [M+1]+498.9.


Intermediate 2-z: (S)—N,N-dim 1-2-(pyrrolidin-2-yl)aniline



embedded image


Step 1: (S)-tert-butyl 2-(2-((diphenylmethylene)amino)phenyl)pyrrolidine-1-carboxylate

To a solution of (S)-tert-butyl 2-(2-bromophenyl)pyrrolidine-1-carboxylate (2.0 g, 6.13 mmol) in 1,4-dioxane (50 mL) was added diphenylmethanimine (1.67 g, 9.20 mmol), Cs2CO3 (3.99 g, 12.26 mmol), Pd2(dba)3 (561.4 mg, 6.13 mmol), and Xant-phos (1.06 g, 1.84 mmol). The mixture was stirred at 105° C. for 36 hours under N2 protection. LC/MS showed (S)-tert-butyl 2-(2-bromophenyl)pyrrolidine-1-carboxylate was consumed completely and one main peak with desired mass signal. The mixture was evaporated in vacuum. The residue was used directly for next step. MS (ESI, m/e) [M−1]427.2.


Step 2: (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate

To a solution of (S)-tert-butyl 2-(2-((diphenylmethylene)amino)phenyl)pyrrolidine-1-carboxylate (262 mg, 613 umol, 1 eq) and in THF (5 mL) was added 0.5 N HCl acid 10 mL.


The mixture was stirred at 20° C. for overnight. TLC showed (S)-tert-butyl 2-(2-((diphenylmethylene)amino)phenyl)pyrrolidine-1-carboxylate was consumed completely. The mixture was adjusted to PH ˜8 with saturated aq. NaHCO3, then was extracted with EA (20 ml). The organic phase was washed with brine, dried over Na2SO4, evaporated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=10/1 to 1/1) to give (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate (50 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 6.91-7.16 (m, 2H), 6.70-6.87 (m, 1H), 6.62-6.70 (m, 1H), 4.60-5.06 (m, 1H), 3.36-3.97 (m, 4H), 2.13-2.35 (m, 1H), 1.83-2.01 (m, 3H), 1.16-1.54 (m, 9H).


Step 3: (S)-tert-butyl 2-(2-(dimethylamino)phenyl)pyrrolidine-1-carboxylate

To a solution of (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate (6.5 g, 22.87 mmol) in MeOH (200 mL) was added aq. HCHO (37%, 11.14 g, 137.22 mmol), and NaH3CN(5.95 g, 114.35 mmol). The mixture was stirred at 20° C. for 14 hours. TLC showed (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate was consumed completely. The mixture was evaporated in vacuum. The residue was dissolved with DCM (100 mL), washed with brine, dried over Na2SO4, concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1 to 30/1) to give (S)-tert-butyl 2-(2-(dimethylamino)phenyl)pyrrolidine-1-carboxylate (5.9 g). 1H NMR (400 MHz, CDCl3) δ ppm: 6.93-7.15 (m, 4H), 5.12-5.37 (m, 1H), 3.36-3.69 (m, 2H), 2.60 (s, 6H), 2.20-2.37 (m, 1H), 1.64-1.87 (m, 3H), 1.39 (s, 2H), 1.10 (s, 6H).


Step 4: (S)—N,N-dimethyl-2-(pyrrolidin-2-yl)aniline

To solution of (S)-tert-butyl 2-(2-(dimethylamino)phenyl)pyrrolidine-1-carboxylate (5.90 g, 20.32 mmol) in DCM (30 mL) was added TFA (30 mL). The mixture was stirred at 20° C. for 2 hours. TLC showed (S)-tert-butyl 2-(2-(dimethylamino)phenyl)pyrrolidine-1-carboxylate was consumed completely. The mixture was poured into water was then adjusted to pH ˜10 with aq. NaOH (2N). The mixture was extracted with DCM (50 mL×3), washed with brine and water, dried with anhydrous Na2SO4. After filtration, the filtrate was concentrated in vacuum to give (S)—N,N-dimethyl-2-(pyrrolidin-2-yl)aniline (3.248 g). 1H NMR (400 MHz, CDCl3) δ ppm: 7.38-7.52 (m, 1H) 7.18-7.24 (m, 1H) 7.03-7.16 (m, 2H) 4.59 (t, J=7.9 Hz, 1H), 3.24 (ddd, J=10.0, 7.6, 5.1 Hz, 1H), 3.00 (dt, J=9.8, 7.7 Hz, 1H), 2.71 (br, 6H), 2.17-2.33 (m, 1H), 2.14 (s, 1H), 1.80-2.04 (m, 2H), 1.54-1.77 (m, 1H), MS (ESI, m/e) [M+1]+191.3.


Intermediate 2-z1: (S)—N,N-bis(methyl-d3)-2-(pyrrolidin-2-yl)aniline



embedded image


Step 1: (S)-tert-butyl 2-(2-(d6-dimethylamino)phenyl)pyrrolidine-1-carboxylate

To a solution of (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate (6.5 g, 22.87 mmol) in DMF (20 mL) was added NaH (457.4 mg, 11.44 mmol), and CD3I (2.21 g, 15.25 mmol) at 0° C. The mixture was stirred at 45° C. for 14 hours. TLC showed (S)-tert-butyl 2-(2-aminophenyl)pyrrolidine-1-carboxylate was consumed completely. The mixture was poured into water (50 mL), extracted with EA, concentrated in vacuum to give tert-butyl (S)-2-(2-(bis(methyl-d3)amino)phenyl)pyrrolidine-1-carboxylate (880 mg), which was used in next step without further purification. 1H NMR (400 MHz, CDCl3) δ ppm: 7.00-7.22 (m, 4H), 5.20-5.43 (m, 1H), 3.49-3.72 (m, 2H), 2.26-2.45 (m, 1H), 1.72-1.95 (m, 3H), 1.47 (s, 2H), 1.18 (s, 7H), MS (ESI, m/e) [M+1]+297.4.


Step 2: (S)—N,N-bis(methyl-d3)-2-(pyrrolidin-2-yl)aniline

To solution of (S)-2-(2-(bis(methyl-d3)amino)phenyl)pyrrolidine-1-carboxylate (275 mg, 927.68 umol), in DCM (10 mL) was added TFA (5 mL). The mixture was stirred at 20° C. for 2 hours. TLC showed the reactant was consumed completely. The mixture was concentrated in vacuum to give a residue. The residue was dissolved with DCM (20 mL), washed with sat. aq. Na2CO3 (20 mL), dried with Na2SO4, concentrated in vacuum to give (S)—N,N-bis(methyl-d3)-2-(pyrrolidin-2-yl)aniline (100 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.42 (dd, J=7.7, 1.3 Hz, 1H), 7.19-7.26 (m, 1H), 7.07-7.18 (m, 2H), 4.63 (t, J=7.9 Hz, 1H), 3.24 (ddd, J=10.3, 7.4, 5.4 Hz, 1H), 3.04-3.11 (m, 1H), 2.18-2.30 (m, 1H), 1.87-2.06 (m, 2H), 1.66-1.77 (m, 1H), MS (ESI, m/e) [M+1]+197.3.


Intermediate 2-z2: 2-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane



embedded image


Step 1: (1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methanol

To a solution of 2-(((tert-butyldimethylsilyl)oxy)methyl)-1-(2-cyclopropylphenyl)pyrrolidine (1.5 g, 4.52 mmol) in MeOH/HCl (20 mL) at 20° C., and the mixture was stirred for 1 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated to give (1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methanol (0.8 g, crude). 1H NMR (400 MHz, CDCl3) δ ppm: 7.81 (d, J=7.7 Hz, 1H), 7.34-7.40 (m, 1H), 7.28-7.34 (m, 1H), 7.04 (dd, J=7.7. 1.2 Hz, 1H), 4.55 (br, 1H), 4.19 (s, 1H), 4.11 (d, J=13.9 Hz, 1H), 3.85-4.15 (m, 2H), 3.59-3.81 (m, 3H), 2.52-2.64 (m, 1H), 2.48 (s, 2H), 2.37 (s, 2H), 1.22-1.35 (m, 2H), 0.77-0.98 (m, 2H), MS (ESI, m/e) [M+1]+217.9.


Step 2: 1-(2-cyclopropylphenyl)pyrrolidine-2-carbaldehyde

To a solution of (COCl)2 (700.9.m g, 5.52 mmol) in DCM (20 mL) was added DMSO (862.93 mg. 11.04 mmol) drop-wise at −65° C. The mixture was stirred at −65° C. for 0.5 hour. And then (1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methanol (800.0 mg, 3.68) in DCM (2 mL) was added drop-wise at −65° C. The mixture was further stirred at −65° C. for 1 hour. TLC indicated the reactant was consumed completely. To the reaction mixture was added TEA (2.89 g, 29.45 mmol) and warmed to 20° C. for 0.5 hour. The reaction mixture was poured into water, extracted with DCM, dried over anhydrous Na2SO4 and concentrated in vacuum to obtain 1-(2-cyclopropylphenyl)pyrrolidine-2-carbaldehyde (1.2 g, crued). 1H NMR (400 MHz, CDCl3) δ ppm: 12.10 (s, 1H), 9.39 (d, J=3.8 Hz, 1H), 7.06-7.16 (m, 1H), 6.85-7.03 (m, 3H), 4.19 (td, J=7.1, 3.9 Hz, 1H), 3.86-3.96 (m, 1H), 3.05-3.16 (m, 6H), 2.62 (s, 1H), 2.12-2.26 (m, 2H), 2.00-2.12 (m, 2H), 1.90-2.00 (m, 1H), 1.42 (t, J=7.3 Hz, 9H), 1.00-1.10 (m, 1H), 0.75-0.94 (m, 2H), 0.59-0.67 (m, 1H).


Step 3: tert-butyl 6-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane-2-carboxylate

To a solution of 1-(2-cyclopropylphenyl)pyrrolidine-2-carbaldehyde (600 mg, 2.79 mmol) in DCM (10 mL) was added NaBH(OAc)3 (1.18 g, 5.57 mmol) at 0° C. slowly. Then tert-butyl 2,6-diazaspiro[3.3]heptane-2-carboxylate oxalate (803.46 mg, 2.79 mmol) was added into the mixture at 0° C. The mixture was stirred at 20° C. for 1 hour. TLC indicated the reactant was consumed completely. The reaction mixture was poured into water, extracted with DCM (10 mL) and concentrated in vacuum to give a residue. The residue was purified by column chromatography (SiO2, PE/EA=100/1 to 0/1). Tert-butyl 6-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (600 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.07-7.14 (m, 1H), 7.01 (d, J=7.9 Hz, 1H), 6.90-6.97 (m, 1H), 6.83-6.88 (m, 1H), 3.95 (s, 4H), 3.61-3.75 (m, 2H), 3.16-3.43 (m, 4H), 2.86 (td, J=8.5, 5.1 Hz, 1H), 2.11-2.21 (m, 2H), 2.06 (s, 1H), 1.87-1.99 (m, 2H), 1.74-1.87 (m, 2H), 1.57-1.74 (m, 1H), 1.42 (s, 9H), 0.95-1.13 (m, 1H), 0.70-0.95 (m, 3H), 0.52-0.62 (m, 1H), MS (ESI, m/e) [M+1]+398.1.


Step 4: 2-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane

To a solution of tert-butyl 6-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (600 mg, 1.51 mmol) in DCM (8 mL) was added TFA (2 mL) at 20° C. The mixture was stirred at 20° C. for 1 hour. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated to give 2-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane (326 mg) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.10 (t, J=7.3 Hz, 1H), 6.99-7.04 (m, 1H), 6.91 (s, 1H), 6.80-6.88 (m, 1H), 3.78 (br, 4H), 3.57-3.74 (m, 2H), 3.22-3.40 (m, 4H), 2.80-3.03 (m, 3H), 2.55 (d, J=12.6 Hz, 1H), 2.10-2.28 (m, 3H), 1.90 (s, 1H), 1.67-1.84 (m, 2H), 0.82-1.10 (m, 2H), 0.51-0.81 (m, 2H), MS (ESI, m/e) [M+1]+298.2.


Intermediate 2-z3: (S)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine



embedded image


Step 1: tert-butyl 4-(2,2-dichloro-3-oxocyclobutyl)piperidine-1-carboxylate

To the mixture of Zn (4.64 g, 70.99 mmol) in dioxane (50 mL) under N2 atmosphere was added tert-butyl 4-vinylpiperidine-1-carboxylate (5.0 g, 23.66 mmol) at 20° C. Then CCl3COC (6.45 g, 35.49 mmol) was added at 20° C. The mixture was stirred at 20° C. for 12 hours. To the reaction mixture was added aq. NaHCO3 (50 mL) at 0° C. Then the mixture was extracted with EA (50 mL×5) and the combine organic phase was dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography (SiO2. PE/EA=50/1 to 20/1). Tert-butyl 4-(2,2-dichloro-3-oxocyclobutyl)piperidine-1-carboxylate (3.0 g) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 4.05-4.21 (m, 2H) 3.04-3.27 (m, 2H) 2.77 (br, 2H) 2.60 (q, J=10.4 Hz, 1H) 2.03-2.10 (m, 1H) 1.84-1.97 (m, 1H) 1.52-1.63 (m, 1H) 1.46 (s, 9H) 1.16-1.41 (m, 3H).


Step 2: tert-butyl 4-(3-oxocyclobutyl)piperidine-1-carboxylate

To a mixture of Zn (1.22 g, 18.62 mmol) in HOAc (3.73 g, 62.07 mmol) under N2 atmosphere was added tert-butyl 4-(2,2-dichloro-3-oxocyclobutyl)piperidine-1-carboxylate (2.0 g, 6.21 mmol) in Diox (15 mL) at 15° C., the mixture was stirred at 15° C. for 12 hours. The mixture was adjusted to pH ˜9 with 33% aq. NaOH and was extracted with EA (50 mL×3). After dried and concentrated, the residue was purified by column chromatography (SiO2, PE/EA=50/1 to 10/1). Tert-butyl 4-(3-oxocyclobutyl)piperidine-1-carboxylate (1.0 g, 3.95 mmol) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 4.14 (s, 2H) 3.02-3.17 (m, 2H) 2.64-2.83 (m, 4H) 2.05-2.18 (m, 1H) 1.72 (d, J=12.8 Hz, 2H) 1.35-1.36 (m, 1H) 1.47 (s, 8H) 1.15 (d, J=12.3, 4.3 Hz, 2H).


Step 3: (S)-tert-butyl 4-(3 (2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine-1-carboxylate

To a solution of tert-butyl 4-(3-oxocyclobutyl)piperidine-1-carboxylate (0.7 g, 2.76 mmol, 1 eq) and (S)-2-(2-cyclopropylphenyl)pyrrolidine (569.23 mg, 3.04 mmol) in DCE (20 mL) was added AcOH (331.86 mg, 5.53 mmol) and NaBH(OAc)3 (1.17 mg, 5.53 mmol). The mixture was stirred at 25° C. for 1 hour. TLC showed the reactant was consumed completely. The reaction mixture was quenched with aq. Na2CO3 (20 mL) and extracted EA (20 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. (S)-tert-butyl 4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine-1-carboxylate (1.1 g) was obtained. MS (ESI, m/e) [M+1]+425.3.


Step 4: (S)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine

A mixture of (S)-tert-butyl 4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine-1-carboxylate (0.9 g, 2.12 mmol) in DCM (5 mL) and TFA (5 mL) was stirred at 25° C. for 1 hour. LC/MS showed the reactant was consumed completely and one main peak with desired mass signal. The reaction mixture was concentrated in vacuum to remove solvent. The residue was diluted with H2O (10 mL) and was adjusted to pH ˜9 with saturated aq. Na2CO3. The mixture was extracted with EA (10 mL×3), dried over Na2SO4, filtered and concentrated. (S)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine (643 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.66-7.56 (m, 1H), 7.21-7.08 (m, 2H), 6.97 (d, J=7.5 Hz, 1H), 6.34 (s, 1H), 3.96 (q, J=7.7 Hz, 1H), 3.30-2.83 (m, 4H), 2.75-2.60 (m, 2H), 2.46-2.31 (m, 1H), 2.29-2.14 (m, 1H), 2.06-1.44 (m, 10H), 1.40-1.03 (m, 4H), 0.98-0.85 (m, 2H), 0.74-0.55 (m, 2H), MS (ESI, m/e) [M+1]+325.3.


Intermediate 2-z4. 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)-1-methylpiperidine



embedded image


Step 1: tert-butyl 4-(2-formylphenoxy)piperidine-1-carboxylate

To a solution of tert-butyl 4-hydroxypiperidine-1-carboxylate (5.0 g, 24.84 mmol) and 2-fluorobenzaldehyde (6.17 g, 49.69 mmol) in DMSO (150 mL) was added K2CO3 (10.15 g, 74.53 mmol). The mixture was stirred at 100° C. for 6 hours. TLC indicated the reactant was consumed completely. The reaction mixture was cooled to room temperature and was poured into H2O (50 mL) and extracted with EA (50 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (SiO2, PE/EA=20/1 to 10/1) to obtain tert-butyl 4-(2-formylphenoxy)piperidine-1-carboxylate (6 g). MS (ESI, m/e) [M+1]+306.1.


Step 2: (E)-tert-butyl 4-(2-(((4-bromophenyl)imino)methyl)phenoxy)piperidine-1-carboxylate

A mixture of tert-butyl 4-(2-formylphenoxy)piperidine-1-carboxylate (4.30 g, 14.08 mmol), 4-bromoaniline (2.42 g, 14.08 mmol), TsOH (133.93 mg, 0.7 mmol) and 4 Å molecular sieve (2.15 g) in toluene (43 mL) was stirred at 140° C. for 12 hours. TLC indicated the reaction was completed. The reaction mixture was concentrated in vacuum to obtain the crude (E)-tert-butyl 4-(2-(((4-bromophenyl)imino) methyl)phenoxy)piperidine-1-carboxylate (7.5 g, crude), which was used directly for next step.


Step 3: tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenoxy)piperidine-1-carboxylate

To a solution of (E)-tert-butyl 4-(2-(((4-bromophenyl)imino)methyl)phenoxy)piperidine-1-carboxylate (5.7 g) in DCM (50 mL) was added dropwise allylmagnesium bromide (49.63 mL, 1 M in THF) at 0° C. The mixture was stirred at 0-15° C. for 3 hours. TLC indicated the reaction was completed. The reaction mixture was poured into aq. HN4Cl (50 mL) and extracted with and EA (50 mL×2). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 20/1) to give tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenoxy)piperidine-1-carboxylate (4.2 g). MS (ESI, m/e) [M+1]+502.2.


Step 4: tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenoxy)piperidine-1-carboxylate

To a solution of tert-butyl 4-(2-(1-((4-bromophenyl)amino)but-3-en-1-yl)phenoxy)piperidine-1-carboxylate (3.3 g, 6.58 mmol) in THF (50 mL) was added BH3·THF (65.8 mL, 1M in THF) at 0° C. The mixture was stirred at 0° C. for 3 hours. And then H2O2 (6.58 mL, 65.81 mmol) was added in drops and stirred at 0° C. for 1 hour. Aq. NaOH (2.63 g, 65.81 mmol, 4M) was added in drops and stirred at 0-15° C. for 2 hours. TLC indicated the reaction was completed. The mixture was poured into saturated aq. Na2S2O3 (50 mL) and stirred for 0.5 hour, extracted with EA (100 mL×2). The combined organic layers were washed with saturated aq. Na2S2O3 (50 mL), aq. NaHCO3 (50 mL) and brine (50 mL), dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography (SiO2, PE/EA=5/1 to 2/1) to give tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenoxy)piperidine-1-carboxylate (2.4 g). MS (ESI, m/e) [M+1]+520.3.


Step 5: tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine-1-carboxylate

To a mixture of tert-butyl 4-(2-(1-((4-bromophenyl)amino)-4-hydroxybutyl)phenoxy)piperidine-1-carboxylate (2.3 g, 4.43 mmol) and TEA (1.34 g, 13.28 mmol) in DCM (23 mL) was added MsCl (1.01 mg, 8.86 mmol) at 0° C., and the mixture was stirred at 25° C. for 5 hours. TLC showed the reaction was complete. The reaction mixture was poured into H2O (20 mL), extracted with DCM (20 mL×2). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=10/1 to 2/1) to obtain tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine-1-carboxylate. MS (ESI, m/e) [M+1]+502.2.


Step 6: 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine

A mixture of tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine-1-carboxylate (1.8 g, 3.59 mmol) in DCM (20 mL) was added TFA (7 mL) and was stirred at 15° C. for 3 hours. TLC indicated the reaction was completed. The mixture was concentrated in vacuum to obtain 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine (1.8 g, TFA salt, crude). MS (ESI, m/e) [M+1]+402.2.


Step 7: 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)-1-methylpiperidine

To a solution of 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)piperidine (1.0 g, 2.49 mmol) in MeOH (10 mL) was added aq. HCHO (37%, 1.01 g, 12.46 mmol) and NaBH3CN (496.74 mg, 4.47 mmol) and stirred at 15° C. for 3 hours. TLC indicated the reaction was completed. The reaction mixture was concentrated in vacuum. The residue was poured into saturated aq. NaHCO3 (20 mL), extracted with EA (30 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=1/1 to 1/10) to give 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenoxy)-1-methylpiperidine. 1H NMR (400 MHz, CDCl3) δ ppm: 7.15-7.24 (m, 3H) 6.99 (dd, J=7.5, 1.3 Hz, 1H) 6.88 (d, J=8.1 Hz, 1H) 6.79-6.85 (1H, m) 6.30 (2H, d, J=9.0 Hz) 4.96 (1H, d, J=7.9 Hz) 4.60 (1H, s) 3.63-3.70 (m, 1H) 3.32-3.41 (m, 1H) 2.64-2.87 (m, 4H) 2.46 (s, 3H) 2.29-2.40 (m, 1H) 2.14-2.24 (m, 2H) 1.92-2.10 (m, 5H), MS (ESI, m/e) [M+1]+415.1.


Intermediate 2-z5: (S)-2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane



embedded image


Step 1: tert-butyl 2-(methoxymethylene)-7-azaspiro[3.5]nonane-7-carboxylate

To a solution of (methoxymethyl)triphenylphosphonium chloride (3.72 g, 10.86 mmol) in toluene (30 mL) was added t-BuOK (1 M in THF, 10.86 mL, 10.86 mmol). The mixture was stirred at 25° C. for 20 minutes under N2 protection. Then tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (2 g, 8.36 mmol) in toluene (20 mL) was added. The mixture was stirred at 70° C. for 4 hours. TLC showed the reactant was consumed completely. The reaction mixture was quenched by aq. HN4Cl (30 mL) and extracted with EA (50 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC to obtain tert-butyl 2-(methoxymethylene)-7-azaspiro[3.5]nonane-7-carboxylate (1.2 g). MS (ESI, m/e) [M+1]+268.3.


Step 2: tert-butyl 2-formyl-7-azaspiro[3.5]nonane-7-carboxylate

A mixture of tert-butyl 2-(methoxymethylene)-7-azaspiro[3.5]nonane-7-carboxylate (1 g, 3.74 mmol) in ACN (36 mL), H2O (9 mL) and TFA (0.3 mL) was stirred at 25° C. for 4 hours. TLC showed the reactant was consumed completely. The reaction mixture was quenched by aq. NaHCO3 (20 mL) and extracted with EA (20 mL×3), dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by prep-MPLC. Tert-butyl 2-formyl-7-azaspiro[3.5]nonane-7-carboxylate (390 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 9.76 (d, J=1.5 Hz, 1H), 3.39-3.32 (m, 2H), 3.31-3.25 (m, 2H), 3.20-3.10 (m, 1H), 2.11-1.95 (m, 4H), 1.64-1.56 (m, 2H), 1.44 (s, 9H).


Step 3: (S)-tert-butyl 2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane-7-carboxylate

To a solution of tert-butyl 2-formyl-7-azaspiro[3.5]nonane-7-carboxylate (0.3 g, 1.18 mmol) and (S)-2-(2-cyclopropylphenyl)pyrrolidine (184.81 mg, 986.83 umol) in DCE (5 mL) was added AcOH (118.52 mg, 1.97 mmol) and NaBH(OAc)3 (418.30 mg, 1.97 mmol). The mixture was stirred at 25° C. for 2 hours. TLC showed the reactant was consumed completely. The reaction mixture was poured into aq. Na2CO3 (5 mL) and extracted EA (5 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. (S)-tert-butyl 2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane-7-carboxylate (3M) mg, 0.7 mmol, 59.66% yield) was obtained. MS (ESI, m/e) [M+1]+425.3.


Step 4: (S)-2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane

A mixture of (S)-tert-butyl 2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane-7-carboxylate (0.3 g, 0.7 mmol) in DCM (1.5 mL) and TFA (1.5 mL) was stirred at 25° C. for 1 hour. LC/MS showed the reactant was consumed completely and one main peak with desired mass signal. The reaction mixture was concentrated in vacuum to remove solvent. The residue was diluted with H2O (10 mL), and adjusted to pH-9 with Na2CO3. The mixture was extracted with EA (10 mL×3), dried over Na2SO4, filtered and concentrated. (S)-2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane (180 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.58 (d, J=7.7 Hz, 1H), 7.23-7.17 (m, 1H), 7.17-7.11 (m, 1H), 7.00 (d, J=7.1 Hz, 1H), 3.81 (t, J=8.3 Hz, 1H), 3.27 (t, J=7.7 Hz, 1H), 2.95-2.84 (m, 2H), 2.83-2.72 (m, 2H), 2.58 (dd, J=8.0, 11.8 Hz, 1H), 2.41 (td, J=7.8, 15.3 Hz, 1H), 2.30-2.15 (m, 2H), 2.13-1.98 (m, 2H), 1.97-1.87 (m, 3H), 1.83 (d, J=14.3 Hz, 1H), 1.74-1.64 (m, 2H), 1.63-1.53 (m, 1H), 1.53-1.45 (m, 2H), 1.44-1.31 (m, 2H), 0.98-0.85 (m, 2H), 0.77-0.67 (m, 1H), 0.66-0.55 (m, 1H), MS (ESI, m/e) [M+1]+325.3.


Intermediate 2-z6: 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane



embedded image


Step 1: tert-butyl 4-(but-3-en-1-yl)-4-((2-cyclopropylphenyl)amino)piperidine-1-carboxylate

To a solution of tert-butyl 4-((2-cyclopropylphenyl)imino)piperidine-1-carboxylate (5 g, 15.90 mmol) in DCM (50 mL) was added but-3-en-1-ylmagnesium bromide (0.5 M, 159 mL, 79.51 mmol) at −20° C. The mixture was stirred at −20° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was quenched aq. HN4Cl (100 mL) and extracted with DCM (100 mL×3), dried over Na2SO4, filtered and concentrated. After the residue was purified by prep-MPLC, tert-butyl 4-(but-3-en-1-yl)-4-((2-cyclopropylphenyl)amino)piperidine-1-carboxylate (2.5 g) was obtained as a yellow oil. MS (ESI, m/e) [M+1]+371.3.


Step 2: tert-butyl 4-((2-cyclopropylphenyl)amino)-4-(4-hydroxybutyl)piperidine-1-carboxylate

To a solution of tert-butyl 4-(but-3-en-1-yl)-4-((2-cyclopropylphenyl)amino)piperidine-1-carboxylate (2.5 g, 6.75 mmol) in THF (25 mL) was added BH3·THF (1M, 33.74 mL, 33.74 mmol) at 0° C. The mixture was stirred at 25° C. for 2 hours. Then to the mixture was added NaOH (2.5M, 6.75 mL, 6.75 mmol) and H2O2 (11.48 g, 101.21 mmol) at 0° C. The mixture was stirred at 25° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was poured into aq. Na2SO3 (100 mL) and extracted with EA (100 mL×3), dried over Na2SO4, filtered and concentrated. After the residue was purified by prep-MPLC, tert-butyl 4-((2-cyclopropylphenyl)amino)-4-(4-hydroxybutyl)piperidine-1-carboxylate (1.2 g) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.09 (d, J=7.5 Hz, 1H), 7.07-7.01 (m, 1H), 6.74 (d, J=7.9 Hz, 1H), 6.61 (t, J=7.4 Hz, 1H), 3.95 (s, 1H), 3.77-3.67 (m, 1H), 3.63-3.50 (m, 1H), 3.11-2.93 (m, 2H), 2.55-2.41 (m, 1H), 2.0 (d, J=11.7 Hz, 1H), 1.92-1.70 (m, 4H), 1.66-1.56 (m, 1H), 1.46 (s, 9H), 1.36-1.29 (m, 1H), 0.98-0.86 (m, 5H), 0.67-0.57 (m, 2H).


Step 3: tert-butyl 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane-9-carboxylate

To a solution of tert-butyl 4-((2-cyclopropylphenyl)amino)-4-(4-hydroxybutyl)piperidine-1-carboxylate (1 g, 2.57 mmol) in DCM (10 mL) and TEA (520.87 mg, 5.51 mmol) was added MsCl (294.82 mg, 2.57 mmol) at 0° C., and the mixture was stirred at 25° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was quenched with aq. HN4Cl (10 mL) and extracted with DCM (10 mL×3), dried over Na2SO4, filtered and concentrated. After the residue was purified by prep-MPLC, tert-butyl 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane-9-carboxylate (0.7 g) was obtained as a yellow oil. MS (ESI, m/e) [M+1]+371.4.


Step 4: 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane

A mixture of tert-butyl 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane-9-carboxylate (0.7 g, 1.89 mmol) in DCM (4 mL) and TFA (4 mL) was stirred at 20° C. for 1 hour.


LC/MS showed the reactant was consumed completely and one main peak with desired mass signal. The reaction mixture was concentrated in vacuum to remove solvent. The residue was diluted with H2O (10 mL) and was adjusted to pH˜9 with Na2CO3. Then the mixture was extracted with EA (10 mL×3). The combined organic layers were washed with brine, dried over Na2CO3, filtered and concentrated to obtain 1-(2-cyclopropylphenyl)-1,9-diazaspiro[5.5]undecane (452 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.25-7.20 (m, 1H), 7.11-7.04 (m, 2H), 6.73-6.66 (m, 1H), 3.40-3.27 (m, 2H), 3.04-2.92 (m, 2H), 2.81-2.58 (m, 3H), 2.48-2.42 (m, 1H), 2.33-2.22 (m, 1H), 1.82-1.67 (m, 2H), 1.67-1.54 (m, 2H), 1.22 (dt, J=4.0, 12.8 Hz, 1H), 1.11 (d, J=6.8 Hz, 3H), 0.94 (dd, J=1.8, 8.6 Hz, 2H), 0.75-0.66 (m, 1H), 0.61-0.54 (m, 1H), MS (ESI, m/e) [M+1]+271.4.


Intermediate 2-z7: 5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine



embedded image


Step 1: 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one

A mixture of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol (5.0 g, 15.46 mmol), DMP (8.52 g, 20.1 mmol) and NaHCO3 (1.43 g, 17.0 mmol) in DCM (50 mL). The mixture was stirred at 20° C. for 3 hours. TLC indicated the reaction was complete. The mixture was quenched with Na2S2O3 (20 mL) and was adjusted to pH ˜10 with aq. Na2CO3. After the mixture was extracted with DCM (50 mL×3), the combined organic layers were dried over Na2SO4, filtered and concentrated. After the residue was purified by column chromatography (SiO2, PE/EA=50/1 to 15/1), 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one (3.5 g) was obtained. 1H NMR (400 MHz. CDCl3) δ ppm: 7.18-7.23 (m, 2H), 7.12-7.16 (m, 1H), 7.02-7.08 (m, 1H), 6.33 (d, J=8.8 Hz, 1H), 4.54 (d, J=18.7 Hz, 1H), 3.83 (d, J=18.7 Hz, 1H), 3.21 (dd, J=17.9, 10.03 Hz, 1H), 2.50 (d, J=17.9 Hz, 1H), 1.85-1.95 (m, 1H), 1.26 (s, 8H), 0.93-1.08 (m, 2H), 0.70-0.79 (m, 1H), 0.58-0.65 (m, 1H).


Step 2: 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine

To the mixture of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one (3.5 g, 10.89 mmol), dimethylamine hydrochloride (3.55 g, 43.55 mmol) in DCE (40 mL), was added NaBH(OAc)3 (6.92 g, 32.67 mmol). The mixture was stirred at 20° C. for 2 hours under N2 atmosphere. TLC indicated the reaction was complete. The mixture was concentrated and purified by prep-HPLC (TFA condition). 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine (2.2 g, 6.28 mmol, 57.64% yield) was obtained. MS (ESI, m/e) [M+1]+351.3.


Step 3: 5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine

A mixture of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine (1.0 g, 2.85 mmol) in TFA (10 mL) was stirred at 70° C. for 12 hours. TLC showed the reaction was complete. The mixture was concentrated and was adjusted to pH ˜10 with saturated aq. Na2CO3 (10 mL). The mixture was extracted with EA (10 mL×5) and the combined organic layers were dried over anhydrous Na2SO4 and then concentrated. 5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine (170 mg) was obtained. 1H NMR (400 MHz. CDCl3) δ ppm: 7.52-7.63 (m, 1H), 7. 11-7.24 (m, 2H), 7.00 (d, J=7.5 Hz, 1H), 4.70-4.92 (m, 1H), 3.07-3.42 (m, 2H), 2.81-2.99 (m, 1H), 2.38-2.50 (m, 1H), 2.25-2.35 (m, 4H), 1.63 (dt, J=11.9, 9.8 Hz, 1H), 0.89-0.98 (m, 2H), 0.62-0.76 (m, 1H), MS (ESI, m/e) [M+1]+231.3.


Intermediate 2-z8: tert-butyl (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate



embedded image


Step 1: (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate

A mixture of (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethanone (8 g, 24.8 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (11.5 g, 37.2 mmol), Pd(OAc)2 (560 mg. 2.48 mmol), tricyclohexyl phosphine (1.4 g, 4.96 mmol) and K3PO4 (15.8 g, 74.4 mmol, 3.0 eq) in toluene (100 mL) and H2O (5 mL) was heated to 100° C. under N2 protection and stirred for 5 hours. TLC showed the reaction was complete. The mixture was cooled to room temperature and diluted with EA (50 mL), washed with water (100 mL), brine (100 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=5/1 to 2/1) to obtain (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate (9 g, crude) as a brown solid. MS (ESI, m/e) [M+1]+425.2.


Step 2: (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate

A mixture of (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-5,6-dihydropyridine-1 (2H)-carboxylate (9 g, 21.2 mmol) and Pd/C (10%, 2 g) in CH3OH (200 mL) was stirred at 20° C. under H2 atmosphere (15 psi) for 12 hours. LCMS showed the reaction was completed. The mixture was filtered and the filtrate was concentrated to give (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (7.5 g, crude) as an off-white solid. MS (ESI, m/e) [M+1]+427.3.


Step 3: (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate

To a solution of (R)-tert-butyl 4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (7.5 g, 17.6 mmol) in CH3OH (50 mL) was added a solution of NaOH (2.8 g, 70.4 mmol) in H2O (30 mL). Then the mixture was heated to 40° C. and stirred for 2 hours. TLC showed the reaction was complete. The mixture was concentrated in vacuum to remove the organic solvent and the remained water solution was extracted with EA (100 mL). The organic layer was washed with brine (100 mL), dried over Na2SO4, and concentrated to give (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (6 g, crude). MS (ESI, m/e) [M+1]+331.3.


Step 4: (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate

A mixture of (R)-tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (2 g, 6.1 mmol), 1-bromo-4-iodobenzene (3.5 g, 12.2 mmol), Pd2(dba)3 (559 mg, 0.61 mmol), BINAP (760 mg, 1.22 mmol) and t-BuOK (1.4 g, 12.2 mmol) in toluene (20 mL) was heated to 100° C. under N2 protection and stirred for 12 hours. TLC showed the reaction was completed. The mixture was cooled to room temperature and diluted with EA (20 mL), washed with water (20 mL), brine (20 mL), dried over Na2SO4, and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1 to 15/1) to give (R)-tert-butyl 4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (2 g). 1H NMR (400 MHz, CDCl3) δ ppm: 7.29 (1H, s), 7.22-7.26 (1H, m), 7.18-7.22 (2H, m), 7.01-7.12 (2H, m), 6.23-6.31 (2H, m), 4.91 (1H, d, J=6.8 Hz), 4.31 (2H, s). 3.65-3.75 (1H, m), 3.35-3.47 (1H, m), 2.95-3.07 (1H, m), 2.82 (2H, s), 2.41-2.55 (1H, m), 1.97-2.10 (2H, m), 1.79-1.93 (3H, m), 1.61-1.74 (2H, m), 1.51 (9H, s). MS (ESI, m/e) [M+1]+487.8.


Intermediate 2-z9: 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine



embedded image


Step 1: tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate

To a solution of 2-(2-cyclopropylphenyl)pyrrolidine (70) mg, 3.7 mmol ) and tert-butyl 3-oxoazetidine-1-carboxylate(632 mg, 3.7 mmol) in DCM (10 mL) was added NaBH(OAc)3 (600 mg, 3 mmol). The mixture was stirred at room temperature for 14 hours.


Then saturated aq. NH4Cl (30 mL) was added to the reaction mixture under stirring. The organic phase was separated and washed with brine (10 mL), dried over anhydrous Na2SO4, concentrated in vacuum to obtain 1 g crude product. MS (ESI, m/e) [M+1]+343.0.


Step 2: 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine

To a solution of tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate (680 mg, 2.0 mmol ) in DCM (10 mL) was added TFA (2 mL). The mixture was stirred at room temperature for 4 hours. The solvent was removed to give 700 mg 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine. MS (ESI, m/e) [M+1]+243.0.


Intermediate 2-z10: 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane
Step 1: tert-butyl 6-(methoxymethylene)-2-azaspiro[3.3]heptane-2-carboxylate

To a solution of tert-butyl 6-oxo-2-azaspiro[3.3]heptane-2-carboxylate (3 g, 0.014 mol) in toluene (50 mL) was added t-BuOK (2.0 g, 0.018 mol). The mixture was stirred at 25° C. for 20 min at N2 atmosphere. Then (methoxymethyl)triphenylphosphonium chloride (6.2 g, 0.018 mol) in toluene (20 mL) was added. The mixture was stirred at 70° C. for 4 hours.


TLC indicated the reaction was complete. After removed the solvent, the residue was purified by column chromatograph on silica gel (eluent: PE/EA=20/1) to obtain tert-butyl 6-(methoxymethylene)-2-azaspiro[3.3]heptane-2-carboxylate (1 g). 1H NMR (400 MHz, CDCl3) δ ppm; 5.81 (s, 1H), 3.86-4.00 (s, 4H), 3.55 (s, 3H), 2.86 (s, 2H), 2.79 (s, 2H), 1.43 (s, 9H).


Step 2: tert-butyl 6-formyl-2-azaspiro[3.3]heptane-2-carboxylate

To a solution of tert-butyl 6-(methoxymethylene)-2-azaspiro[3.3]heptane-2-carboxylate (1 g, 4.18 mmol) in CH3CN (36 mL) and H2O (9 mL) was added TFA (1 mL) and then the mixture was stirred at room temperature for 2 hours. TLC indicated the reaction was complete. The reaction mixture was adjusted to pH 8-9 with aq. Na2CO3 and was extracted with EA (20 mL×3). The combined organic layer was washed with brine, dried, filtered and concentrated to obtain tert-butyl 6-formyl-2-azaspiro[3.3]heptane-2-carboxylate (0.9 g), which was used into next step without further purification. 1H NMR (400 MHz, CDCl3) δ ppm: 9.71 (d, J=1.7 Hz, 1H), 3.94 (s, 2H), 3.85-3.86 (m, 1H), 3.80-3.84 (m, 1H), 3.82 (s, 1H), 2.98-3.20 (m, 1H), 2.30-2.46 (m, 4H), 1.41 (s, 9H).


Step 3: tert-butyl 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane-2-carboxylate

To the solution of tert-butyl 6-formyl-2-azaspiro[3.3]heptane-2-carboxylate (0.9 g, 4.0 mmol) in DCE (30 mL) was added 2-(2-cyclopropylphenyl)pyrrolidine (0.68 g, 3.63 mmol) and HOAc (436 mg, 7.26 mmol). After the mixture was stirred at room temperature for 30 min, NaBH(OAc)3 (1.54 g, 7.26 mmol) was added and then stirred for further 2 hours. LC/MS showed the reaction was complete. The reaction was quenched with aq. Na2CO3 (10 mL) and then extracted with EA (3×50 mL). The organic layer was dried, filtered and concentrated. The residue was purified by column chromatograph on silica gel (eluent: PE/EA=2/1) to obtain tert-butyl 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane-2-carboxylate (0.8 g). MS (ESI, m/e) [M+1]+397.3.


Step 4: 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane

To a solution of tert-butyl 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane-2-carboxylate (0.8 g, 2.0 mmol) in DCM (20 mL) was added TFA (10 mL) dropwise at 0° C. Then the mixture was stirred at room temperature for 2 hours. TLC indicated the reaction was complete. The reaction mixture was adjusted to pH 8-9 with aqueous Na2CO3 and then was extracted with DCM. The organic layer was dried, filtered and concentrated to obtain 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane (250 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.57 (d, J=7.4 Hz, 1H), 7.15-7.23 (m, 1H), 7.13 (dt, J=1.3, 7.4 Hz, 1H), 6.98 (d, J=7.4 Hz, 1H), 3.70-3.84 (m, 1H), 3.62 (d, J=1.7 Hz, 2H), 3.41 (s, 2H), 3.26 (t, J=8.3 Hz, 1H), 2.43-2.56 (m, 1H), 2.39 (s, 1H), 2.17-2.27 (m, 5H), 1.95-2.05 (m, 2H), 1.47-1.95 (m, 5H), 0.82-1.00 (m, 2H), 0.54-0.75 (m, 2H), MS (ESI, m/e) [M+1]+297.3.


Intermediate 2-z11: 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane



embedded image


Step 1: tert-butyl 2-(2-cyclopropylphenyl)-4-(tosyloxy)pyrrolidine-1-carboxylate

To a solution of tert-butyl 2-(2-cyclopropylphenyl)-4-hydroxypyrrolidine-1-carboxylate (4.5 g, 14.8 mmol) in THF (50 mL) was added NaH (0.71 g, 17.8 mmol) and the mixture was stirred at 20° C. for 30 min. Then TosCl (3.4 g, 17.8 mmol) was added into the mixture and was further stirred at 20° C. for 12 hours. TLC showed the reaction was complete.


The reaction mixture was quenched with water (100 mL), extracted with EA (10 mL). The organic layer was washed with brine (100 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=10/1 to 5/1) to obtain tert-butyl 2-(2-cyclopropylphenyl)-4-(tosyloxy)pyrrolidine-1-carboxylate (2.9 g). MS (ESI, m/e) [M+1]+458.2.


Step 2: tert-butyl 2-(2-cyclopropylphenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate

To a solution of tert-butyl 2-(2-cyclopropylphenyl)-4-(tosyloxy)pyrrolidine-1-carboxylate (2.9 g, 6.3 mmol) in THF (50 mL) was added t-BuOK (1.4 g, 12.6 mmol) portion wise. After addition, the mixture was stirred at 20° C. for 12 hours. TLC showed the reaction was complete. The mixture was quenched with saturated aq. NH4Cl (50 mL) and was extracted with EA (50 mL). The organic layer was washed with brine (50 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1) to give tert-butyl 2-(2-cyclopropylphenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (900 mg). MS (ESI, m/e) [M+1]˜ 286.4.


Step 3: tert-butyl 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate

To a solution of tert-butyl 2-(2-cyclopropylphenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (900 mg, 3.2 mmol) in toluene (20 mL) at 0° C. was added Et2Zn (1 M in toluene, 15.8 mL, 15.8 mmol) and ClCH2I (5.56 g, 32 mmol). Then the mixture was stirred at 20° C. for 4 hours. TLC showed the reaction was complete. The reaction mixture was quenched with saturated aq. NH4Cl (20 mL) and was extracted with EA (30 mL×2). The organic layer was washed with brine (20 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=30/1) to obtain tert-butyl 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (500 mg). MS (ESI, m/e) [M+1]+300.2.


Step 4: 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane

A solution of tert-butyl 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (500 mg, 1.7 mmol) in HCl in EA (4 M. 10 mL) was stirred at 20° C. for 2 hours.


TLC showed the reaction was complete. The mixture was quenched with saturated aq. Na2CO3 (20 mL) and extracted with EA (20 mL×2). The organic layer was washed with brine (20 mL), dried over Na2SO4, and concentrated to obtain 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane (293 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.63 (dd, J=7.7, 1.3 Hz, 1H), 7.18-7.23 (m, 1H), 7.11-7.16 (m, 1H), 6.98 (d, J=7.2 Hz, 1H), 4.54 (dd, J=10.0, 7.0 Hz, 1H), 3.00 (td, J=6.0, 2.6 Hz, 1H), 2.37 (dd, J=12.3, 7.0 Hz, 1H), 1.91-2.02 (m, 1H), 1.72-1.83 (m, 1H), 1.48-1.59 (m, 1H), 0.87-1.03 (m, 1H), 0.87-1.03 (m, 1H), 0.77-0.84 (m, 1H), 0.60-0.73 (m, 2H), 0.60-0.73 (m, 2H), 0.42 (dt, J=8.1, 5.9 Hz, 1H), 0.37-0.47 (m, 1H), MS (ESI, m/e) [M+1]+200.2.


Intermediate 2-z12: 1-(2-cyclopropylphenyl)octahydrocyclopenta[c]pyrrole



embedded image


Step 1: 3-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-1 (2H)-one

To the solution of 1-bromo-2-cyclopropylbenzene (8.5 g, 0.043 mol) in THF(20 mL) was added n-BuLi (21 mL, 0.052 mol, 2.5M in hexane) at −78° C. under N2 atmosphere. Then the mixture was stirred at −78° C. for 1 hour. To the solution of tetrahydrocyclopenta[c]pyrrole-1,3 (2H, 3aH)-dione (4 g, 0.029 mol) in THF (20 mL) was added n-BuLi (13 mL, 0.035 mol, 2.5M in hexane) at −78° C. under N2 atmosphere. Then the mixture was stirred at 0° C. for 1 hour.


The solution formed from 1-bromo-2-cyclopropylbenzene was added dropwise to the solution formed from tetrahydrocyclopenta[c]pyrrole-1,3 (2H, 3aH)-dione at −78° C. The resulting mixture was stirred at room temperature for 3 hours. TLC showed tetrahydrocyclopenta[c]pyrrole-1,3 (2H, 3aH)-dione was consumed. NaBH3CN (2.2 g, 0.035 mol) was added to the mixture and then followed by addition of 6N HCl acid (20 mL) at 0° C., and further stirred at room temperature for 1 hour. Na2CO3 (50 mL) was added to the mixture to adjust the pH to 8-9. The mixture was then extracted with EA (50 mL×3), and the organic layer was washed with brine (50 mL×2). The combined organic layer was dried, filtered and concentrated. The residue was purified by column chromatograph on silica gel (eluent: PE/EA=10/1) to obtain 3-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-1 (2H)-one(2.8 g). 1H NMR (400 MHz, CDCl3) δ ppm: 7.19-7.23 (m, 1H), 7.11-7.16 (m, 2H), 6.95-7.01 (m, 1H), 6.20 (s, 1H), 5.44 (d, J=7.7 Hz, 1H), 3.08-3.24 (m, 1H), 2.93-3.04 (m, 1H), 2.73-2.87 (m, 1H), 1.91-2.06 (m, 1H), 1.73-1.83 (m, 2H), 1.51-1.64 (m, 1H), 1.40-1.49 (m, 2H), 1.33 (s, 1H), 1.10-1.20 (m, 1H), 0.52-0.73 (m, 2H), MS (ESI, m/e) [M+1]+242.3.


Step 2: 1-(2-cyclopropylphenyl)octahydrocyclopenta[c]pyrrole

To the solution of 3-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-1 (2H)-one (1.0 g, 4.15 mmol, 1 eq) in THF (20 mL) was added BH3.DMS (4.2 mL, 41.5 mmol, 10 eq, IOM in DMS) dropwise at 0° C. After the addition, the mixture was stirred at room temperature for 12 hr. TLC showed the reactant consumed completely. At 0° C., MeOH (2 mL) and 1N HCl (20 mL) were added into the reaction mixture carefully. The mixture was then stirred at room temperature for 1 hour. The reaction was quenched with aq. Na2CO3 (50 mL) and was adjusted to pH ˜9. The mixture was extracted with EA (50 mL×3). The organic layer was washed with brine (50 mL×2), dried, filtered and concentrated. The residue was purified by column chromatograph on silica gel (eluent: PE/EA=5/1) to obtain target product(300 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.54-7.59 (m, 1H), 7.12-7.19 (m, 2H), 6.95-7.01 (m, 1H), 4.53 (d, J=6.97 Hz, 1H), 3.02-3.09 (m, 1H), 2.89-3.02 (m, 2H), 2.65 (quin, J=7.86 Hz, 1H), 1.91-2.03 (m, 2H), 1.55-1.64 (m, 1H), 1.24-1.39 (m, 1H), 1.18-1.39 (m, 1H), 1.18-1.20 (m, 1H), 1.11-1.21 (m, 1H), 0.87-0.99 (m, 3H), 0.61-0.78 (m, 2H), MS (ESI, m/e) [M+1]+228.5.


Intermediate 2-z13: 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylethan-1-amine



embedded image


Step 1: 2-((1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide

To a solution of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol (10.5 g, 32.46 mmol) in DMF (250 mL) was added NaH (1.43 g, 35.71 mmol, 60%) in portions at 10° C. The mixture was stirred at 10° C. for 30 min. 2-chloro-N,N-dimethylacetamide (4.14 g, 34.0) mmol) was then added dropwise at 10° C. The mixture was stirred at 10° C. for 2 hour.


TLC indicated the reactant was consumed completely. The reaction mixture was quenched by saturated aq. NH4Cl (50 mL) and was extracted with EA (100 mL×3). The combined organic phases were washed with brine (50 mL×2), dried with anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography (SiO2, PE/EA=5/1 to 0/1) and 2-((1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide (8.48 g) was obtained. MS (ESI, m/e) [M+1]+410.1.


Step 2: 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide

A solution of 2-((1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide (8.4 g, 20.56 mmol) in TFA (100 mL) was stirred at 75° C. for 12 hours. LC/MS indicated the reactant was consumed completely and the desired mass signal. The reaction mixture was concentrated in vacuum to 20 mL and was poured into saturated aq. NaHCO3 (50 mL) to adjust the pH ˜8. The aqueous phase was extracted with EA (100 mL×3).


The combined organic phases were washed with brine (50 mL×2), dried with anhydrous Na2SO4, filtered and concentrated. 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide (22 g, crude) was obtained. MS (ESI, m/e) [M+1]+289.3.


Step 3: 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylethanamine

A solution of 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylacetamide (1.2 g, 4.16 mmol) in THF (50 mL) was added BH3.DMS (8.32 mL, 83.2 mmol, 10N in DMS) dropwise at 20° C. The mixture was heated to 70° C., and stirred for 10 hours. LC/MS indicated the reactant was consumed completely. The reaction mixture was quenched with MeOH (10 mL) and was de-complexation by HCl/MeOH (4N, 20 mL) by reflux for 2 hours. LC/MS indicated the desired compound was generated. The reaction mixture was concentrated in vacuum. The residue was purified by prep-HPLC (Xtimate C18 10u 250 mm*50 mm; mobile phase: [water (0.1% TFA)-ACN]). 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylethanamine (1.4 g, TFA salt) was obtained. This salt was dissolved in CH3CN (100 mL) and K2CO3 (560.9 mg, 4.07 mmol, 1.5 eq) was added into the solution in one portion and was then stirred at 20° C. for 2 hours. The mixture was filtered and the filtrate was concentrated to obtain 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylethanamine (385 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.46-7.57 (m, 1H), 7.10-7.20 (m, 2H), 6.93-7.02 (m, 1H), 4.91 (t, J=8.0 Hz, 1H), 4.10-4.20 (m, 1H), 3.50-3.58 (m, 2H), 3.34 (dd, J=11.3, 5.1 Hz, 1H), 3.05-3.18 (m, 1H), 2.54 (t, J=5.8 Hz, 2H), 2.35-2.46 (m, 1H), 2.19-2.33 (m, 6H), 1.92-2.03 (m, 1H), 1.54-1.91 (m, 2H), 0.84-1.00 (m, 2H), 0.56-0.73 (m, 2H), MS (ESI, m/e) [M+1]+275.1.


Intermediate 2-z14: (S)-2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane



embedded image


Step 1: (S)-2-(2-ethoxyphenyl)pyrrolidine

To a mixture of (S)-2-(2-bromophenyl)pyrrolidine (1.5 g, 6.63 mmol) and EtONa (1.35 g, 19.90 mmol) in EtOH (15 mL) was added CuBr (475.81 mg, 3.32 mmol). Then the mixture was stirred at 90° C. for 12 hours. LC/MS showed the reaction was complete and the peak with desired mass signal. The mixture was cooled to room temperature and was adjusted to pH ˜11 with aq. Na2CO3 and was then extracted with EA (20 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The residue was purified by prep-HPLC (TFA condition). (S)-2-(2-ethoxyphenyl)pyrrolidine (0.7 g) was obtained. MS (ESI, m/e) [M+1]+192.3.


Step 2: (S)-tert-butyl 2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

A mixture of (S)-2-(2-ethoxyphenyl)pyrrolidine (0.5 g, 2.61 mmol) and tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (568.71 mg, 2.38 mmol), HOAc (428.13 mg, 7.13 mmol) in DCE (5 mL) was stirred at 20° C. for 2 hours. NaBH(OAc)3 (1.01 g, 4.75 mmol) was added into the mixture and was furthered stirred at 20° C. for 12 hours. TLC showed the reaction was complete. The mixture was adjusted to pH ˜11 with aq. Na2CO3 and was then extracted with EA (20 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1 to 10/1) and (S)-tert-butyl 2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (0.6 g) was obtained. MS (ESI, m/e) [M+1]+415.4.


Step 3: (S)-2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane

To the solution of (S)-tert-butyl 2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (0.6 g, 1.45 mmol) in DCM (10 mL) was added TFA (1.65 g, 14.47 mmol). The mixture was stirred at 20° C. for 1 hour. TLC indicated one new spot formed. The reaction mixture was adjusted to pH 8-9 with aqueous Na2CO3 and then was extracted with DCM (10 mL×5). The combined organic layer was washed with brine, dried over Na2SO4 and concentrated. (S)-2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane (360 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.49-7.58 (m, 1H), 7.13-7.21 (m, 1H), 6.93 (t, J=7.4 Hz, 1H), 6.82 (d, J=7.4 Hz, 1H), 4.04 (d, J=7.1 Hz, 2H), 3.91 (t, J=7.1 Hz, 1H), 3.07-3.21 (m, 2H), 2.72-2.90 (m, 4H), 2.40 (q, J=8.4 Hz, 1H), 2.14-2.26 (m, 1H), 1.73-1.94 (m, 5H), 1.47-1.73 (m, 8H), 1.41 (t, J=6.95 Hz, 3H), MS (ESI, m/e) [M+1]+315.3.


Intermediate 2-z15: 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane



embedded image


Step 1: tert-butyl 2-(2-tosylhydrazono)-7-azaspiro[3.5]nonane-7-carboxylate

A mixture of tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (10.00 g, 41.79 mmol) and 4-methylbenzenesulfonohydrazide (9.34 g, 50.14 mmol) in EtOH (100 mL) was stirred at 80° C. for 1 hour. TLC showed the reaction was completed. The mixture was cooled to room temperature and filtered. The filtrate was concentrated in vacuum to obtain tert-butyl 2-(2-tosylhydrazono)-7-azaspiro[3.5]nonane-7-carboxylate (8.0 g, crude). 1H NMR (400 MHz, CDCl3) δ ppm: 7.84 (d, J=8.1 Hz, 2H), 7.39 (s, 1H), 7.33 (d, J=8.0 Hz, 2H), 3.22-3.39 (m, 5H), 2.64 (s, 2H), 2.49 (s, 2H), 2.44 (s, 3H), 1.54 (t, J=5.5 Hz, 4H), 1.45 (s, 10H).


Step 2: tert-butyl 2-(2-methoxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate

A mixture of tert-butyl 2-(2-tosylhydrazono)-7-azaspiro[3.5]nonane-7-carboxylate (8.0 g, 19.63 mmol) and (2-methoxyphenyl)boronic acid (8.95 g, 58.89 mmol), Cs2CO3 (19.19 g, 58.89 mmol) in dioxane (100 mL) was stirred at 110° C. for 4 hours. TLC showed the reaction was completed. The mixture was filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE). Tert-butyl 2-(2-methoxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate (3.0 g) was obtained. MS (ESI, m/e) [M+1]+332.3.


Step 3: tert-butyl 2-(2-hydroxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate

To the solution of tert-butyl 2-(2-methoxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate (3.0 g. 9.05 mmol) in DCM (30 mL) under N2 atmosphere was added BBr3 (9.07 g, 36.20 mmol) at −78° C. After addition, the mixture was stirred at 20° C. for 6 hours. LC/MS indicated the reaction was complete. The mixture was quenched with aq. Na2CO3 and was extracted with DCM (20 mL×3). The combined organic phase was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20/1). Tert-butyl 2-(2-hydroxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate (1.3 g) was obtained. MS (ESI, m/e) [M+1]+318.4.


Step 4: tert-butyl 2-(2-(((trifluoromethyl)sulfonyl)oxy)phenyl)-7-azaspiro[3.5]nonane-7-carboxylate

To the solution of tert-butyl 2-(2-hydroxyphenyl)-7-azaspiro[3.5]nonane-7-carboxylate (1.3 g, 4.10 mmol) and TEA (1.24 g, 6.14 mmol) in DCM (10 mL) was added Tf2O (1.73 g, 12.29 mmol) under N2 atmosphere at 0° C. The mixture was then stirred at 25° C. for 1 hour. TLC indicated the reaction was completed. The mixture was quenched with H2O (10 mL) and NH4Cl (10 mL) and extracted with DCM (10 mL×3). The organic phase was washed with brine, dried over Na2SO4 and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=40/1) to obtain ert-butyl 2-(2-(((trifluoromethyl)sulfonyl)oxy)phenyl)-7-azaspiro[3.5]nonane-7-carboxylate (1.84 g). MS (ESI, m/e) [M+1]+450.2.


Step 5: tert-butyl 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane-7-carboxylate

To the mixture of compound tert-butyl 2-(2-(((trifluoromethyl)sulfonyl)oxy)phenyl)-7-azaspiro[3.5]nonane-7-carboxylate (1.4 g, 3.11 mmol), 2-(2-cyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.52 g, 6.23 mmol) and Cs2CO3 (3.04 g. 9.34 mmol) in dioxane (10 mL) was added Pd(dppf)Cl2 (1.14 g, 1.56 mmol) under N2 atmosphere. The mixture was stirred at 90° C. for 12 hours. TLC indicated the reactant was consumed completely and one new spot formed. The mixture was filtered and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1) to obtain tert-butyl 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane-7-carboxylate (0.6 mg). MS (ESI, m/e) [M+1]+418.5.


Step 6: 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane

To the mixture of tert-butyl 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane-7-carboxylate (0.6 g, 1.44 mmol) in DCM (5 mL) was added TFA (1.39 g, 14.37 mmol). The mixture was stirred at 25° C. for 2 hours. LC/MS indicated the reaction was complete. The reaction mixture was adjusted to pH ˜10 with aq. Na2CO3 and then extracted with DCM (10 mL×3). The combined organic layer was washed with brine, dried over Na2SO4 and concentrated. 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane (340 mg) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 7.34-7.46 (m, 2H), 7.22-7.32 (m, 3H), 7.13-7.22 (m, 2H), 7.06 (d, J=7.5 Hz, 1H), 6.83 (d, J=7.7 Hz, 1H), 3.46 (m, J=9.15 Hz, 1H), 3.30 (s, 2H), 2.70-2.84 (m, 4H), 1.68-2.03 (m, 5H), 1.45-1.64 (m, 5H), 0.72-0.83 (m, 2H), 0.61-0.71 (m, 2H), MS (ESI, m/e) [M+1]+318.1.


Intermediate 2-z16: 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzaldehyde



embedded image


Step 1: methyl 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzoate

To a solution of 2-(2-cyclopropylphenyl)pyrrolidine (1.5 g, 8.01 mmol), methyl 4-formylbenzoate (1.14 g, 7.29 mmol) in DCE (20 mL) was added CH3COOH (0.87 g, 14.58 mmol), NaBH(OAc)3 (3.09 g, 14.58 mmol). The mixture was stirred at 25° C. for 4 hours. TLC showed the reactant was consumed completely. The reaction mixture was poured into H2O (50 mL) and extracted with EA (20 mL×3). The combined organic layers were washed with brine (25 mL×2), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: PE/EA=50/1 to 1/1) to obtain methyl 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzoate (1.8 g). MS (ESI, m/e) [M+1]+336.5.


Step 2: (4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)phenyl)methanol

To a solution of methyl 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzoate (2 g, 6 mmol) in THF (30 mL) was added LiAlH4 (46 g, 17.28 mmol) slowly at 0° C. The mixture was stirred at 0° C. for 30 min. TLC showed the reactant was consumed completely. The residue was quenched with saturated aq. NH4Cl (50 mL) and extracted with EA (50 mL). The organic phase was washed with brine, dried over Na2SO4 and concentrated to obtain (4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)phenyl)methanol (1.5 g). MS (ESI, m/e) [M+1]+308.3.


Step 3: 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzaldehyde

To the solution of (4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)phenyl)methano (1.5 g, 4.89 mmol) in THF (20 ML) was added DMP (4.14 g, 9.78 mmol). The mixture was stirred at 25° C. for 4 hours. LC/MS showed the reactant was consumed completely and one main peak with desired mass signal. The reaction mixture was quenched by addition Na2S2O3 (25 ml) and NaHCO3 (15 ml) and extracted with EA (30 mL×3). The combined organic layers were washed with brine (30 mL×2), dried over Na2SO4 and concentrated to obtain 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzaldehyde (1.5 g). 1H NMR (400 MHz, CDCl3) δ ppm: 9.91 (s, 1H), 7.74 (d, J=8.1 Hz, 2H), 7.68 (d, J=7.7 Hz, 1H), 7.43 (d, J=7.9 Hz, 2H), 7.14-7.18 (m, 1H), 7.09 (td, J=7.4, 1.2 Hz, 1H), 6.94 (d, J=7.5 Hz, 1H), 3.96 (t, J=8.2 Hz, 1H), 3.86 (d, J=13.8 Hz, 1H), 2.98-3.14 (m, 2H), 2.18-2.32 (m, 1H), 2.14 (q, J=8.8 Hz, 1H), 1.98 (d, J=7.7 Hz, 1H), 1.68-1.91 (m, 2H), 1.63 (dd, J=9.7, 2.4 Hz, 1H), 0.80-0.95 (m, 2H), 0.63-0.74 (m, 1H), 0.48-0.61 (m, 1H).


Intermediate 2-z17a and Intermediate 2-z17b: (S or R)-2-(3-chloro-2-cyclopropylphenyl)pyrrolidine (R or S)-2-(3-chloro-2-cyclopropylenyl)pyrrolidine



embedded image


Step 1: 1-bromo-3-chloro-2-cyclopropylbenzene

The mixture of 1-bromo-3-chloro-2-iodobenzene (7 g, 22.1 mmol), cyclopropylboronic acid (3.8 g, 44.2 mmol), Pd(dppf)Cl2 (1.6 g, 2.21 mmol) and K2CO3 (2 g, 7.3 mmol, 1.0 eq) in dioxane (100 mL) was heated at 70° C. for 12 hours under N2 protection.


TLC showed the reaction was complete and anew spot formed. The mixture was cooled to room temperature and was diluted with EtOAc (150 mL) and H2O (50 mL). The organic phase was separated and washed with water (150 mL), brine (150 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE) to give 1-bromo-3-chloro-2-cyclopropylbenzene (3 g, crude), which was used directly in next step.


Step 2: tert-butyl (4-(3-chloro-2-cyclopropylphenyl)-4-oxobutyl)carbamate

To a solution of 1-bromo-3-chloro-2-cyclopropylbenzene (3 g, 13 mmol) in THF (30 mL) was added n-BuLi (2.5 M, 5.7 mL, 14.3 mmol) dropwise at −70° C. After stirred at −70° C. for 30 min, a solution of tert-butyl 2-oxopyrrolidine-1-carboxylate (2.64 g, 14.3 mmol, 1.1 eq) in THF (5 mL) was added dropwise into the mixture at −70° C. The mixture was further stirred at −70° C. for 2 hours. TLC showed the reaction was complete. The mixture was quenched with water (50 mL) and extracted with EtOAc (50 mL). The organic layer was washed with brine (50 mL), dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (eluent: PE/EA=5/1) to give tert-butyl (4-(3-chloro-2-cyclopropylphenyl)-4-oxobutyl) carbamate (1.3 g). 1H NMR (400 MHz, CDCl3) δ ppm: 7.35 (dd, J=7.6, 1.7 Hz, 1H), 7.06-7.15 (m, 2H), 4.56 (s, 1H), 3.14 (q, J=6.3 Hz, 2H), 2.89 (t, J=7.2 Hz, 2H), 1.78-1.95 (m, 3H), 1.37 (s, 9H), 0.92-1.03 (m, 2H), 0.35-0.45 (m, 2H).


Step 3: 4-amino-1-(3-chloro-2-cyclopropylphenyl)butan-1-one

To a solution of tert-butyl (4-(3-chloro-2-cyclopropylphenyl)-4-oxobutyl)carbamate (1.3 g, 3.8 mmol) in DCM (20 mL) was added TFA (4.4 g, 38 mmol). Then the mixture was stirred at 20° C. for 2 hours. TLC showed the reaction was completed. The mixture was concentrated in vacuum to give 4-amino-1-(3-chloro-2-cyclopropylphenyl)butan-1-one (900 mg, crude). MS (ESI, m/e) [M+1]+237.9.


Step 4: 2-(3-chloro-2-cyclopropylphenyl)pyrrolidine

A solution of 4-amino-1-(3-chloro-2-cyclopropylphenyl)butan-1-one (900 mg, 3.8 mmol) and AcOH (0.5 mL) in EtOH (10 mL) was heated to 65° C., and stirred for 3 hours. Then the mixture was cooled to room temperature and NaBH3CN (360 mg, 5.7 mmol, 1.5 eq) was added into it. The mixture was further stirred for 1 hour at room temperature. TLC showed the reaction was completed. The reaction mixture was quenched and adjusted to pH ˜10 with sat. aq. Na2CO3 and then extracted with EtOAc (20 mL×3). The organic layers were combined, dried over Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel (eluent: EA/MeOH=10/0 to 10/1) to give the racemic 2-(3-chloro-2-cyclopropylphenyl)pyrrolidine.


The racemic product was purified by SFC (Instrument: Thar SFC350 preparative SFC: Column: Chiralpak AD, 250*50 mm i.d. 10u; Mobile phase: A for CO2 and B for MeOH(0.1% NH3·H2O): Gradient: B %=20%; Flow rate: 200 g/min; Wavelength: 220 nm; Column temperature: 40° C.; System back pressure: 100 bar) to give 2 isomers: the faster isomer (715 mg, retention time: 2.4 min) is (S or R)-2-(3-chloro-2-cyclopropylphenyl)pyrrolidine; the slower isomer (737 mg, retention time: 2.7 min) is (R or S)-2-(3-chloro-2-cyclopropylphenyl)pyrrolidine.


Intermediate 3-a: 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide



embedded image


To a solution of 4-fluoro-3-nitrobenzenesulfonamide (36.3 g, 0.165 mol) in THF (500 mL) were added (tetrahydro-2H-pyran-4-yl)methanamine (20.9 g, 0.182 mol) and TEA (20.0 g, 0.198 mol) at 0-5° C., the reaction was slowly warmed to r.t. stirred for about 16 hours. EA (1.5 L) was added to the reaction, the mixture was washed with sat. NaH2PO4 (100 mL) and saturated NaCl solution (100 mL), dried over anhydrous Na2SO4, filtered and concentrated to give the product (49.1 g, 95.0% yield) as yellow solid.


Intermediate 3-b: 4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrobenzenesulfonamide



embedded image


To a mixture of compound 4-fluoro-3-nitrobenzenesulfonamide (540 mg, 2.45 mmol) and Na2CO3 (155.97 mg, 1.47 mmol) in i-PrOH (1.5 mL) was added compound (4-fluorotetrahydro-2H-pyran-4-yl)methanol (489.89 mg, 3.68 mmol) at 20° C. under N2, the mixture was stirred at 60° C. for 2 hours. The mixture was filtered and washed by water. Compound 4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrobenzenesulfonamide (758 mg) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.58 (br t, J=6.0 Hz, 1H), 8.46 (d, J=6.0 Hz, 1H), 7.81 (dd, J=1.7, 9.3 Hz, 1H), 7.40 (br d, J=9.3 Hz, 1H), 7.30 (br s, 2H), 3.81-3.70 (m, 4H), 3.56-3.45 (m, 2H), 1.89-1.69 (m, 4H), MS (ESI, m/e) [M+1]+334.0.


Intermediate 3-c: 3-nitro-4-((1-(tetrahydro-2H-pyran-4-yl)azetidin-3-yl)amino)benzenesulfonamide



embedded image


Step 1: tert-butyl (1-(tetrahydro-2H-ran-4-yl)azetidin-3-yl)carbamate



embedded image


To a solution of tetrahydro-4H-pyran-4-one (1.162 g, 11.6 mmol) in DCM (50 ml) was added tert-butyl azetidin-3-ylcarbamate (1 g, 5.8 mmol). The mixture was stirred at r.t. for 2 hours. Then to the mixture was added NaBH(OAc)3 (3.687 g, 17.4 mmol). The mixture was stirred at r.t. overnight. The mixture was diluted with DCM (200 ml), washed with brine (200 ml×2), dried over Na2SO4, concentrated. The residue was purified by chromatography column on silica with eluent of MeOH/DCM=1/20 (v/v) to give the product (800 mg) as a yellow oil. MS (ESI, m/e) [M+1]+257.1.


Step 2: 1-(tetrahydro-2H-pyran-4-yl)azetidin-3-amine dihydrochloride



embedded image


To a solution 4 N HCl (g) in dioxane (30 mL) was added tert-butyl (1-(tetrahydro-2H-pyran-4-yl)azetidin-3-yl)carbamate (300 mg, 1.17 mmol). The mixture was stirred at room temperature for 2 hours. The mixture was concentrated give the crude product (250 mg).


Step 3: 3-nitro-4-((1-(tetrahydro-2H-pyran-4-yl)azetidin-3-yl)amino)benzenesulfonamide



embedded image


To a solution of 14tetrahydro-2H-pyran-4-yl)azetidin-3-amine dihydrochloride (206 mg, 0.899 mmol) and 4-fluoro-3-nitrobenzenesulfonamide (282 mg, 1.28 mmol) in THF (50 mL) was added triethylamine (540.4 mg, 5.35 mmol). The mixture was stirred at room temperature for 4 hours. The mixture was filtered to give the product (300 mg, 93.6%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.48 (s, 1H), 8.40 (s, 1H), 7.86 (d, J=9.0 Hz, 1H), 7.39 (s, 2H), 7.10 (d, J=9.0 Hz, 1H), 4.46-4.21 (m, 1H), 3.97-3.56 (m, 4H), 3.47-3.14 (m, 4H), 2.46-2.19 (m, 1H), 1.63 (d, J=10.4 Hz, 2H), 1.20-1.19 (m, 2H).


Intermediate 3-d: 4-(((1-methylpiperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


To a solution of 4-fluoro-3-nitrobenzenesulfonamide (1.15 g, 5.2 mmol) and (1-methylpiperidin-4-yl)methanamine (640 mg, 5 mmol) in THF (12 mL) was added TEA (1.01 g, 10 mmol). The mixture was stirred at room temperature for 3 hours. And some solid came out. The mixture was filtered. Collected the solid (550 mg) as a yellow solid. MS (ESI, m/e) [M+1]+328.8.


Intermediate 3-e: 3-nitro-4-(7-oxa-2-azaspiro[3.5]nonan-2-yl)benzenesulfonamide



embedded image


To a solution of 7-oxa-2-azaspiro[3.5]nonane hydrochloride (556 mg, 3.4 mmol) and 4-fluoro-3-nitrobenzenesulfonamide (5 (0) mg, 2.27 mmol) in THF (50 mL) was added triethylamine (688 mg, 6.81 mmol). The mixture was stirred at room temperature for 4 hours.


The reaction mixture was concentrated and purified by chromatography column on silica with the eluent of EA/PE=1/1 (v/v) to give the product (600 mg, 80.7% yield) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.17 (d, J=2.0 Hz, 1H), 7.79 (dd, J=9.0, 2.0 Hz, 1H), 7.32 (s, 2H), 6.90 (d, J=9.0 Hz, 1H), 3.79 (s, 4H), 3.526 (t, J=5.0 Hz, 4H), 1.733 (t, J=5.0 Hz, 4H), MS (ESI, m/e) [M+1]+328.


Intermediate 3-f: 3-nitro-4-((1-(oxetan-3-yl)piperidin-4-yl)amino)benzenesulfonamide



embedded image


Step 1: tert-butyl (1-(oxetan-3-yl)piperidin-4-yl)carbamate



embedded image


To a solution of tert-butyl piperidin-4-ylcarbamate (1 g, 5 mmol) in DCM (50 ml) was added oxetan-3-one (1.08 g, 15 mmol), HOAC (0.2 ml). The mixture was stirred at room temperature for 2 hours. Then to the mixture was added NaBH(OAc)3 (3.18 g, 15 mmol). The mixture was stirred at rt, for overnight. The mixture was diluted with DCM (200 ml), washed with saturated aq. NaHCO3 (100 ml), brine (200 ml×2), dried over Na2SO4, concentrated. The reaction residue was purified by chromatography column on silica (MeOH/DCM=1/20) to give the product (1 g, 78%) as a yellow oil. 1H NMR (400 MHz, DMSO-d6) δ ppm: 6.79 (d, J=6.3 Hz, 1H), 4.59-4.24 (m, 4H), 3.32-3.26 (m, 1H), 3.25-3.07 (m, 1H), 2.72-2.50 (m, 3H), 1.84-1.55 (m, 4H), 1.47-1.13 (m, 11H), MS (ESI, m/e) [M+1]+257.1.


Step: 2: 1-(oxetan-3-yl)piperidin-4-amine bis(2,2,2-trifluoroacetate)



embedded image


To a solution of tert-butyl (1-(oxetan-3-yl)piperidin-4-yl)carbamate (1 g, 3.9 mmol) in DCM (30 mL) was added TFA (5 ml). The mixture was stirred at room temperature for overnight. The mixture was concentrated to give the product (1.4 g, 93.4%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.02 (s, 1H), 8.23 (s, 3H), 4.82-4.63 (m, 4H), 4.43-4.21 (m, 1H), 3.59-3.20 (m, 3H), 3.04-2.76 (m, 2H), 2.24-1.97 (m, 2H), 1.91-1.63 (m, 2H), MS (ESI, m/e) [M+1]+157.2.


Step: 3: 3-nitro-4-((1-(oxetan-3-yl)piperidin-4-yl)amino)benzenesulfonamide



embedded image


To a solution of 1-(oxetan-3-yl)piperidin-4-amine bis(2,2,2-trifluoroacetate) (784 mg, 2.04 mmol) and 4-fluoro-3-nitrobenzenesulfonamide (471.6 mg, 2.142 mmol) in THF (50 mL) was added triethylamine (1.03 g, 10.2 mmol). The mixture was stirred at room temperature for 4 hours. The mixture was filtered to give the product (500 mg, 68.8%) as a yellow solid. MS (ESI, m/e) [M+1]+357.0


Intermediate 3-g: 4-(((3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Step 1: (3-((tert-butyldimethylsilyl)oxy)xetan-3-yl)methanamine



embedded image


To a solution of 3-(aminomethyl)oxetan-3-ol (500 mg, 4.85 mmol) in DCM (50 ml) was added tert-butylchlorodimethylsilane (694 mg, 4.6 mmol), triethylamine (1.47 g, 14.55 mmol). The mixture was stirred at r.t. overnight. Then it was washed with saturated aq.


NaHCO3 (500 ml), brine (50 ml×2), dried over Na2SO4, concentrated to give the crude product, which was used directly for next step.


Step 2: 4-(((3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


To a solution of (3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methanamine (1.054 g, 4.85 mmol) in THF (50 mL) was added 4-fluoro-3-nitrobenzenesulfonamide (1.28 g, 5.82 mmol). The mixture was stirred at room temperature for 4 hours. The mixture was filtered to give the product (1.2 g, 59.3%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.49 (d, J=2.2 Hz, 1H), 8.41 (t, J=4.8 Hz, 1H), 7.41-7.34 (m, 3H), 4.60 (d, J=7.0 Hz, 2H), 4.47 (d, J=7.0 Hz, 2H), 3.84 (d, J=5.1 Hz, 2H), 0.88 (s, 9H), 0.13 (s, 6H), MS (ESI, m/e) [M+1]+418.1


Intermediate 3-h: 4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrobenzenesulfonamide



embedded image


Step 1: ethyl 4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carboxylate



embedded image


To a solution of ethyl 4-hydroxycyclohexane-1-carboxylate (2 g, 11.61 mmol) in DMF (50 ml) were added tert-butylchlorodimethylsilane (1.575 g, 10.4 mmol) and imidazole (1.58 g, 23.22 mmol). The mixture was stirred at r.t. for 2 days. The mixture was concentrated. The residue was dissolved with DCM (200 ml), washed with brine, dried over Na2SO4 and concentrated. The residue was purified by chromatography column on silica (eluent: EA/PE=1/40) to give the product (2.32 g, 69.8%).


Step 2: (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methanol



embedded image


To a solution of ethyl 4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carboxylate (2.32 g, 8.1 mmol) in MTBE (50 mL) was added LAH (369 mg, 9.72 mmol). The mixture was stirred at reflux for 2 hours. The mixture was quenched with MeOH (10 ml) at 0° C. The mixture was concentrated. The residue was purified by chromatography column on silica (eluent: EA/PE=1/2) to give the product (1.5 g, 75.8%) as a yellow oil. MS (ESI, m/e) [M+1]+245.1


Step 3: 4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrobenzenesulfonanide



embedded image


To a solution of (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methanole (587 mg, 2.4 mmol) in THF (50 ml) was added NaH (576 mg, 14.4 mmol). The mixture was stirred at room temperature for 0.5 hour. Then to the mixture was added 4-fluoro-3-nitrobenzenesulfonamide (370 mg, 1.68 mmol). The mixture was stirred overnight at room temperature. The mixture was poured into sat. NaHCO3water solution (200 mL), then adjusted pH=5-6 with HCl acid (1 M), then extracted with ethyl acetate (200 mL×3). The combined organic phase was washed with brine, dried over Na2SO4, concentrated. The residue was purified by chromatography column on silica (eluent: EA/PE=1/2) to give the product as a yellow solid. MS (ESI, m/e) [M+1]+445.1.


Intermediate 3-i: 4-((4-fluoro-1-(tetrahydrofuran-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide



embedded image


Step 1: tert-butyl 4-fluoro-4-((2-nitro-4-sulfamoylphenoxy)methyl)piperidine-1-carboxylate



embedded image


To a mixture of 4-fluoro-3-nitrobenzenesulfonamide (1 g, 4.54 mmol) and compound tert-butyl 4-fluoro-4-(hydroxymethyl)piperidine-1-carboxylate (1.06 g, 4.54 mmol) in THF (20 mL) was added NaH (726.61 mg, 18.17 mmol, 60% purity) in one portion at 0° C. under N2. The mixture was stirred at 15° C. for 14 hours. TLC showed the reaction was completed. 20 mL saturated NH4Cl solution was added to the mixture, the aqueous phase was extracted with ethyl acetate (20 mL×3). The combined organic phase was washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The crude product was purified by re-crystallization in EtOAc (10 mL) to give tert-butyl 4-fluoro-4-((2-nitro-4-sulfamoylphenoxy)methyl)piperidine-1-carboxylate (1.17 g, 2.70 mmol, 59.4% yield) as yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.31 (br s, 1H), 8.06 (br d, J=8.6 Hz, 1H), 7.64-7.54 (m, 1H), 7.25 (br s, 2H), 4.48-4.33 (m, 2H), 3.84 (br d, J=11.9 Hz, 2H), 3.03 (br s, 2H), 1.97-1.84 (m, 2H), 1.82-1.61 (m, 2H), 1.41 (d, J=2.9 Hz, 9H).


Step 2: 4-((4-fluoropiperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide



embedded image


To a mixture of tert-butyl 4-fluoro-4-((2-nitro-4-sulfamoylphenoxy)methyl)piperidine-1-carboxylate (1.17 g, 2.70 mmol) in EA was added HCl acid (4 M, 78.00 mL) in one portion at 15° C. under N2. The mixture was stirred at 15° C. for 12 hours. TLC showed the reaction was completed. The mixture was concentrated in vacuum to give 4-((4-fluoropiperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide (1 g, crude, HCl salt) as yellow solid. It was used in next step directly. 1H NMR (400 MHz. METHANOL-d4) δ ppm: 8.37 (d, J=2.3 Hz, 1H), 8.12 (dd, J=2.4, 8.9 Hz, 1H), 7.50 (d, J=8.9 Hz, 1H), 4.43 (d, J=10.0 Hz, 2H), 3.50-3.40 (m, 2H), 3.29-3.24 (m, 1H), 2.33 (br dd, J=10.0, 12.8 Hz, 2H), 2.23-2.10 (m, 2H).


Step 3: 4-((4-fluoro-1-(tetrahydrofuran-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide



embedded image


To a mixture of 4-((4-fluoropiperidin-4-yl)methoxy)-3-nitrobenzenesulfonanide (1 g, 2.70 mmol, HCl) and dihydrofuran-3 (2H)-one (698.40 mg, 8.11 mmol) in MeOH (20 mL) was added NaBH3CN (509.81 mg, 8.11 mmol) in one portion at 0° C. under N2. The mixture was stirred at 15° C. for 12 hours. LC-MS showed the reaction was completed. The mixture was poured into the sat. NaHCO3 (20 mL) solution, the aqueous phase was extracted with ethyl acetate (20 mL×3). The combined organic phase was washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The mixture was dissolved in DCM, concentrated in vacuum to obtain a yellow solid. The crude product was purified by re-crystallization from MTBE (15 mL) to give 4-((4-fluoro-1-(tetrahydrofuran-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide (0.666 g, 1.65 mmol, 61.05% yield, 96.19% purity) as a yellow solid. 1H NMR (400 MHz, METHANOL-d4) δ ppm: 8.34 (d, J=2.2 Hz, 1H), 8.09 (dd, J=2.2, 8.8 Hz, 1H), 7.47 (d, J=8.8 Hz, 1H), 4.31 (d, J=9.3 Hz, 2H), 4.00-3.88 (m, 2H), 3.83-3.72 (m, 1H), 3.66 (dd, J=7.0, 8.8 Hz, 1H), 3.07 (quin, J=7.2 Hz, 1H), 2.90 (d, J=11.0 Hz, 1H), 2.71 (d, J=11.8 Hz, 1H), 2.46 (q, J=11.8 Hz, 2H), 2.20-1.80 (m, 6H), MS (ESI, m/e) [M+1]+404.1.


Intermediate 3-j: 3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide



embedded image


Step 1: tert-butyl 2-(((2-nitro-4-sulfamoylphenyl)amino)methyl)morpholine-4-carboxylate



embedded image


To a solution of 4-fluoro-3-nitrobenzenesulfonamide (2.55 g, 11.56 mmol) in IPA (90 mL) at 55-60° C. were added Na2CO3 (735.09 mg, 6.94 mmol) and tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (3 g, 13.87 mmol). The mixture was stirred at 55-65° C. for 4 hr. TLC indicated 4-fluoro-3-nitrobenzenesulfonamide was consumed completely and one new spot formed. Concentrated and extracted with EtOAc (30 mL×3). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. Tert-butyl 2-(((2-nitro-4-sulfamoylphenyl)amino)methyl)morpholine-4-carboxylate (4.3 g, 10.33 mmol, 89.33% yield) was obtained as a yellow solid. The product was used in next step directly. 1H NMR (400 MHz, CDCl3) δ ppm: 8.78 (d, J=2.2 Hz, 1H), 8.61 (br s, 1H), 7.92 (dd, J=2.1, 9.2 Hz, 1H), 6.98 (d, J=9.0 Hz, 1H), 4.83 (s, 2H), 4.16-3.80 (m, 3H), 3.74 (t, J=3.4, 7.0. 10.5 Hz, 1H), 3.65-3.47 (m, 2H), 3.46-3.37 (m, 1H), 3.01 (br s, 1H), 2.80 (br s, 1H), 1.48 (s, 9H).


Step 2: 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide



embedded image


A mixture of tert-butyl 2-(((2-nitro-4-sulfamoylphenyl)amino)methyl)morpholine-4-carboxylate (2.5 g, 6.00 mmol) in TFA (10 mL) and DCM (10 mL) was stirred at 25° C. for 1 hr.


TLC indicated the reactant was consumed completely and one new spot formed. The reaction mixture was concentrated under reduced pressure to remove solvent. 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide (2.5 g, crude) was obtained as a yellow oil, which was used directly in the next step. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.57 (br t, J=6.0 Hz, 1H), 8.48 (d, J=2.2 Hz, 1H), 7.85 (dd, J=2.1, 9.2 Hz, 1H), 7.36 (br s, 1H), 7.30 (d, J=9.2 Hz, 1H), 4.08-3.89 (m, 2H), 3.77-3.61 (M, 2H), 3.61-3.51 (m, 1H), 3.34 (br d, J=12.6 Hz, 1H), 3.20 (br d, J=12.6 Hz, 1H), 3.01 (br, 1H), 2.90 (m, 1H).


Step 3: 3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide



embedded image


To a solution of 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide (600.00 mg, 1.90 mmol) and oxetan-3-one (410.05 mg, 5.69 mmol) in MeOH (60 mL) was added NaBH3CN (357.58 mg, 5.69 mmol). The mixture was stirred at 15° C. for 14 hours. LC-MS showed 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide was consumed completely and one main peak with desired m/z. The reaction mixture was quenched by addition of H2O (10 mL) and concentrated, then extracted with EtOAc (10 mL×3). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was washed with EA (5 mL). 3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide (580 mg. 1.49 mmol, 78.76% yield) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.55 (br t, J=5.5 Hz, 1H), 8.47 (d, J=2.0 Hz, 1H), 7.84 (dd, J=2.0, 9.0 Hz, 1H), 7.34 (s, 2H), 7.27 (d, J=9.0 Hz, 1H), 4.59-4.51 (m, 2H), 4.49-4.41 (m, 2H), 3.86 (br d, J=11.0 Hz, 1H), 3.75 (br s, 1H), 3.62-3.52 (m, 1H), 3.50-3.39 (m, 2H), 2.75 (br d, J=11.0 Hz, 1H), 2.57 (br d, J=11.0 Hz, 1H), 1.96 (dt, J=2.9, 11.0 Hz, 1H), 1.80 (t, J=11.0 Hz, 1H), MS (ESI, m/e) [M+1]+373.1.


Intermediate 3-k: 4-(((4-cyclopropylmorpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


To a solution of 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide (1 g, 3.16 mmol) in MeOH (30 mL) were added 4 Å molecular sieve (0.5 g, 9.48 mmol), AcOH (1.33 g, 22.13 mmol, 1.27 mL), (1-ethoxycyclopropyl)trimethylsilane (2.76 g, 15.81 mmol, 3.18 mL) and NaBH3CN (595.97 mg, 9.48 mmol). The mixture was stirred at 70° C. for 5 hr. LC-MS showed 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide was consumed completely and one main peak with desired m/z. The reaction mixture was concentrated and diluted with H2O (20 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL) dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (eluent: PE/EA=10:1 to EA), 4-(((4-cyclopropylmorpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide (300 mg, 25.82% yield) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.57 (br t, J=5.4 Hz, 1H), 8.47 (d, J=2.2 Hz, 1H), 7.84 (dd, J=2.2, 9.1 Hz, 1H), 7.35 (s, 2H), 7.28 (d, J=9.3 Hz, 1H), 3.83 (br d, J=11.4 Hz, 1H), 3.70-3.54 (m, 2H), 3.52-3.39 (m, 2H), 2.91 (br d, J=10.5 Hz, 1H), 2.73 (br d, J=11.4 Hz, 1H), 2.36-2.26 (m, 1H), 2.13 (t, J=10.5 Hz, 1H), 1.70-1.61 (m, 1H), 0.46-0.39 (m, 2H), 0.36-0.28 (m, 2H), MS (ESI, m/e) [M+1]+357.1.


Intermediate 3-1: 3-nitro-4-(((1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)benzenesulfonamide 2,2,2-trifluoroacetate



embedded image


Step 1: tert-butyl ((1-(oxetan-3-yl)piperidin-4-yl)methyl)carbamate



embedded image


To a solution of tert-butyl (piperidin-4-ylmethyl)carbamate (1 g, 4.67 mmol) in DCM (50 mL) was oxetan-3-one (1.01 g, 14 mmol) and HOAc (0.2 ml). The mixture was stirred at r.t. for 2 hours. Then to the mixture was added NaBH(OAc)3 (2.967 g, 14 mmol). The mixture was stirred at r.t. for overnight. The mixture was diluted with DCM (200 ml), washed with sat. aq. NaHCO3, brine (200 mL×2), dried over Na2SO4, concentrated. The residue was purified by chromatography column on silica (eluent: MeOH/DCM=1/20) to give the product (1.2 g, 95%) as a yellow oil. MS (ESI, m/e) [M+1]+271.1.


Step: 2: (1-(oxetan-3-yl)piperidin-4-is(2,2,2-trifluoroacetate)



embedded image


To a solution of tert-butyl ((1-(oxetan-3-yl)piperidin-4-yl)methyl)carbamate (1.2 g4.44 mmol) in DCM (50 mL) was added TFA (15 mL). The mixture was stirred at room temperature for overnight. The mixture was concentrated give the product. The crude product was used directly for next step.


Step: 3: 3-nitro-4-(((1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)benzenesulfonamide 2,2,2-trifluoroacetate



embedded image


To a solution of (1-(oxetan-3-yl)piperidin-4-yl)methanamine bis(2,2,2-trifluoroacetate) (1.77 g, 4.44 mmol) and 4-fluoro-3-nitrobenzenesulfonamide (1.026 g, 4.66 mmol) in THF (50 mL) was added triethylamine (2.24 g, 22.2 mmol). The mixture was stirred at room temperature for overnight. The mixture was filtered to give the product (900 mg, 41.8%) as a yellow solid. MS (ESI, m/e) [M+1]+371.1


Intermediate 3-m: (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


To a solution of (R)-(1,4-dioxan-2-yl)methanamine (450 mg, 2.93 mmol) in THF (50 mL) was added 4-fluoro-3-nitrobenzenesulfonamide (709.5 mg, 3.22 mmol) and triethylamine (1.48 g, 14.65 mmol). The mixture was stirred at room temperature for 4 hours. Then the reaction mixture was filtered and the precipate was washed with petroleum to give the product (540 mg, 58%). MS (ESI, m/e) [M+1]+318.0.


Intermediate 3-n: 4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)-3-((trifluoromethyl)sulfonyl)benzensulfonamide



embedded image


A solution of 4-fluoro-3-((trifluoromethyl)sulfonyl)benzenesulfonamide (469 mg, 1.53 mmol), (tetrahydro-2H-pyran-4-yl)methanamine (176 mg, 1.53 mmol) and Et3N (232 mg. 2.3 mmol) was stirred at room temperature for 4 hours. After removal of solvent, the resulted residue was dissolved with EA (100 mL) and washed with brine (100 mL×4), dried over anhydrous Na2SO4, filtered and concentrated to give the crude product as a white solid (747 mg). MS (ESI, m/e) [M+1]+403.1.


Intermediate 3-o: 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Step 1: 1,6-dioxaspiro[2.5]octane-2-carbonitrile

To a solution of oxan-4-one (100 g, 1 mol) in tert-Butanol (100 mL) was added 2-chloroacetonitrile (70 g, 0.93 mol). The resulting mixture was stirred for 30 min at 25° C. This was followed by the addition of a solution of t-BuOK (120 g, 1.07 mol) in tert-Butanol (1 L) dropwise with stirring at 25° C. in 40 min. The resulting mixture was stirred overnight at room temperature. After diluted with 200 mL of water and quenched with 40 mL of 10% hydrogen chloride, the resulting mixture was concentrated to one-third of its volume and then was extracted with 3/400 mL of ether. The combined organic layer was washed with 500 mL of brine, dried over anhydrous sodium sulfate and concentrated to afford 84.5 g (crude) of 1,6-dioxaspiro[2.5]octane-2-carbonitrile as yellow oil.


Step 2: 2-(4-fluorotetrahydro-2H-pyran-4-yl)-2-hydroxyacetonitrile

To a solution of 1,6-dioxaspiro[2.5]octane-2-carbonitrile (169 g, 1.22 mol) in 1 L of dichloromethane was added 70% HF/Py (148 mL) dropwise at 0° C. The resulting mixture was stirred overnight at room temperature. After diluted with 1000 mL of ethyl acetate, the reaction mixture was poured into NaHCO3 (sat.) and adjusted to PH ˜7 with solid NaHCO3under stirring. The aqueous phase was extracted with 3×1000 mL of ethyl acetate and the organic layers was combined and then washed with 850 mL of 1% hydrogen chloride and 1×1000 mL of brine. Then it was dried over anhydrous sodium sulfate and concentrated to afford 139 g (crude) of 2-(4-fluorooxan-4-yl)-2-hydroxyacetonitrile as light yellow oil.


Step 3: (4-fluorotetrahydro-2H-pyran-4-yl)methanol

To a solution of 2-(4-fluorooxan-4-yl)-2-hydroxyacetonitrile (109 g, 685.5 mmol) in i-propanol/H2O (800 mL/200 mL) was added NaBH4 (39.1 g, 1028.3 mmol) in portions at 0° C. The resulting mixture was stirred 2 h at 0° C., and then quenched by the addition of 220 mL of acetone and stirred for another 1 h. The solids were filtered out and washed with 200 mL of ethyl acetate. The filtrate was concentrated and purified by silica gel column chromatography(eluent: ethyl acetate/petroleum ether=3/1) to afford 47.8 g (4-fluorooxan-4-yl)methanol as light yellow oil.


Step 4: (4-fluorotetrahydro-2H-pyran-4-yl)methyl methanesulfonate

To a solution of (4-fluorooxan-4-yl)methanol (57.8 g, 431.3 mmol) and TEA (65.5 g, 647.0 mmol) in 500 mL of dichloromethane was added MsCl (73.2 g, 647.0 mmol) dropwise at 0° C. The resulting mixture was stirred for 2 h at room temperature. After quenched with 500 mL of water, the resulting mixture was extracted with 2×500 mL of dichloromethane. The combined organic layer was dried over anhydrous sodium sulfate and concentrated to afford 105.8 g (crude) of (4-fluorooxan-4-yl)methyl methanesulfonate as yellow oil.


Step 5: 2-((4-fluorotetrahydro-2H-pyran-4-yl)methyl)isoindoline-1,3-dione

To a solution of (4-fluorooxan-4-yl)methyl methanesulfonate (105.8 g, 499.1 mmol) in 1 L of DMF was added potassium 1,3-dioxo-2,3-dihydro-1H-isoindol-2-ide (138.5 g, 748.6 mmol). The resulting mixture was stirred for overnight at 140° C. After cooled to room temperature. The reaction mixture was poured into 3 L of water and then filtered. The filter cake was dried under vacuum to afford 98 g (crude) of 2-((4-fluorotetrahydro-2H-pyran-4-yl) methyl)isoindoline-1,3-dione as off-white solid.


Step 6: (4-fluorotetrahydro-2H-pyran-4-yl)methanamine

To a solution of 2-((4-fluorotetrahydro-2H-pyran-4-yl)methyl)isoindoline-1,3-dione(98 g, 372.6 mmol) in IL of EtOH was added NH2NH2·H2O(111.8 g, 2.24 mol). The resulting mixture was stirred for overnight at 70° C. After cooled to room temperature. The reaction mixture was concentrated and then diluted with 1 L of DCM. After removal of the solid was by filtration, the filtrate was concentrated and purified by silica gel column chromatography (eluent: CH2Cl2/MeOH=100/1) to afford 30.2 g of (4-fluorooxan-4-yl)methanamine as light yellow oil.


Step 7: 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide

To a solution of (4-fluorotetrahydro-2H-pyran-4-yl)methanamine (30 g, 225.6 mmol) and 4-fluoro-3-nitrobenzene-1-sulfonamide (41.4 g, 188.0 mmol) in 500 mL of i-PrOH was added Na2CO3 (12.0 g, 112.8 mmol). The resulting mixture was stirred for 2 h at 60° C., and precipitation was formed. After filtration, the filter cake was washed by 3×100 mL of water and then dried under infrared light to afford 60.9 g of 4-1[(4-fluorooxan-4-yl)methyl]aminol-3-nitrobenzene-1-sulfonamide as a yellow solid.


Intermediate 3-p: 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Step 1: 8-methyl-1,4-dioxaspiro[4.5]decan-8-ol

To a stirred solution of CH3MgBr (344.0 ml, 1.032 mol, 3 M in Et2O ) in dried toluene (2 L) was added 1,4-dioxaspiro[4.5]decan-8-one (70.0 g, 0.449 mol) solution in 350 ml dried toluene dropwise. The resulting mixture was stirred at 5-10° C. for 2 hours. The mixture was poured into saturated aq. NH4Cl solution (3 L) and extracted with EtOAc(3×1 L). The combined organic phase was washed with brine(1.5 L), dried over Na2SO4 and concentrated to afford the 8-methyl-1,4-dioxaspiro[4.5]decan-8-ol (70.0 g, crude) as a white solid.


Step 2: 4-hydroxy-4-methylcyclohexan-1-one

To a stirred solution of 0.05 N HCl (1800 mL) was added 8-methyl-1,4-dioxaspiro[4.5]decan-8-ol (140.0 g, 0.814 mol). The mixture was stirred at 70° C. for 2.5 hours. The resulting mixture was cooled to room temperature and added NaCl solid to saturation, then extracted with EtOAc (5×700 mL). The combined organic phase was dried over Na2SO4 and concentrated to give the 4-hydroxy-4-methylcyclohexan-1-one (105.0 g, crude) as a yellow oil.


Step 3: (S)-1-methyl-4-(nitromethyl)cyclohex-3-en-1-ol

To a stirred solution of 4-hydroxy-4-methylcyclohexan-1-one (105.0 g, 0.820 mol) in CH3NO2 (600.0 mL) was added N1,N1-dimethylethane-1,2-diamine (7.216 g, 0.082 mol). The mixture was stirred for 2 hours at 100° C. under nitrogen atmosphere. After cooled to room temperature, the reaction mixture was concentrated and purified by silica gel column chromatography eluted with EA/PE=1/4 to afford the (S)-1-methyl-4-(nitromethyl)cyclohex-3-en-1-ol (96.0 g) as a yellow oil.


Step 4: (1r, 4r)-1-methyl-4-(nitromethyl)cyclohexan-1-ol

To a stirred solution of (S)-1-methyl-4-(nitromethyl)cyclohex-3-en-1-ol (96.0 g, 0.561 mol) in DCM (1.5 L) was added Crabtree's catalyst (6.8 g, 0.008 mmol). The mixture was stirred at 50° C. for overnight under H2 (30 atm) atmosphere. After cooled to room temperature, the reaction mixture was filtrated and concentrated to afford (1r, 4r)-1-methyl-4-(nitromethyl)cyclohexan-1-ol (100.0 g, crude) as a yellow oil.


Step 5: (1r, 4r)-4-(aminomethyl)-1-methylcyclohexan-1-ol

To a stirred solution of (1r, 4r)-1-methyl-4-(nitromethyl)cyclohexan-1-ol (120.0 g, 0.694 mol) in MeOH(1.5 L) was added 10% wet Pd/C (30.0 g). The mixture was stirred for overnight at 85° C. under H2 (30 atm) atmosphere. After cooled to room temperature, the reaction mixture was filtrated and concentrated to afford (1r, 4r)-4-(aminomethyl)-1-methylcyclohexan-1-ol (95.0 g, crude) as a brown solid. 1H NMR (300 MHz, Methanol-d4) δ ppm: 2.51 (d, J=6.7 Hz, 2H), 1.86-1.58 (m, 4H), 1.40-1.50 (s, 2H), 1.35-1.26 (m, 1H), 1.21 (s, 3H), 1.16-0.95 (m, 2H).


Step 6: 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide

To a stirred solution of (1r, 4r)-4-(aminomethyl)-1-methylcyclohexan-1-ol (100.0 g, 0.699 mol) in THF (1 L) was added 4-fluoro-3-nitrobenzenesulfonamide (107.6 g, 0.489 mol) and TEA (141.2 g, 1.389 mol). The mixture was stirred at room temperature for overnight. The resulting mixture was diluted with water (500 mL) and extracted with EtOAc (3×800 mL). The combined organic phase was washed with brine (1 L), dried over anhydrous Na2SO4 and concentrated. The residue was purified by slurry in EtOAc (800.0 mL) for three times to afford 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (144.6 g) as a yellow solid. 1H NMR (300 MHz, DMSO-d6) δ ppm: 8.52 (t, J=5.9 Hz, 1H), 8.45 (d, J=2.3 Hz, 1H), 7.80 (dd, J=9.2, 2.3 Hz, 1H), 7.42-7.11 (m, 3H), 4.24 (s, 1H), 3.31 (t, J=6.3 Hz, 2H), 1.66 (d, J=11.5 Hz, 3H), 1.53 (d, J=12.7 Hz, 2H), 1.31 (td, J=12.4, 3.4 Hz, 2H), 1.11-1.08 (m, 6H), MS (ESI, m/e) [M+1]+343.9.


Intermediate 3-q1: (4-((((1s, 4s)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Intermediate 3-q2: 4-((((1r, 4r)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Step 1: ethyl 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexanecarboxylate

To a solution of ethyl 4-oxocyclohexanecarboxylate (10 g, 58.75 mmol) in THF (100 mL) was added TMSCF3 (12.53 g, 88.13 mmol) and CsF (8.92 g, 58.75 mmol). The mixture was stirred at 20° C. for 6 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with saturated NaHCO3aqueous solution (50 mL×2) and extracted with ethyl acetate (50 mL×3). The combined organic phase was washed with brine (50 mL. 2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography (silica gel, eluent: PE/EA=100/1 to 2/1). Ethyl 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexanecarboxylate (8.12 g) was obtained as yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 4.15 (q, J=7.1 Hz, 2H), 2.20-2.66 (m, 1H), 1.98-2.08 (m, 1H), 1.63-1.95 (m, 6H), 1.53 (td, J=13.4, 4.2 Hz, 1H), 1.27 (t, J=7.1 Hz, 3H), 0.17 (d, J=4.5 Hz, 9H).


Step 2: (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methanol

To a solution of ethyl 4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexanecarboxylate (8.10 g, 25.93 mmol) in THF (50 mL) was added LAH (1.97 g, 51.86 mmol) at 0° C., the mixture was stirred at 0° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was quenched by addition of water (15 mL), and then extracted with Ethyl acetate (50 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product (6.2 g, crude) was used into the next step without further purification.


Step 3: (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methyl methanesulfonate

To a solution of (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methanol (6.2 g, 22.93 mmol) and TEA (4.64 g, 45.86 mmol) in DCM (60 mL) was added MsCl (5.91 g, 51.60 mmol) at 0° C., the mixture was stirred at 0° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with saturated NaHCO3aqueous solution (50 mL×2) and extracted with DCM (50 mL×2). The combined organic phase was washed with brine (50 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The crude product (8.52 g, crude) was used into the next step without further purification.


Step 4: ((4-(azidomethyl)-1-(trifluoromethyl)cyclohexyl)oxy)trimethylsilane

To a solution of (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methyl methanesulfonate (8.51 g, 24.42 mmol) in DMF (150 mL) was added NaN3 (7.94 g, 122.11 mmol) at 20° C. the mixture was stirred at 50° C. for 12 hours. TLC indicated the reactant was consumed completely. The mixture was diluted with water and extracted with MTBE (100 mL×3), dried over anhydrous Na2SO4 filtered. The combined organic layers were concentrated to obtain crude product, which was used for the next step directly.


Step 5: (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methanamine

A mixture of ((4-(azidomethyl)-1-(trifluoromethyl)cyclohexyl)oxy)trimethylsilane (7.21 g, theoretical yield) in CH3OH (50 mL) was added Pd/C(2.5 g), the mixture was stirred at 30° C. for 16 hours under H2 (30 psi). TLC indicated the reactant was consumed completely.


The mixture was filtered and concentrated under reduced pressure. (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methanamine (4.67 g, crude) was obtained as yellow oil. The crude product was used into the next step without further purification.


Step 6: 4-(((4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide

To a solution of 4-fluoro-3-nitrobenzenesulfonamide (2.50 g, 11.35 mmol) and (4-(trifluoromethyl)-4-((trimethylsilyl)oxy)cyclohexyl)methanamine (4.59 g, 17.04 mmol) in DMF (75 mL) was added DIPEA (2.94 g, 22.74 mmol), the mixture was stirred at 55° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with water (200 mL) and extracted with EA (100 mL×3). The combined organic phase was washed with brine (50 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was washed with PE/EA=5/1 (30 mL) and filtered. The filter cake was purified by prep-HPLC (neutral). 4-((((1s, 4s)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (Intermediate 3-q1, retention time: 2.5 min) (1.04 g) was obtained as a yellow solid. 1H NMR (400 MHz, methol-d4) δ ppm: 8.65 (d, J=1.9 Hz, 1H), 8.49 (t, J=4.7 Hz, 1H), 7.91 (dd, J=9.1, 1.63 Hz, 1H), 7.17 (d, J=9.3 Hz, 1H), 3.46 (t, J=6.3 Hz, 2H), 2.06 (d, J=4.1 Hz, 1H), 1.84-2.00 (m, 4H), 1.52-1.70 (m, 4H), MS (ESI, m/e) [M−1]396.0; 4-((((1r, 4r)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (Intermediate 3-q2, retention time: 2.6 min) (842 mg) was obtained as a yellow solid. 1H NMR (400 MHz, methol-d4) δ ppm: 8.65 (d, J=1.9 Hz, 1H), 8.54 (t, J=5.2 Hz, 1H), 7.90 (dd, J=9.1, 1.6 Hz, 1H), 7.17 (d, J=9.3 Hz, 1H), 3.33-3.41 (m, 2H), 1.24 (s, 1H), 1.87 (d, J=12.5 Hz, 2H), 1.71-1.82 (m, 3H), 1.42-1.69 (m, 4H), MS (ESI, m/e) [M−1]396.0.


Intermediate 3-r: 4-(((3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


Step 1: ethyl 3-oxabicyclo[3.1.0]hexane-6-carboxylate

To a solution of 2,5-dihydrofuran (10 g, 142.67 mmol) and ethyl 2-diazoacetate (32.56 g, 285.35 mmol) in DCM (250 mL) was added Rh(AcO)2 (63.06 mg. 2.85 mmol). The mixture was stirred at 20° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was and concentrated in vacuum to give a residue. The residue was purified by prep-MPLC and ethyl 3-oxabicyclo[3.1.0]hexane-6-carboxylate (10.0 g) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 4.08-4.16 (m, 2H), 3.92 (d, J=8.6 Hz, 2H), 3.74 (d, J=8.4 Hz, 2H), 2.13-2.17 (m, 2H), 1.59 (t, J=3.1 Hz, 1H), 1.23-1.28 (m, 3H).


Step 2: 3-oxabicyclo[3.1.0]hexan-6-ylmethanol

To a solution of ethyl 3-oxabicyclo[3.1.0]hexane-6-carboxylate (10 g, 64.03 mmol) in THF (50 mL) was added LiAlH4 (2.43 g, 64.03 mmol) at 0° C. The mixture was stirred at 0° C. for 4 hours. TLC indicated the reactant was consumed completely. The reaction mixture was poured into H2O (30 mL) and extracted with EA (30 mL×3), dried over Na2SO4, filtered and concentrated. 3-oxabicyclo[3.1.0]hexan-6-ylmethanol (7.0 g, crude) was obtained and used into the next step without further purification.


Step 3: 3-oxabicyclo[3.1.0]hexan-6-ylmethyl methanesulfonate

To a solution of 3-oxabicyclo[3.1.0]hexan-6-ylmethanol (7.0 g, 61.33 mmol) in DCM (100 mL) was added MsCl (21.08 g, 183.98 mmol) and TEA (24.82 g, 245.31 mmol). The mixture was stirred at 25° C. for 5 hours. TLC indicated the reactant was consumed completely. The reaction mixture was quenched with aq. NH4Cl (30 mL) and extracted with EA (30 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (SiO2, PE/EA=100/1 to 30/1). 3-oxabicyclo[3.1.0]hexan-6-ylmethyl methanesulfonate (3.5 g) was obtained. 1H NMR (400 MHz, CDCl3) δ ppm: 4.15 (d, J=7.5 Hz, 2H), 3.90 (d, J=8.4 Hz, 2H), 3.71 (d, J=8.4 Hz, 2H), 3.03 (s, 3H), 1.69-1.72 (m, 2H), 1.21-1.29 (m, 1H).


Step 4: 6-(azidomethyl)-3-oxabicyclo[3.1.0]hexane

To a solution of 3-oxabicyclo[3.1.0]hexan-6-ylmethyl methanesulfonate (2 g, 10.4 mmol) in DMF (20 mL) was added NaN3 (676.37 mg, 10.4 mmol). The mixture was stirred at 50° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was poured into H2O (30 mL) and extracted with EA (30 mL×3), dried over Na2SO4, filtered and concentrated. The crude product was used in next step directly.


Step 5: 3-oxabicyclo[3.1.0]hexan-6-ylmethanamine

To a solution of 6-(azidomethyl)-3-oxabicyclo[3.1.0]hexane (1.4 g, 10.06 mmol) in DMF (15 mL) was added Pd/C (0.7 g, 1.006 mmol). The mixture was stirred at 25° C. for 2 hours under H2 atmosphere (15 Psi). LC/MS showed the reactant was consumed completely and one main peak with desired mass signal. The reaction mixture was filtered and used next step directly. MS (ESI, m/e) [M+1]+114.0.


Step 6: 4-(((3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrobenzenesulfonamide

To a solution of 4-fluoro-3-nitrobenzenesulfonamide (1.5 g, 6.8 mmol) and 3-oxabicyclo[3.1.0]hexan-6-ylmethanamine (1 g, 8.84 mmol) in DMF (15 mL) was added DIEA (1.76 g, 13.6 mmol). The mixture was stirred at 60° C. for 2 hours. LC/MS showed 4-fluoro-3-nitrobenzenesulfonamide was consumed completely and one main peak with desired mass signal. The reaction mixture was cooled to room temperature and poured into H2O (50 mL) under stirring. The precipitation was filtered and the cake was washed with MTBE (10 mL) and dried in vacuum. 4-((3-oxabicyclo[3.1.0]hexan-6-ylmethyl)amino)-3-nitrobenzenesulfonamide (758 mg) was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.59 (br, 1H), 8.47 (s, 1H), 7.84 (d, J=8.8 Hz, 1H), 7.37 (s, 2H), 7.28 (d, J=9.2 Hz, 1H), 3.72 (d, J=8.2 Hz, 2H), 3.55 (d, J=7.9 Hz, 2H), 3.36 (s, 2H), 1.71 (s, 2H), 1.05 (s, 1H), MS (ESI, m/e) [M+1]+314.0.


Example A1: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-(4-bromophenyl)-2-phenyl)pyrrolidine



embedded image


To a degassed solution of 2-phenylpyrrolidine (588 mg, 4 mmol), 1-bromo-4-iodobenzene (1.132 g, 16 mmol), BINAP (497 mg, 0.8 mmol) and K-OtBu (1.2 g, 12 mmol) in toluene (25 ml) was added Pd2(dba)3 (366 mg, 0.4 mmol). Nitrogen was bubbled through the mixture for 5 min, then heated to 90° C., and stirred overnight. After cooled to room temperature, the reaction mixture was washed with water and brine in sequence. The organic layer was dried over anhydrous Na2SO4, then filtered, concentrated and purified by column chromatography with 50%˜-20% EA/PE as eluent to give 1-(4-bromophenyl)-2-phenylpyrrolidine (750 mg, 62%) as a colorless oil. MS (ESI, m/e) [M+1]+302.0, 304.1.


Step 2: tert-butyl-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


Under nitrogen atmosphere, a mixture of 1-(4-bromophenyl)-2-phenylpyrrolidine (525 mg, 1.74 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (985 mg, 2.26 mmol), Pd(dppf)Cl2 (128 mg, 0.174 mmol), and K2CO3 (480 mg, 3.48 mmol) in 1,4-dioxane/H2O (50 mL/10 mL) was heated to 90° C. with stirring overnight. After cooled to room temperature, the reaction mixture was washed with water and brine in sequence. The organic layer was dried over anhydrous Na2SO4, then filtered, concentrated and purified by column chromatography with 10%-50% EA/PE as eluent to give tert-butyl-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (530 mg, 57.4%) as a white foam. MS (ESI, m/e) [M+1]+532.3.


Step 3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To a solution of tert-butyl-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (531 mg, 1 mmol) in dichloromethane (25 mL) was added trifluoroacetic acid (5 mL). The reaction was stirred overnight at r.t. Then the solvent was removed under reduced pressure and the resulted residue was purified by column chromatography on silica gel with 5% methanol/dichloromethane to give 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (400 mg, 84.2%) as a white foam. MS (ESI, m/e) [M+1]+476.2.


Step 4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (95 mg, 0.2 mmol) in dichloromethane (25 mL) were added HATU (114 mg, 0.3 mmol) and trimethylamine (0.2 mL). The mixture was stirred for 0.5 h at r.t. Then 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (126 mg, 0.4 mmol) was added. After stirred overnight at r.t. the reaction mixture was washed with water (10 mL), and the organic layers were dried over anhydrous Na2SO4, then concentrated in vacuum. The residue was further purified by prep-HPLC to give the desired compound. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.68 (s, 1H), 8.57 (s, 1H), 8.54 (s, 1H), 8.03 (s, 1H), 7.80 (d, J=8.6 Hz, 1H), 7.59-7.46 (m, 3H), 7.33-7.25 (m, 5H), 7.20-7.14 (m, 3H), 7.08 (d, J=8.1 Hz, 1H), 6.89 (s, 1H), 6.42 (d, J=8.5 Hz, 2H), 6.37 (s, 1H), 4.78 (d, J=7.4 Hz, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.68 (s, 1H), 3.31-3.20 (m, 3H), 2.37-2.34 (m, 1H), 1.94-1.80 (m, 4H), 1.60 (d, J=12.0 Hz, 2H), 1.38-1.14 (m, 4H), MS (ESI, m/e) [M+1]+773.3


Example A2: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(4-chlorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-dc) δ ppm; 12.16 (s, 1H), 11.70 (s, 1H), 8.60 (s, 1H), 8.56 (s, 1H), 8.05 (d, J=2.2 Hz, 1H), 7.82 (d, J=8.4 Hz, 1H), 7.59 (s, 1H), 7.57-7.48 (m, 2H), 7.34-7.28 (m, 5H), 7.18 (d, J=8.3 Hz, 2H), 7.12 (d, J=9.3 Hz, 1H), 6.89 (s, 1H), 6.41 (d, J=8.6 Hz, 2H), 6.38 (s, 1H), 4.78 (d, J=7.1 Hz, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.67 (t, J=7.1 Hz, 1H), 3.30-3.18 (m, 4H), 2.37 (m, 1H), 2.00-1.69 (m, 4H), 1.60 (d, J=12.4 Hz, 2H), 1.34-1.13 (m, 3H), MS (ESI, m/e) [M+1]+807.1


Example A3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(3-chlorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.59 (s, 1H), 8.57 (s, 1H), 8.05 (s, 1H), 7.83 (d, J=9.0 Hz, 1H), 7.60 (s, 1H), 7.55-7.51 (m, 2H), 7.36-7.21 (m, 6H), 7.13 (d, J=8.4 Hz, 2H), 6.91 (s, 1H), 6.43 (d, J=8.4 Hz, 2H), 6.39 (s, 1H), 4.80 (d, J=7.7 Hz, 1H), 3.85 (d, J=9.9 Hz, 2H), 3.70 (s, 1H), 3.31-3.18 (m, 4H), 2.36-2.31 (m, 1H), 1.94-1.79 (m, 4H), 1.60 (d, J=12.5 Hz, 2H), 1.25 (m, 3H), MS (ESI, m/e) [M+1]+807.1


Example A4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-chlorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-dc) δ ppm; 12.17 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.57 (s, 1H), 8.05 (s, 1H), 7.83 (d, J=9.4 Hz, 1H), 7.60-7.41 (m, 4H), 7.35-7.30 (m, 3H), 7.25-7.12 (m, 3H), 7.00 (d, J=7.7 Hz, 1H), 6.90 (s, 1H), 6.48-6.27 (m, 3H), 4.97 (d, J=7.4 Hz, 1H), 3.85 (d, J=11.3 Hz, 2H), 3.74 (s, 1H), 3.31-3.19 (m, 4H), 2.43-2.35 (m, 1H), 1.99-1.83 (m, 4H), 1.60 (d, J=12.5 Hz, 2H), 1.23 (s, 3H), MS (ESI, m/e) [M+1]+807.1.


Example A4a: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide
Example A4b: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Two enantiomers A4a (faster isomer) and A4b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 1.1 min to give 252 mg of product. The slower enantiomer was eluted at retention time of 1.8 min to give 238 mg of product. The absolute configuration of fast isomer was confirmed to be S by co-crystallization of Bcl2 with A4a, see the section “Protein purification and co-crystallization of Bcl2 with A4a”.













Column
CHIRALPAK IG







Column size
2 cm × 25 cm, 5 um


Injection
4.8 mL


Mobile phase
CO2 : [DCM:EtOH(0.1% DEA) = 1:2] = 55:45


Flow rate
40 mL/min


Wave length
UV 220 nm


Temperature
25° C.


Sample solution
5.64 mg ml in MeOH:DCM = 3:1


Prep-SFC equipment
Prep-SFC-80









Example A5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-3′-chloro-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-chlorophenyl)pyrrolidine and 4-bromo-2-chloro-1-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.32 (s, 1H), 11.70 (s, 1H), 8.61 (t, J=5.7 Hz, 1H), 8.55 (d, J=2.0 Hz, 1H), 8.03 (d, J=2.4 Hz, 1H), 7.82 (d, J=7.6 Hz, 1H), 7.62-7.46 (m, 4H), 7.44-7.34 (m, 2H), 7.33-7.22 (m, 2H), 7.22-7.15 (m, 2H), 7.12 (d, J=9.4 Hz, 1H), 6.99 (s, 1H), 6.71 (d, J=8.8 Hz, 1H), 6.37 (s, 1H), 5.20 (t, J=7.6 Hz, 1H), 4.16 (m, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.45-3.11 (m, 5H), 2.10-1.80 (m, 3H), 1.63 (m, 2H), 1.24 (m, 4H), MS (ESI, m/e) [M+1]+841.1.


Example A6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-3′-(trifluoromethyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-(4-bromo-2-(trifluoromethylphenyl)-2-phenylpyrrolidine



embedded image


A mixture of 2-phenylpyrrolidine (1.46 g, 10 mmol), 4-bromo-1-fluoro-2-(trifluoromethyl)benzene (4.8 g, 20 mmol) and N,N-Diisopropylethylamine (2.5 g, 20 mmol) in Dimethyl sulfoxide (50 mL) was heated to 150° C. in a sealed tube with stirring overnight. The mixture was cooled and poured into water (100 mL). Then the mixture was extracted with EA (50 mL×3), the organic was washed with water, brine and dried over anhydrous Na2SO4. Solvent was removed in vacuum, the residue was purified by column chromatography with petroleum to give 1-(4-bromo-2-(trifluoromethyl)phenyl)-2-phenylpyrrolidine (180 mg, 4.9%) as a brown oil.


The desired compound was then synthesized from 1-(4-bromo-2-(trifluoromethyl)phenyl)-2-phenylpyrrolidine following the next procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d5) δ ppm: 12.32 (s, 1H), 11.66 (s, 1H), 8.56-8.53 (m, 2H), 8.01 (s, 1H), 7.78 (s, 1H), 7.66 (s, 1H), 7.61-7.42 (m, 4H), 7.39 (d, J=8.0 Hz, 1H), 7.30 (d, J=7.2 Hz, 2H), 7.23 (t, J=7.2 Hz, 2H), 7.1-7.00 (m, 4H), 6.35 (s, 1H), 4.87 (d, J=9.4 Hz, 1H), 4.02-3.64 (m, 3H), 3.26-3.22 (m, 4H), 2.43-2.31 (m, 1H), 2.00-1.98 (m, 1H), 1.93-1.81 (m, 2H), 1.72-1.67 (m, 1H), 1.60 (d, J=12.0 Hz, 2H), 1.29-1.19 (m, 3H), MS (ESI, m/e) [M+1]+841.1.


Example A7: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(3-(trifluoromethyl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(3-(trifluoromethyl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.05 (d, J=2.0 Hz, 1H), 7.82 (d, J=9.2 Hz, 1H), 7.64-7.42 (m, 7H), 7.33 (dd, J=14.2, 8.5 Hz, 3H), 7.13 (d, J=9.2 Hz, 1H), 6.90 (s, 1H), 6.56-6.31 (m, 3H), 4.90 (d, J=7.4 Hz, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.73 (t, J=7.1 Hz, 1H), 3.31-3.22 (m, 5H), 2.05-1.77 (m, 5H), 1.60 (d, J=12.1 Hz, 2H), 1.28 (s, 2H), MS (ESI, m/e) [M+1]+841.1.


Example A8: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 2-(2-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the next procedures similar to those in Example A1. 1H NMR (400 MHz, CDCl2) δ ppm: 10.31 (s, 1H), 9.14 (s, 1H), 8.93 (d, J=2.0 Hz, 11H), 8.54 (t, J=5.2 Hz, 1H), 8.24 (d, J=2.0 Hz, 1H), 8.19 (d, J=7.6 Hz, 1H), 8.09 (d, J=8.6 Hz, 1H), 7.71 (d, J=2.0 Hz, 1H), 7.45-7.41 (m, 1H), 7.29 (s, 1H), 7.20 (d, J=8.6 Hz, 2H), 7.12 (t, J=7.6 Hz, 1H), 7.04-6.98 (m, 2H), 6.93 (d, J=8.6 Hz, 2H), 6.81 (s, 1H), 6.53 (s, 1H), 6.36 (d, J=8.6 Hz, 2H), 5.20 (d, J=8.0 Hz, 1H), 4.03 (dd, J=11.0, 3.6 Hz, 2H), 3.70 (t, J=7.1 Hz, 1H), 3.50-3.41 (m, 3H), 3.27 (t, J=6.0 Hz, 2H), 2.47-2.37 (m, 1H), 2.04-1.90 (m, 7H), 1.76-1.71 (m, 2H), 1.63 (s, 4H), 1.50-1.36 (m, 2H), 1.04-0.94 (m, 2H), 0.84-0.80 (m, 1H), 0.72-0.68 (m, 1H), MS (ESI, m/e) [M+1]+813.1.


Example A8a and Example A8b: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide, or (S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Two enantiomers A8a (faster isomer) and A8b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 3.9 min to give 231 mg of product. The slower enantiomer was eluted at retention time of 4.7 min to give 219 my of product.













Column
CHIRAL ART Cellulose-SB







Column size
2 cm × 25 cm, 5 um


Injection
0.5 mL


Mobile phase
(Hex:DCM = 5:1)0.1% FA):EtOH = 50:50


Flow rate
20 mL/min


Wave length
UV 220 nm


Temperature
25° C.


Sample solution
17.3 mg/mL in EtOH:DCM = 3:1


Prep-HPLC equipment
Prep-HPLC-Gilson









Example A9: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(4-(trifluoromethyl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(4-(trifluoromethyl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.60 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.82 (d, J=8.2 Hz, 1H), 7.64 (d, J=8.0 Hz, 2H), 7.58 (s, 1H), 7.53 (d, J=8.2 Hz, 1H), 7.50 (s, 1H), 7.39 (d, J=8.0 Hz, 2H), 7.33 (d, J=8.2 Hz, 1H), 7.30 (d, J=8.5 Hz, 2H), 7.12 (d, J=8.2 Hz, 1H), 6.89 (s, 1H), 6.43 (d, J=8.5 Hz, 2H), 6.38 (s, 1H), 4.89 (d, J=7.7 Hz, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.71 (t, J=7.4 Hz, 1H), 3.43-3.19 (m, 5H), 2.46-2.35 (m, 1H), 2.05-1.76 (m, 4H), 1.60 (d, J=12.4 Hz, 2H), 1.29-1.20 (m, 2H), MS (ESI, me) [M+1]+841.1.


Example A10: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


2-(3-cyclopropylphenyl)pyrrolidine was prepared by the similar procedure of 24 (2-cyclopropylphenyl)pyrrolidine. The desired compound was then synthesized from 2-(3-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the next procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 8.39 (s, 1H), 8.34 (t, J=5.6 Hz, 1H), 7.95 (s, 1H), 7.64 (d, J=8.0 Hz, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.41 (s, 1H), 7.34 (s, 1H), 7.30 (d, J=8.4 Hz, 2H), 7.25 (d, J=8.0 Hz, 1H), 7.13 (t, J=7.5 Hz, 1H), 6.95 (s, 1H), 6.93 (s, 1H), 6.89 (d, J=8.0 Hz, 1H), 6.85-6.77 (m, 2H), 6.42 (d, J=8.4 Hz, 2H), 6.29 (s, 1H), 4.72 (d, J=8.0 Hz, 1H), 3.83 (d, J=8.0 Hz, 2H), 3.67 (s, 1H), 3.25-3.23 (m, 3H), 2.41-2.27 (m, 1H), 1.93-1.78 (m, 6H), 1.60 (d, J=8.0 Hz, 2H), 1.29-1.17 (m, 3H), 0.89 (d, J=8.0 Hz, 2H), 0.64-0.57 (m, 2H), MS (ESI, m/e) [M+1]+813.1.


Example A11: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(o-tolyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(o-tolyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H), 8.39 (s, 1H), 8.34 (t, J=5.5 Hz, 1H), 7.95 (d, J=2.1 Hz, 1H), 7.65 (d, J=9.1 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.41 (s, 1H), 7.35 (d, J=2.1 Hz, 1H), 7.29 (d, J=8.5 Hz, 2H), 7.23 (d, J=8.0 Hz, 1H), 7.18 (d, J=8.0 Hz, 1H), 7.09 (t, J=7.3 Hz, 1H), 7.02 (t, J=7.3 Hz, 1H), 6.89 (s, 1H), 6.87 (d, J=8.0 Hz, 1H), 6.83 (d, J=9.1 Hz, 1H), 6.35 (d, J=8.5 Hz, 2H), 6.30 (d, J=2.1 Hz, 1H), 4.86 (d, J=8.0 Hz, 1H), 3.83 (d, J=8.0 Hz, 2H), 3.75-3.71 (m, 1H), 3.25-3.23 (m, 3H), 3.17 (s, 1H), 2.38 (s, 3H), 2.04-1.80 (m, 3H), 1.74-1.71 (m, 1H), 1.60 (d, J=12.0 Hz, 2H), 1.28-1.20 (m, 4H), MS (ESI, m/e) [M+1]+787.1.


Example A12: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-isopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the next procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.82 (d, J=8.5 Hz, 1H), 7.50-7.58 (m, 3H), 7.29-7.35 (m, 4H), 7.24-7.06 (m, 2H), 6.98 (t, J=7.3 Hz, 1H), 6.91 (s, 1H), 6.82 (d, J=7.6 Hz, 1H), 6.35-6.37 (m, 3H), 4.99 (d, J=7.9 Hz, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.70 (t, J=7.9 Hz, 1H), 3.18-3.38 (m, 5H), 3.01 (s, 1H), 2.04-1.82 (m, 4H), 1.70 (s, 1H), 1.60 (d, J=12.2 Hz, 2H), 1.27-1.23 (m, 8H), MS (ESI, m/e) [M+1]+815.2.


Example A13: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-([1,1′-biphenyl]-2-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-([1,1′-biphenyl]-2-yl)pyrrolidine and 1-bromo-4-iodobenzene following the next procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.62 (s, 1H), 8.48 (s, 2H), 8.00 (s, 1H), 7.73 (s, 1H), 7.62-7.35 (m, 8H), 7.35-7.13 (m, 7H), 7.10 (s, 1H), 6.90 (s, 1H), 6.33 (d, J=8.4 Hz, 3H), 4.61 (d, J=7.8 Hz, 1H), 3.84 (d, J=9.9 Hz, 2H), 3.70 (s, 1H), 3.26 (m, 4H), 2.98 (s, 1H), 2.19-2.07 (m, 1H), 1.97-2.02 (m, 2H), 1.78-1.89 (m, 3H), 1.60 (d, J=12.7 Hz, 2H), 1.28 (s, 1H), MS (ESI, m/e) [M+1]+849.1.


Example A14: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(4-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.72 (s, 1H), 8.63 (t, J=5.7 Hz, 1H), 8.57 (d, J=1.8 Hz, 1H), 8.05 (d, J=2.2 Hz, 1H), 7.83 (d, J=9.1 Hz, 1H), 7.60 (d, J=2.2 Hz, 1H), 7.55-7.50 (m, 2H), 7.35-7.25 (m, 3H), 7.14 (d, J=9.3 Hz, 1H), 7.05-6.95 (m, 4H), 6.89 (s, 1H), 6.45-6.35 (m, 3H), 4.72 (d, J=8.0 Hz, 2H), 3.90-3.80 (m, 2H), 3.70-3.60 (m, 2H), 3.40-3.15 (m, 3H), 2.35-2.26 (m, 2H), 2.02-1.68 (m, 4H), 1.65-1.55 (m, 2H), 1.30-1.15 (m, 2H), 0.92-0.86 (m, 2H), 0.62-0.55 (m, 2H), MS (ESI, m/e) [M+1]+813.2.


Example A15: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylazepan-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-phenylazepane and 1-bromo-4-iodobenzene following the procedures similar to those in Example. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.72 (s, 1H), 8.68-8.63 (m, 1H), 8.58-8.52 (m, 1H), 8.06 (d, J=2.0 Hz, 1H), 7.84 (d, J=8.2 Hz, 1H), 7.61 (d, J=2.1 Hz, 1H), 7.53 (t, J=5.7 Hz, 3H), 7.40-7.23 (m, 6H), 7.20-7.13 (m, 5H), 6.87 (s, 1H), 6.57 (d, J=8.6 Hz, 2H), 6.39 (s, 1H), 4.65-4.55 (m, 1H), 3.88-3.75 (m, 2H), 3.58-3.43 (m, 1H), 3.30-3.20 (m, 3H), 2.42-2.30 (m, 1H), 1.95-1.87 (m, 2H), 1.82-1.67 (m, 3H), 1.65-1.52 (m, 4H), 1.29-1.23 (m, 2H), MS (ESI, m/e) [M+1]+801.2.


Example A16: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpiperidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-phenylpiperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (br, 1H), 11.63 (br, 1H), 8.48 (br. 2H), 8.01 (m, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.54 (m, 2H), 7.32 (d, J=12.0 Hz, 2H), 7.25-7.21 (m, 4H), 7.13-7.11 (m, 1H), 6.91-6.86 (m, 4H), 6.35 (m, 1H), 4.79 (m, 1H), 3.75 (d, J=8.0 Hz, 2H), 3.45 (m, 1H), 3.32-3.23 (m, 5H), 1.92-1.70 (m, 4H), 1.62 (m, 2H), 1.48 (m, 2H), 1.25-1.20 (m, 3H), MS (ESI, m/e) [M+1]+787.1.


Example A17: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3,4-dichlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(3,4-dichlorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.69 (s, 1H), 8.65-8.50 (m, 2H), 8.04 (s, 1H), 7.85-7.75 (m, 1H), 7.55-7.42 (m, 4H), 7.42-7.38 (m, 1H), 7.32-7.25 (m, 4H), 7.20-7.14 (m, 2H), 6.90 (s, 1H), 6.50-6.33 (m, 3H), 4.80 (d, J=7.8 Hz, 1H), 3.84 (d, J=8.1 Hz, 2H), 3.75-3.65 (m, 1H), 3.24-3.18 (m, 2H), 2.40-2.31 (m, 2H), 2.00-1.84 (m, 2H), 1.82-1.78 (m, 2H), 1.65-1.58 (m, 3H), 1.29-1.24 (m, 2H), MS (ESI, m/e) [M+1]+841.1.


Example A18: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-methoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-methoxyphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.71 (s, 1H), 8.65-8.60 (m, 1H), 8.57 (d, J=2.6 Hz, 1H), 8.05 (d, J=2.6 Hz, 1H), 7.85-7.80 (m, 1H), 7.53 (d, J=8.2 Hz, 1H), 7.49-7.52 (m, 1H), 7.35-7.31 (m, 1H), 7.29 (d, J=8.7 Hz, 2H), 7.21-7.16 (m, 1H), 7.13 (d, J=9.2 Hz, 1H), 7.01 (d, J=8.1 Hz, 1H), 6.89 (d, J=1.3 Hz, 1H), 6.81-6.74 (m, 2H), 6.40-6.37 (m, 1H), 6.35 (d, J=8.6 Hz, 2H), 4.94 (d, J=8.0 Hz, 1H), 3.88-3.80 (m, 5H), 3.66 (t, J=7.9 Hz, 1H), 3.34-3.21 (m, 6H), 2.35-2.25 (m, 1H), 2.00-1.71 (s, 4H), 0.6) (d, J=12.1 Hz, 2H), 1.28-1.21 (m, 2H), MS (ESI, m/e) [M+1]+803.1


Example A19: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-methoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(4-methoxyphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.71 (s, 1H), 8.62 (t, J=5.5 Hz, 1H), 8.56 (d, J=1.8 Hz, 1H), 8.05 (d, J=2.4 Hz, 1H), 7.82 (d, J=7.8 Hz, 1H), 7.62-7.57 (m, 1H), 7.56-7.48 (m, 2H), 7.34 (d, J=8.1 Hz, 1H), 7.28 (d, J=8.6 Hz, 2H), 7.13 (d, J=9.2 Hz, 1H), 7.06 (d, J=8.5 Hz, 2H), 6.89 (s, 1H), 6.82 (d, J=8.5 Hz, 2H), 6.42 (d, J=8.0 Hz, 2H), 6.36-6.40 (m, 1H), 4.72 (d, J=8.0 Hz, 1H), 3.84 (dd, J=11.2, 3.0 Hz, 2H), 3.74-3.61 (m, 4H), 3.34-3.20 (m, 6H), 2.37-2.27 (m, 2H), 1.98-1.79 (m, 3H), 1.79-1.70 (m, 1H), 1.60 (d, J=12.0 Hz, 2H), 1.27-1.19 (m, 2H), MS (ESI, m/e) [M+1]+803.2


Example A20: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 2,2-dimethyl-4-oxo-4-phenylbutanoic acid



embedded image


To a solution of 3,3-dimethyldihydrofuran-2,5-dione (15.3 g, 120 mmol) and AlCl3 (31.92 g, 240 mmol) in DCM (200 mL) was added benzene (14.04 g, 180 mmol) dropwise with ice-water bath. It was warmed up to room temperature slowly and stirred overnight. The reaction mixture was poured into ice and diluted with DCM (400 mL) and conc. HCl acid (50 mL) was added and stirred until no precipitate. The organic layer was dried over anhydrous Na2SO4, filtered and concentrated. The residue was slurried with MTBE and PE to give the desired product as a white solid (22.52 g, 99%). 1H NMR (400 MHz, CDCl3) δ ppm: 7.95 (d, J=7.7 Hz, 2H), 7.56 (t, J=7.7 Hz, 1H), 7.46 (t, J=7.7 Hz, 2H), 3.31 (s, 2H), 1.36 (s, 6H), MS (ESI, m/e) [M+1]+205.1.


Step 2: N-(4-bromophenyl)-4-hydroxy)-2,2-dimethyl-4-phenylbut-3-enamide



embedded image


A solution of 2,2-dimethyl-4-oxo-4-phenylbutanoic acid (2.06 g, 10 mmol), 4-bromoaniline (1.806 g, 10.5 mmol), HATU (3.8 g, 10 mmol) and Et3N (1.5 g, 15 mmol), in DCM (50 mL) was stirred at room temperature overnight. After DCM was removed, the residue was purified by column flash in silica gel eluted with EA/PE=1/5 to give the crude product as a brown oil (1.88 g). MS (ESI, m/e) [M+1]+360.0.


Step 3: 1-(4-bromophenyl)-3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one



embedded image


A solution of N-(4-bromophenyl)-4-hydroxy-2,2-dimethyl-4-phenylbut-3-enamide (1.88 g, 5.22 mmol) and p-TsOH (50 mg, 0.26 mmol) in toluene (50 mL) was refluxed overnight. It was cooled to room temperature and toluene was removed. The residue was purified by flash column on silica gel eluted with EA/PE=1/17 to give the desired product as a yellow oil (1.24 g, 69%). 1H NMR (400 MHz, DMSO-d6) δ 7.52 (d, J=8.0 Hz, 2H), 7.29 (s, 3H), 7.13 (s, 2H), 6.98 (d, J=8.0 Hz, 2H), 5.75 (s, 2H), 1.28 (s, 6H), MS (ESI, m/e) [M+1]+342.0.


Step 4: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-1-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


1-(4-bromophenyl)-3,3-dimethyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one (200 mg, 0.59 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (256 mg, 0.59 mmol) and Pd(dppf)Cl2 (43 mg, 0.059 mmol) in dioxane (20 mL) and sat. k2CO3 (2 mL) solution were stirred at 95° C. under N2 overnight. After cooled to room temperature, the solvents were removed in vacuo. The residue was purified by pre-TLC (eluent: EA/PE=1/1) to give the desired product as a white solid (150 mg, 44%). 1H NMR (400 MHz, DMSO-d6) δ 11.65 (s, 1H), 8.06 (d, J=2.3 Hz, 1H), 7.81 (d, J=8.4 Hz, 1H), 7.61 (d, J=8.4 Hz, 2H), 7.56 (d, J=8.4 Hz, 1H), 7.48 (s, 2H), 7.31-7.24 (m, 4H), 7.11 (d, J=5.7 Hz, 4H), 6.38 (s, 1H), 5.74 (s, 1H), 1.37 (s, 9H), 1.28 (s, 6H), MS (ESI, m/e) [M+1]+572.2.


Step 5: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


A mixture of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-1-yl)-[1,1′-biphenyl]-4-carboxylate (140 mg, 0.24 mmol) and Pd/C (30 mg) in MeOH (20 mL) was stirred at room temperature under a balloon of H2 atmosphere. It was filtered, and the filtrate was concentrated to give the desired product was a white solid (134 mg, 97%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.63 (s, 1H), 8.03 (d, J=2.2 Hz, 1H), 7.77 (d, J=8.1 Hz, 1H), 7.62-7.39 (m, 6H), 7.33-7.11 (m, 6H), 6.37 (s, 1H), 5.47 (t, J=7.6 Hz, 1H), 1.97-2.03 (m, 1H), 1.72-1.77 (m, 1H), 1.37 (s, 9H), 1.20 (d, J=10.1 Hz, 6H), MS (ESI, m/e) [M+1]+574.2.


Step 6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid



embedded image


A solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (134 mg, 0.23 mmol) in DCM (6 mL) and TFA (4 mL) was stirred at room temperature for 4 hours. The solvents were removed to give the desired product as a white solid (125 mg). MS (ESI, m/e) [M+1]+518.1.


Then the desired compound in Example A20 was synthesized with 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3,3-dimethyl-2-oxo-5-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide following the next procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.35 (s, 1H), 11.65 (s, 1H), 8.51 (s, 2H), 8.00 (s, 1H), 7.76 (s, 1H), 7.63-7.33 (m, 7H), 7.29-7.11 (m, 5H), 7.11-6.97 (m, 2H), 6.35 (s, 1H), 5.44 (t, J=7.7 Hz, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.25-3.18 (m, 4H), 2.05-1.93 (m, 1H), 1.86 (s, 1H), 1.71-1.76 (m, 1H), 1.58-1.64 (m, 3H), 1.25-1.28 (m, 2H), 1.20 (s, 3H), 1.17 (s, 3H), MS (ESI, m/e) [M+1]+815.1.


Example A21: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-oxo-4-phenylazetidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-(4-bromophenyl)-4-phenylazetidin-2-one



embedded image


A mixture of 4-phenylazetidin-2-one (500 mg, 3.40 mmol), (4-bromophenyl)boronic acid (2.05 g, 10.19 mmol), TEA (1.03 g, 10.19 mmol, 1.42 mL), 4 Å molecular sieve (300 mg) and Cu(OAc)2 (617.07 mg, 3.40 mmol) in DCM (60 mL) was degassed and purged with 02 for 3 times, and then the mixture was stirred at 40° C. for 16 hours under 02 atmosphere. After cooled to room temperature, the reaction mixture was filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (eluent: PE/EA=60:1 to 10:1). 1-(4-bromophenyl)-4-phenylazetidin-2-one (800 mg, 75.59% yield) was obtained as an off-white solid, 1H NMR (400 MHz, CDCl3) δ ppm: 7.43-7.29 (m, 7H), 7.20-7.10 (m, 2H), 4.99 (dd, J=2.6, 5.7 Hz, 1H), 3.57 (dd, J=5.7, 15.2 Hz, 1H), 2.96 (dd, J=2.6, 15.2 Hz, 1H), MS (ESI, m/e) [M+1]+302.0.


The desired compound was then synthesized with 1-(4-bromophenyl)-4-phenylazetidin-2-one and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate following the next procedures similar to those in Example A20. 1H NMR (DMSO-d6) δ ppm: 12.33 (s, 1H), 11.69 (s, 1H), 8.62-8.56 (m, 2H), 8.03 (d, J=2.4 Hz, 1H), 7.83-7.80 (m, 1H), 7.62-7.57 (m, 2H), 7.50-7.48 (m, 3H), 7.41-7.28 (m, 6H), 7.23 (d, J=8.8 Hz, 2H), 7.11 (d, J=9.2 Hz, 1H), 7.01 (s, 1H), 6.37 (s, 1H), 5.22-5.19 (m, 1H), 3.86-3.82 (m, 2H), 3.63-3.58 (m, 1H), 3.28-3.22 (m, 4H), 2.91 (dd, J=2.4, 15.2 Hz, 1H), 1.93-1.90 (m, 1H), 1.60 (d, J=12.4 Hz, 2H), 1.29-1.20 (m, 2H), MS (ESI) m/e [M+1]+: 773.1


Example A22: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(1-phenylpyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 2-(4-chlorophenyl)-1-phenylpyrrolidine



embedded image


The mixture of 2-(4-chlorophenyl)pyrrolidine (545 mg, 3 mmol), iodobenzene (920 mg, 4.5 mmol), 2,2′-bis(diphenylphosphanyl)-1,1′-binaphthalene (374 mg, 0.60 mmol), tris(dibenzylideneacetone)dipalladium (275 mg, 0.3 mmol), t-BuOK (673 mg, 6 mmol) in toluene (50 mL) was heated to 90° C. overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/5) to give the product (582 mg, 75.3%) as a colorless oil. 1H NMR (400 MHz, DMSO-d6) δ ppm: 7.36 (d, J=8.0 Hz, 2H), 7.24 (d, J=8.0 Hz, 2H), 7.07 (t, J=8.0 Hz, 2H), 6.54 (t, J=8.0 Hz, 1H), 6.41 (d, J=8.0 Hz, 2H), 4.75 (d, J=8.0 Hz, 1H), 3.70-3.65 (m, 1H), 3.36-3.29 (m, 1H), 2.39-2.33 (m, 1H), 1.96-1.88 (m, 2H), 1.79-1.75 (m, 1H), MS (ESI, m/e) [M+1]+258.0.


Step 2: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-phenylpyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


The mixture of 2-(4-chlorophenyl)-1-phenylpyrrolidine (515 mg, 2 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (959 mg, 2.2 mmol), 1,1′-bis(diphenylphosphino)ferrocene-palladium(H)dichloride dichloromethane complex (146 mg, 0.2 mmol), K2CO3 (691 mg, 5.0 mmol) in a solution of 1,4-dioxane (50 mL) and water (10 mL) was heated to 90° C. and stirred overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/1) to give the crude product (126 mg, 11.86%) as a brown oil. MS (ESI, m/e) [M+1]+532.1.




embedded image


The desired compound was then synthesized with tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(I-phenylpyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.37 (br, 1H), 11.73 (br, 1H), 8.64-8.61 (m, 1H), 8.58 (d, J=4.0 Hz, 1H), 8.07 (d, J=4.0 Hz, 1H), 7.86 (d, J=12.0 Hz, 1H), 7.63-7.59 (m, 2H), 7.52 (t, J=4.0 Hz, 1H), 7.46-7.42 (m, 3H), 7.24 (d, J=8.0 Hz, 2H), 7.15 (d, J=8.0 Hz, 1H), 7.04 (t, J=8.0 Hz, 2H), 6.99 (s, 1H), 6.51 (t, J=8.0 Hz, 1H), 6.39-6.37 (m, 4H), 4.74 (d, J=8.0 Hz, 1H), 3.85-3.83 (m, 2H), 3.65 (m, 1H), 3.28-3.23 (m, 4H), 2.35 (m, 1H), 1.93-1.76 (m, 4H), 1.61-1.58 (m, 2H), 1.28-1.23 (m, 3H), MS (ESI, m/e) [M+1]+773.1.


Example A23: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-benzylpyrrolidin-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-benzyl-2-(4-chlorophenyl)pyrrolidine



embedded image


The mixture of 2-(4-chlorophenyl)pyrrolidine (546 mg, 3 mmol), (bromomethyl)benzene (770 mg, 4.5 mmol) and triethylamine (909 mg, 9 mmol) in THF (100 mL) was stirred at room temperature for overnight. The mixture was concentrated in vacuo and the residue was diluted with DCM. The organic layer was washed with brine (100 mL), dried over Na2SO4 and evaporated in vacuo, then the residue was purified by chromatography column on silica (eluent: PE/EA=2/1 to 1/1) to afford a crude product (1.2 g), as a brown oil. MS (ESI, m/e) [M+1]+272.1.


Step 2. tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-benzylpyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


The mixture of 1-benzyl-2-(4-chlorophenyl)pyrrolidine (1.2 g, 4.4 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2.1 g, 4.8 mmol), 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (322 mg, 0.44 mmol), K2CO3 (1.52 g, 11 mmol) in a solution of 1,4-dioxane (100 mL) and water (10 mL) was heated to 90° C. for overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/1) to give the crude product 512 mg, 21.35% as a red oil. MS (ESI, m/e) [M+1]+546.2.




embedded image


The desired compound was then synthesized with tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-benzylpyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.39 (br, 1H), 11.71 (br, 1H), 8.55 (m, 2H), 8.07 (d, J=4.0 Hz, 1H), 7.83 (d, J=8.0 Hz, 1H), 7.64-7.60 (m, 2H), 7.50-7.45 (m, 6H), 7.29 (m, 5H), 7.10 (d, J=8.0 Hz, 1H), 7.03 (s, 1H), 6.39 (m, 1H), 4.51-4.14 (m, 1H), 3.85-3.83 (m, 2H), 3.34-3.23 (m, 4H), 2.99 (m, 2H), 2.18 (m, 2H), 1.87 (m, 4H), 1.61-1.58 (m, 2H), 1.30-1.21 (m, 3H), MS (ESI, m/e) [M+1]+787.2.


Example A24: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-ethylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ 12.15 (s, 1H), 11.69 (s, 1H), 8.60 (s, 1H), 8.56 (s, 1H), 8.04 (d, J=2.0 Hz, 1H), 7.82 (d, J=8.7 Hz, 1H), 7.50-7.58 (m, 3H), 7.27-7.34 (m, 3H), 7.22 (d, J=7.4 Hz, 1H), 7.11-7.15 (m, 2H), 7.01 (t, J=7.4 Hz, 1H), 6.89 (s, 1H), 6.85 (d, J=7.4 Hz, 1H), 6.41-6.32 (m, 3H), 4.92 (d, J=8.0 Hz, 1H), 3.84 (d, J=7.9 Hz, 2H), 3.70 (t, J=7.9 Hz, 1H), 3.37 (d, J=7.9 Hz, 1H), 3.31-3.22 (m, 4H), 2.86-2.67 (m, 2H), 2.46-2.38 (m, 1H), 2.03-1.83 (m, 4H), 1.71 (s, 1H), 1.60 (d, J=12.2 Hz, 2H), 1.27-1.23 (m, 4H), MS (ESI, m/e) [M+1]+801.2.


Example A25: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopentylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopentylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.05 (s, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.58 (s, 1H), 7.53-7.51 (m, 2H), 7.34-7.31 (m, 3H), 7.29 (s, 1H), 7.17-7.11 (m, 2H), 6.98 (t, J=7.4 Hz, 1H), 6.91 (s, 1H), 6.82 (d, J=8.0 Hz, 1H), 6.37 (s, 2H), 6.35 (s, 1H), 5.02 (d, J=8.0 Hz, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.72-3.68 (m, 1H), 3.25-3.23 (m, 2H), 2.45-2.42 (m, 1H), 2.19-2.13 (m, 1H), 2.01-1.81 (m, 8H), 1.72-1.65 (m, 4H), 1.62-1.56 (m, 3H), 1.29-1.20 (m, 4H), MS (ESI, m/e) [M+1]+841.2.


Example A26: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-fluorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 11H), 11.67 (s, 1H), 8.53 (s, 2H), 8.03 (s, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.54 (d, J=7.8 Hz, 2H), 7.49 (s, 1H), 7.32 (d, J=7.8 Hz, 3H), 7.25-7.15 (m, 2H), 7.05 (t, J=7.2 Hz, 2H), 6.97 (t, J=7.2 Hz, 1H), 6.90 (s, 1H), 6.42 (d, J=8.0 Hz, 2H), 6.37 (s, 1H), 4.97 (d, J=8.0 Hz, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.70-3.65 (m, 1H), 3.27 (d, J=8.0 Hz, 3H), 2.42-2.35 (m, 1H), 1.99-1.85 (m, 4H), 1.62-1.58 (m, 2H), 1.26-1.23 (m, 4H), MS (ESI, m/e) [M+1]+791.1.


Example A27: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-methyl-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-methyl-2-phenylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.71 (s, 1H), 8.61 (t, J=6.0 Hz, 1H), 8.586-8.525 (m, 1H), 8.05 (d, J=2.3 Hz, 1H), 7.83 (d, J=8.6 Hz, 1H), 7.59 (d, J=2.0 Hz, 1H), 7.547-7.466 (m, 9H), 6.87 (s, 1H), 6.416-6.353 (m, 1H), 6.32 (d, J=8.8 Hz, 2H), 3.890-3.794 (m, 2H), 3.657-3.516 (m, 2H), 3.312-3.191 (m, 4H), 2.180-2.118 (m, 1H), 2.008-1.782 (m, 5H), 1.71 (s, 3H), 1.638-1.547 (m, 2H), 1.265-1.201 (m, 3H), MS (ESI, m/e) [M+1]+787.1


Example A28: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(3-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 3-phenylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.72 (s, 1H), 8.62 (s, 1H), 8.58 (d, J=2.2 Hz, 1H), 8.09 (d, J=2.5 Hz, 1H), 7.85 (d, J=9.3 Hz, 1H), 7.64 (d, J=2.3 Hz, 1H), 7.57 (d, J=8.1 Hz, 1H), 7.55-7.50 (m, 1H), 7.40 (t, J=8.3 Hz, 3H), 7.32 (d, J=4.4 Hz, 4H), 7.23 (dd, J=8.7, 4.5 Hz, 1H), 7.14 (d, J=9.4 Hz, 1H), 6.94 (s, 1H), 6.59 (d, J=8.9 Hz, 2H), 6.41 (s, 1H), 3.85 (d, J=7.3 Hz, 2H), 3.70 (t, J=8.6 Hz, 1H), 3.58-3.40 (m, 3H), 3.25-3.21 (m, 5H), 2.38-2.32 (m, 1H), 2.10-2.00 (m, 1H), 1.90-1.84 (m, 1H), 1.61 (d, J=11.3 Hz, 2H), 1.32-1.17 (m, 2H), MS (ESI, m/e) [M+1]+773.1


Example A29: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(pyridin-3-yl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 3-(pyrrolidin-2-yl)pyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.17 (s, 1H), 11.72 (s, 1H), 8.62 (s, 3H), 8.57 (m, 11H), 8.06 (m, 1H), 8.06-7.94 (m, 11H), 7.83 (d, J=9.2 Hz, 1H), 7.73-7.64 (m, 1H), 7.64-7.59 (m, 1H), 7.58-7.50 (m, 2H), 7.35-7.25 (m, 3H), 7.14 (d, J=9.2 Hz, 1H), 6.87 (s, 1H), 6.47 (d, J=8.5 Hz, 2H), 6.39 (s, 1H), 5.04-4.91 (m, 1H), 3.90-3.67 (m, 4H), 3.43-3.14 (m, 3H), 2.46-2.38 (m, 1H), 2.09-1.78 (m, 4H), 1.65-1.52 (m, 2H), 1.34-1.18 (m, 3H), MS (ESI) m/e [M+1]+774.2.


Example A30: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-cyclohexylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-cyclohexylpyrrolidone and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.64 (s, 1H), 8.57-8.42 (m, 2H), 8.03 (s, 1H), 7.80-7.64 (m, 2H), 7.58 (d, J=8.0 Hz, 1H), 7.55-7.44 (m, 2H), 7.36-7.34 (m, 3H), 7.00 (s, 1H), 6.92 (s, 1H), 6.57 (d, J=8.0 Hz, 2H), 6.37 (s, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.64-3.60 (m, 1H), 3.43-3.39 (m, 1H), 3.26-3.20 (m, 4H), 3.09-3.07 (m, 1H), 1.90-1.82 (m, 3H), 1.72-1.55 (m, 7H), 1.47-1.41 (m, 1H), 1.30-1.23 (m, 4H), 1.02-0.95 (m, 4H), MS (ESI, m/e) [M+1]+779.2.


Example A31: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(1-(o-tolyl)pyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 2-(4-bromophenyl)-1-(o-tolyl)pyrrolidine



embedded image


The mixture of 2-(4-bromophenyl)pyrrolidine (452 mg, 2 mmol), 1-iodo-2-methylbenzene (654 mg, 3 mmol), 2,2′-bis(diphenylphosphanyl)-1,1′-binaphthalene(249 mg, 0.4 mmol), Tris(dibenzylideneacetone)dipalladium (183 mg, 0.2 mmol), t-BuOK (449 mg, 4 mmol) in toluene (50 mL) was heated to 90° C. overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/5) to give the product (516 mg, 81.26%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.33 (d, J=8.0 Hz, 2H), 7.19 (d, J=8.0 Hz, 2H), 7.09 (d, J=4.0 Hz, 1H), 6.94 (t, J=8.0 Hz, 1H), 6.79 (t, J=8.0 Hz, 2H), 4.61 (dd, J=4.0, J=8.0 Hz, 1H), 3.88 (d, J=8.0 Hz, 1H), 2.93 (m, 1H), 2.39 (m, 1H), 2.33 (s, 3H), 2.05-1.76 (m, 3H), MS (ESI, m/e) [M+1]+258.0.


Step 2: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(o-tolyl)pyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate



embedded image


The mixture of 2-(4-bromophenyl)-1-(o-tolyl)pyrrolidine (500 mg, 1.58 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (760 mg, 1.74 mmol), 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (117 mg, 0.16 mmol), K2CO3 (545 mg, 3.95 mmol) in a solution of 1,4-dioxane (50 mL) and water (2 mL) was heated to 90° C. for overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/1) to give the product (623 mg, 73.30%) as a grey solid. MS (ESI, m/e) [M+1]+546.1.


The desired compound was then synthesized with tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(o-tolyl)pyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.34 (br, 1H), 11.71 (br, 1H), 8.61 (t, J=4.0 Hz, 1H), 8.57 (d, J=4.0 Hz, 1H), 8.05 (d, J=4.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.61 (d, J=4.0 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.51 (t, J=8.0 Hz, 1H), 7.40-7.33 (m, 5H), 7.14 (d, J=8.0 Hz, 1H), 7.03 (d, J=8.0 Hz, 1H), 6.96 (s, 1H), 6.89-6.80 (m, 2H), 6.69 (t, J=8.0 Hz, 1H), 6.39-6.37 (m, 1H), 4.68 (m, 1H), 3.86-3.80 (m, 3H), 3.29-3.22 (m, 4H), 2.82 (m, 1H), 2.30 (m, 1H), 2.28 (s, 3H), 1.98-1.86 (m, 3H), 1.69-1.58 (m, 3H), 1.29 (m, 2H), MS (ESI, m/e) [M+1]+787.1.


Example A32: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chloro-6-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-chloro-6-fluorophenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.60 (d, J=5.6 Hz, 1H), 8.56 (d, J=2.0 Hz, 1H), 8.04 (d, J=2.4 Hz, 1H), 7.82 (d, J=9.2 Hz, 1H), 7.58 (d, J=2.5 Hz, 1H), 7.52 (s, 2H), 7.35-7.24 (m, 5H), 7.15-7.05 (m, 2H), 6.91 (s, 1H), 6.38 (s, 1H), 6.34 (d, J=8.7 Hz, 2H), 5.32 (t, J=4.8 Hz, 1H), 5.28-5.17 (m, 1H), 3.84 (d, J=11.7 Hz, 2H), 3.50-3.45 (m, 2H), 2.03-1.95 (m, 4H), 1.90-1.85 (m, 3H), 1.60 (d, J=12.8 Hz, 2H), 1.45 (s, 3H), MS (ESI, m/e) [M+1] 825.1.


Example A33: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-3′-fluoro-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-phenylpyrrolidine and 4-bromo-2-fluoro-1-iodobenzene following the procedures similar to those in Example A5. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (s, 1H), 11.64 (s, 1H), 8.50-8.42 (m, 2H), 8.00 (s. 1H), 7.78-7.72 (m, 1H), 7.59-7.38 (m, 4H), 7.32-7.28 (m, 2H), 7.23-7.05 (m, 5H), 6.78 (s, 1H), 6.35 (s, 1H), 6.26 (d, J=8.7 Hz, 1H), 6.19 (m, 11H), 4.79 (d, J=6.8 Hz, 1H), 3.83 (d, J=8.3 Hz, 2H), 3.67 (s, 1H), 3.28-3.22 (m, 5H), 2.98 (s, 1H), 2.40-2.31 (m, 1H), 2.02-1.73 (m, 5H), 1.60 (d, J=11.8 Hz, 2H), MS (ESI, m/e) [M+1]+791.1.


Example A35: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclobutylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclobutylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (CDCl3-d6) δ ppm: 10.24 (s, 1H), 9.53 (s, 1H), 8.92 (s, 1H), 8.60-8.45 (m, 1H), 8.28-7.97 (m, 3H), 7.79 (s, 1H), 7.56-7.31 (m, 4H), 7.22-7.12 (m, 3H), 7.06-6.89 (m, 3H), 6.77 (s, 1H), 6.60-6.51 (m, 1H), 6.34 (d, J=8.4 Hz, 2H), 4.86 (d, J=8.0 Hz 1H), 4.09-3.96 (m, 2H), 3.82-3.63 (m, 2H), 3.42 (t, J=10.8 Hz, 2H), 3.31-3.21 (m, 2H), 2.38-2.21 (m, 4H), 2.05-1.88 (m, 8H), 1.78-1.70 (m, 2H), 1.50-1.39 (m, 2H), MS (ESI, m/e) [M+1]+826.8.


Example A37: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclohexylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclohexylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-do) δ ppm: 1H NMR (400 MHz, DMSO-d6) δ 12.14 (s, 1H), 11.68 (s, 1H), 8.9-8.55 (m, 2H), 8.04 (s, 1H), 7.81 (s, 1H), 7.62-7.44 (m, 2H), 7.35-7.28 (m, 5H), 7.14 (d, J=7.7 Hz, 2H), 6.98 (t, J=7.1 Hz, 1H), 6.91 (s, 1H), 6.82 (d, J=7.6 Hz, 1H), 6.40-6.31 (m, 3H), 4.97 (d, J=8.9 Hz, 1H), 3.84 (d, J=10.4 Hz, 2H), 3.75-3.71 (m, 1H), 3.35-3.21 (m, 5H), 3.03-2.83 (m, 3H), 2.01-1.95 (m, 2H), 1.88-1.75 (m, 4H), 1.74-1.67 (m, 2H), 1.62-1.55 (m, 4H), 1.48-1.38 (m, 3H), 1.30-1.25 (m, 2H), MS (ESI, m/e) [M+1]+854.8.


Example A46: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4,4-dimethyl-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4,4-dimethyl-2-phenylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.70 (s, 1H), 8.62 (t, J=5.8 Hz, 1H), 8.57 (d, J=2.0 Hz, 1H), 8.04 (d, J=2.4 Hz, 1H), 7.83 (d, J=7.5 Hz, 1H), 7.59 (d, J=2.3 Hz, 1H), 7.52 (d, J=8.0 Hz, 3H), 7.51-7.53 (m, 2H), 7.32 (d, J=8.0 Hz, 1H), 7.12-7.28 (m, 8H), 6.87 (s, 1H), 6.39-6.42 (m, 3H), 4.78 (t, J=7.8 Hz, 2H), 3.84 (d, J=8.2 Hz, 2H), 3.51 (d, J=9.6 Hz, 2H), 3.23-3.29 (m, 4H), 2.23-2.33 (m, 1H), 1.97-2.01 (m, 2H), 1.87 (s, 1H), 1.58-1.65 (m, 3H), 1.45 (s, 1H), 1.10 (s, 4H), 1.10 (s, 3H), 1.01 (s, 3H), MS (ESI, m/e) [M+1]+801.1.


Example A47: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylazetidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-phenylazetidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+758.8.


Example A54: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenyl-2-(trifluoromethyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-phenyl-2-(trifluoromethyl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.22 (s, 1H), 11.70 (s, 1H), 8.67-8.48 (m, 2H), 8.10-7.97 (m, 1H), 7.86-7.75 (m, 1H), 7.65-7.46 (m, 3H), 7.43-7.08 (m, 9H), 6.91 (s, 1H), 6.54-6.32 (m, 3H), 3.87-3.62 (m, 4H), 3.30-3.20 (m, 4H), 2.76-2.66 (m, 1H), 2.22-1.80 (m, 4H), 1.66-1.53 (m, 2H), 1.30-1.19 (m, 2H), MS (ESI, m/e) [M+1]+840.7.


Example A55: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-ethyl-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-ethyl-2-phenylpyrrolidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.71 (s, 1H), 8.65-8.56 (m, 2H), 8.06 (d, J=2.4 Hz. 1H), 7.85 (d, J=8.8 Hz, 1H), 7.60 (s, 1H), 7.55-7.49 (m, 2H), 7.36-7.11 (m, 9H), 6.89 (s, 1H), 6.41-6.33 (m, 3H), 3.86 (d, J=8.4 Hz, 2H), 3.68-3.45 (m, 2H), 3.31-3.22 (m, 4H), 2.41-2.25 (m, 3H), 1.92-1.71 (m, 4H), 1.62 (d, J=12.4 Hz, 2H), 1.31-1.19 (m, 2H), 0.64 (t, J=7.2 Hz, 3H), MS (ESI, m/e) [M+1]+800.7.


Example A56: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4-methyl-2-phenylpiperazin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-3-phenylpiperazine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-dc) 8 ppm; 11.66 (s, 1H), 8.51 (s, 1H), 8.02 (s, 1H), 7.78 (d, J=9.2 Hz, 1H), 7.60-7.48 (m, 4H), 7.35-7.28 (m, 6H), 7.25-7.21 (m, 2H), 7.16-7.13 (m, 1H), 7.04 (d, J=9.2 Hz, 1H), 6.97-6.90 (m, 3H), 6.36 (s, 1H), 4.73 (s, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.57-3.45 (m, 3H), 3.28-3.22 (m, 4H), 3.15-2.90 (m, 5H), 2.05-1.79 (m, 2H), 1.59 (d, J=12.0 Hz, 2H), 1.26-1.23 (m, 2H), MS (ESI, m/e) [M+1]+802.2.


Example A57: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isopropylphenyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-isopropylphenyl)piperidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (s, 1H), 11.68 (s, 1H), 8.54 (s, 2H), 8.02 (s, 1H), 7.79 (s, 1H), 7.57-7.47 (m, 3H), 7.39-7.19 (m, 4H), 7.17-7.01 (m, 3H), 6.92 (s, 2H), 6.81 (d, J=8.2 Hz, 2H), 6.36 (s, 1H), 4.71 (s, 1H), 3.84 (d, J=9.7 Hz, 2H), 3.26-3.22 (m, 4H), 1.95-1.85 (m, 2H), 1.79-1.72 (m, 2H), 1.68-1.55 (m, 4H), 1.49-1.43 (m, 2H), 1.23-1.18 (m, 6H), 1.04 (d, J=5.2 Hz, 2H), 0.86-0.82 (m, 1H), MS (ESI, m/e) [M+1]+828.8.


Example A61: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)-5-oxopyrrolidin-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 4-(4-bromophenyl)-4-oxobutanoic acid

AlCl3 (26.7 g, 200 mmol) was added into a mixture of dihydrofuran-2,5-dione (10.0 g, 100 mmol) in bromobenzene (97 g) at about 0° C., the reaction temperature was maintained at about 0° C. for 1 h and then allowed to r.t. the mixture was stirred at r, t for 16 h. The reaction mixture was poured into ice water. HCl (1M) was added slowly until PH-1. The mixture was extracted with EA (400 mL). The organic layer was dried over Na2SO4, concentrated, filtered and washed with PE (100 mL) to give the crude product as brown solid 14.5 g.


Step 2: methyl 4-(4-bromophenyl)-4-oxobutanoate

To a solution of 4-(4-bromophenyl)-4-oxobutanoic acid (14.5 g, 56.42 mmol) in CH3OH (200 mL) was added SOCl2 (10 mL) slowly, the mixture was stirred at ambient temperature for 2 h. The solution was concentrated. The residue was partitioned between DCM (100 mL) and Sat. NaHCO3 (300 mL). The organic layer was dried over Na2SO4 and concentrated to give the crude product as yellow oil. (15.0 g).


Step 3: methyl-4-(4-bromophenyl)-4-(hydroxyimino)butanoate

To a solution of methyl 4-(4-bromophenyl)-4-oxobutanoate (15 g, 55.35 mmol) in CH3OH (150 mL) was added hydroxylamine hydrochloride (9.2 g, 132.84 mmol), NaOAc (11.4 g, 138.38 mmol)/H2O (50 mL), the mixture was heated at reflux for about 1 h. Cooled to ambient temperature, concentrated to remove CH3OH. The resulting mixture was partitioned between EA (300 mL) and Sat. NaHCO3 (200 mL). The aqueous layer was extracted with EA (10 mL). The combined organic layers were washed with H2O (200 mL), concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA:PE=1:10) to give the product as yellow oil. (11.2 g, 71.0%). [M+1]+285.9, 287.9.


Step 4: 5-(4-bromophenyl)pyrrolidin-2-one

To a solution of methyl-4-(4-bromophenyl)-4-(hydroxyimino)butanoate (11.2 g, 39.16 mmol) in CH3OH (100 mL) was added Zn (powder, 5.2 g, 78.32 mmol), the mixture was stirred in a 80° C. oil bath under N2 for about 16 h. Cooled to ambient temperature, filtered, the filtrate was concentrated. The residue was partitioned between DCM (500 mL) and Sat. NaHCO3 (300 mL). The organic layer was separated, concentrated to give the crude product, which was slurry with PE (100 mL) to give the product as white solid. (6.5 g, 69.4%). [M+1]+240.0, 241.9.


Step 5: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2.2 g, 5.00 mmol) in 1,4-dioxane (50 mL) was added 5-(4-bromophenyl)pyrrolidin-2-one (1.2 g, 5.00 mmol), Pd(dppf)Cl2 (183 mg, 0.25 mmol) and 1 N K2CO3 (15 mL), the mixture was stirred in a 80° C. oil bath under N2 for about 18 h. Cooled to r, t, extracted with DCM (50 mL×2). The combined organic layers were concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: MeOH:DCM=1:10) to give the crude product as brown solid. (2.4 g). [M+1]+469.8.


Step 6: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-bromophenyl)-5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate (1.5 g, 3.20 mmol) in DCM (50 mL) was added (2-bromophenyl)boronic acid (640 mg, 3.20 mmol), Cu(OAc)2 (920 mg, 4.80 mmol) and TEA (1.6 g, 15.99 mmol), the mixture was stirred at r, t in air for 3 h. (2-bromophenyl)boronic acid (640 mg, 3.20 mmol) was added, the mixture was stirred in air for 18 h. H2O (30 mL) was added, filtered, the organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: MeOH:DCM=1:20) to give the product as brown solid. (1.0 g, 50.2%). [M+1]+623.8.


Step 7: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)-5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-bromophenyl)-5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate (312 mg, 0.50 mmol) and cyclopropylboronic acid (172 mg, 2.00 mmol) in 1,4-dioxane (20 mL) was added IN K2CO3 (2 mL) and Pd(dppf)Cl2 (37 mg, 0.05 mmol), the mixture was stirred in a 80° C. oil bath under N2 for 20 h. Cooled to r, t, diluted with DCM (30 mL), filtered, the filtrate was concentrated and purified by column chromatograph on silica gel (MeOH:DCM=1:20) to give the crude product, which was purified by pre-TLC (EA) to give the product as brown solid. (290 mg, 98.9%). [M+1]+585.8


The desired compound was then synthesized with tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)-5-oxopyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxylate following the procedures similar to those in Example A1. [M+1]+826.7.


Example A62: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)pyrrolidin-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-cyclopropyl-2-nitrobenzene

To a solution of 1-bromo-2-nitrobenzene (3.7 g, 18.32 mmol) and cyclopropylboronic acid (4.7 g, 54.95 mmol) in 1,4-dioxane (100 mL) was added K2CO3 (5.1 g, 36.64 mmol)/1H2O (20 mL) and Pd(dppf)Cl2 (1.3 g, 1.83 mmol), the mixture was stirred at 90° C. under N2 for 16 h. Cooled to ambient temperature, the organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA: PE=1: 4) to give the product as yellow oil. (2.6 g, 86.7%).


Step 2: 2-cyclopropylaniline

To a solution of 1-cyclopropyl-2-nitrobenzene (2.6 g, 15.95 mmol) in CH3OH (50 mL) was added Sat. NH4Cl (7.5 mL) and Zn (powder, 5.1 g, 79.75 mmol), the mixture was stirred at ambient temperature for 1 h. A filtration was formed, the filtrate was concentrated. The residue was partitioned between DCM (30 mL) and H2O (20 mL). The organic layer was dried over Na2SO4 and concentrated to give the product as brown oil. (1.6 g, 75.4%). [M+1]+134.2.


Step 3: 4-(4-bromophenyl)-N-(2-cyclopropylphenyl)-4-oxobutanamide

To a solution of 4-(4-bromophenyl)-4-oxobutanoic acid (3.7 g, 15.95 mmol) in DCM (50 mL) was added 2-cyclopropylaniline (1.6 g, 12.03 mmol), HATU (6.9 g, 18.04 mmol) and TEA (3.6 g, 36.10 mmol), the solution was stirred at ambient temperature for 17 h. The reaction solution was concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA: DCM=1: 2) to give the crude product, which was crystallized from EA/PE=1/3 (50 mL, 70° C.-r, t) to give the product as off-white solid. (1.9 g, 35.8%). [M+1]+371.8, 373.8.


Step 4: 4-(4-bromophenyl)-N-(2-cyclopropylphenyl)-4-hydroxybutanamide

To a solution of 4-(4-bromophenyl)-N-(2-cyclopropylphenyl)-4-oxobutanamide (1.9 g, 5.12 mmol) in CH3OH (60 mL) was added NaBH4 (583 mg, 15.36 mmol) in portions, the solution was stirred at ambient temperature for 1 h. The reaction solution was concentrated. The residue was partitioned between DCM (50 mL) and Sat. NaCl (20 mL). The organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA: DCM=1: 1) to give the product as pink oil. (1.8 g, 94.7%). [M+1]+373.8, 375.8.


Step 5: 5-(4-bromophenyl)-1-(2-cyclopropylphenyl)pyrrolidin-2-one

To a solution of 4-(4-bromophenyl)-N-(2-cyclopropylphenyl)-4-hydroxybutanamide (1.8 g, 4.83 mmol) in THF (50 mL) was added TosCl (1.2 g, 6.27 mmol) at −40° C., the solution was stirred at −40° C. for about 40 min, t-BuOK (1.08 g, 9.65 mmol) was then added, the mixture was stirred at −40° C. for 1 h. Warmed to r, t slowly, quenched by Sat. NaCl (10 mL). The organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA: PE=1: 1) to give the product as pink oil. (0.9 g, 52.5%). [M+1]+355.8. 357.8.


Step 6: 5 2-(4-bromophenyl)-1-(2-cyclopropylphenyl)pyrrolidine

To a solution of 5-(4-bromophenyl)-1-(2-cyclopropylphenyl)pyrrolidin-2-one (900 mg, 2.53 mmol) in THF (20 mL) was added BH3/THF (0.9M, 10 mL, 9.0 mmol) slowly, the solution was stirred at 60° C. under N2 for 3 h. Cooled to r, t, quenched by CH3OH (2 mL), concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA: PE=1: 5) to give the product as yellow oil. (750 mg, 86.8%). [M+1]+341.8, 343.8.


The desired compound was then synthesized with 2-(4-bromophenyl)-1-(2-cyclopropylphenyl)pyrrolidine following the procedures similar to those in Example A1. [M+1]+812.8.


Example A63: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(1-(2-nitrophenyl)pyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(pyrrolidin-2-yl)-[1,1′-biphenyl]-4-carboxamide (100 mg, 0.15 mmol) in CH3CN (10 mL) was added 1-fluoro-2-nitrobenzene (63 mg, 0.44 mmol) and TEA (149 mg, 1.47 mmol), the solution was stirred at 80° C. for 18 h. The reaction solution was concentrated and purified by pre-TLC (DCM:MeOH=25:1) to give the crude product, which was purified by pre-HPLC to give the product as yellow solid. (10 mg, 8.30%). 1H NMR (DMSO-d6) δ ppm: 12.36 (s, 1H), 11.71 (s, 1H), 8.67-8.51 (m, 2H), 8.05 (d, J=2.4 Hz, 11H), 7.88-7.79 (m, 1H), 7.71-7.23 (m, 10H), 7.13 (d, J=9.6 Hz, 1H), 7.00 (s, 1H), 6.86-6.64 (m, 2H), 6.39 (s, 1H), 5.03-4.91 (m, 1H), 3.87-3.81 (m, 2H), 3.29-3.24 (m, 3H), 3.10-2.88 (m, 2H), 2.83-2.77 (m, 1H), 2.05-1.95 (m, 1H), 1.93-1.79 (m, 2H), 1.73-1.54 (m, 3H), 1.13-1.16 (m, 3H), MS (ESI, m/e) [M+1]+817.7.


Example A64: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(tert-butyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phen 1)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(tert-butyl)phenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ 12.15 (s, 1H), 11.67 (s, 11H), 8.54 (s, 2H), 8.01 (s, 1H), 7.80 (s, 1H), 7.55-7.46 (m, 2H), 7.42 (d, J=8.1 Hz, 1H), 7.31 (s, 1H), 7.29-7.25 (m, 2H), 7.20 (s, 1H), 7.13 (s, 1H), 7.04 (s, 2H), 6.92 (s, 1H), 6.65 (s, 1H), 6.42-6.36 (m, 3H), 5.25 (d, J=7.8 Hz, 1H), 3.84 (d, J=9.2 Hz, 2H), 3.73 (s, 1H), 3.28-3.23 (m, 4H), 2.03-1.97 (m, 6H), 1.87 (s, 1H), 1.77 (s, 1H), 1.61-1.58 (m, 2H), 1.50 (s, 9H), 1.44 (s, 1H), 1.41 (s, 1H), MS (ESI, m/e) [M+1]+828.8.


Example A65: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(dimethylamino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-2-(pyrrolidin-2-yl)aniline and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.66 (s, 1H), 8.53 (s, 2H), 8.02 (s, 1H), 7.77 (s, 1H), 7.61-7.44 (m, 3H), 7.35-7.13 (m, 5H), 6.98-6.88 (m, 3H), 6.47-6.30 (m, 3H), 5.15-5.08 (m, 1H), 3.89-3.80 (m, 2H), 3.71 (s, 1H), 3.55-3.50 (m, 3H), 2.75-2.67 (m, 6H), 2.45-2.40 (m, 1H), 2.05-1.98 (m, 3H), 1.85 (s, 2H), 1.64-1.54 (m, 2H), 1.47-1.42 (m, 1H), 1.06-1.00 (m, 5H), MS (ESI) m/e [M+1]+815.8.


Example A66: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(azetidin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 2-(2-(azetidin-1-yl)phenyl)-1-(4-bromophenyl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.69 (s, 1H), 8.58 (t, J=6.0 HZ, 1H), 8.57 (d, J=2.4 Hz, 1H), 8.05 (d, J=2.4 Hz, 1H), 7.84 (d, J=8.8 Hz, 1H), 7.60 (d, J=2.4 Hz, 1H), 7.52-7.50 (m, 2H), 7.35-7.25 (m, 3H), 7.14 (d, J=9.2 Hz, 1H), 7.04 (t, J=6.4 Hz, 1H), 6.89 (s, 1H), 6.75 (d, J=7.6 Hz, 1H), 6.60 (t, J=7.6 Hz, 1H), 6.51 (d, J=7.6 Hz, 1H), 6.45-6.35 (m, 3H), 4.82 (d, J=8.0 Hz, 1H), 3.93 (t, J=7.4 Hz, 4H), 3.84-3.80 (m, 2H), 3.64 (t, J=8.0 Hz, 1H), 3.32-3.21 (m, 4H), 2.35-2.21 (m, 3H), 2.02-1.81 (m, 5H), 1.62 (d, J=12.8 Hz, 2H), 1.30-1.25 (m, 2H), MS (ESI, m/e) [M+1]+827.8.


Example A67: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(methylsulfonamido)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N-(2-(pyrrolidin-2-yl)phenyl)methanesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 9.20 (s, 1H), 8.61-8.56 (m, 2H), 8.05 (s, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.65-7.48 (m, 3H), 7.35-7.33 (m, 2H), 7.24-7.22 (m, 3H), 7.13 (t, J=7.2 Hz, 2H), 6.98-6.87 (m, 2H), 6.48 (d, J=8.6 Hz, 2H), 6.38 (s, 1H), 5.26 (d, J=7.9 Hz, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.68 (s, 1H), 3.29-3.22 (m, 4H), 3.11 (s, 3H), 2.37-2.33 (m, 1H), 1.95 (s, 1H), 1.83-1.81 (m, 2H), 1.60 (d, J=12.5 Hz, 2H), 1.28-1.24 (m, 4H), MS (ESI, m/e) [M+1]+865.7.


Example A68: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 1H), 8.41-8.37 (m, 2H), 7.96 (s, 1H), 7.68 (d, J=8.8 Hz, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.43 (s, 1H), 7.37 (s, 1H), 7.30 (d, J=8.4 Hz, 2H), 7.33-7.12 (m, 4H), 7.04 (d, J=7.2 Hz, 1H), 6.91 (s, 1H), 6.87 (d, J=9.2 Hz, 1H), 6.38 (d, J=8.4 Hz, 1H), 6.30 (s, 1H), 5.70 (m, 1H), 4.85 (d, J=7.2 Hz, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.79-3.55 (m, 3H), 3.28-3.12 (m, 7H), 2.79-2.56 (m, 5H), 2.42-2.31 (m, 1H), 2.09-1.71 (m, 5H), 1.61 (d, J=12.8 Hz, 2H), 1.50-1.32 (m, 2H), MS (ESI, m/e) [M+1]+867.7.


Example A68-R: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one

To a solution of (R)-2-(2-bromophenyl)pyrrolidine (10 g, 44.22 mmol) in DCM (100 ml) was added triethylamine (6.699 g, 66.33 mmol), then added (CF3CO)2O (10.216 g, 48.65 mmol) at 0° C. After stirred at room temperature for 1 hour, the reaction mixture was concentrated. The resulted residue was dissolved with DCM (500 ml), and then washed with saturated aq. NaHCO3 solution, brine. After dried over Na2SO4, the organic phase was concentrated to obtain the product (14 g) as a brown solid. MS (ESI, m/e) [M+1]+321.8.


Step 2: tert-butyl (R)-4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate

To a solution of (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (5 g, 15.52 mmol) in toluene (100 ml) was added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1 (2H)-carboxylate (7.189 g, 23.25 mmol), Pd(OAc)2 (348 mg, 1.552 mmol), Tricyclohexyl phosphine (870 mg, 3.1 mmol) and K3PO4 (11.53 g, 54.32 mmol). The mixture was then stirred at 100° C. for 12 hours at N2 atmosphere. After cooled to room temperature, the reaction mixture was washed with brine and dried over Na2SO4. After removal of solvent, the resulted residue was purified by chromatograph column on silica gel (eluent: PE/EA=50/1 to 10/1) to obtain the product (3.66 g) as yellow oil. MS (ESI, m/e) [M−55]+368.8.


Step 3: (R)-2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To a solution of tert-butyl (R)-4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate (3.66 g, 8.62 mmol) in DCM (100 ml) was added TFA (20 ml). The mixture was stirred at room temperature for 2 hours. After removal of solvent and TFA, the residue was dissolved with DCM (200 ml) and then washed with saturated aq. NaHCO3solution, brine, dried over Na2SO4. The DCM solution was concentrated to obtain the crude product (2.66 g) as a brown oil, which was used in next step without further purification.


Step 4: (R)-2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To a solution of (R)-2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (2.66 g, 8.2 mmol) in MeOH (100 mL) was added HCHO(37%, 3.99 g 49.18 mmol) and NaBH3CN (2.058 g, 32.77 mmol). The mixture was stirred at room temperature for 2 hours. After removal of solvent, the residue was dissolved with EA (200 ml), washed with brine, and then dried over Na2SO4. The EA solution was concentrated to obtain the crude product (2.5 g) as a yellow solid, which was used in next step without further purification. MS (ESI, m/e) [M+1]+338.9.


Step 5: (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine

To a solution of (R)-2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (2.5 g, 7.39 mmol) in MeOH (50 mL) and H2O (50 mL) was added LiOH·H2O (3.1 g, 73.9 mmol). After stirred at 60° C. for 3 hours, the reaction mixture was extracted with DCM (200 mL×3). The combined organic phase was concentrated. The residue was purified by column chromatograph on silica gel (eluent: DCM/MeOH=10/1 (added 1% NH3·H2O)) to obtain the product (1.2 g). MS (ESI, m/e) [M+1]+243.0.


Step 6: (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methyl-1,2,3,6-tetrahydropyridine

To a solution of (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine (500 mg, 2.07 mmol) in toluene (50 ml) was added 1-bromo-4-iodobenzene (1.165 g, 4.13 mmol), Pd2(dba)3 (189 mg, 0.207 mmol), BINAP(257.5 mg, 0.414 mmol) and t-BuOK (757.6 mg, 6.21 mmol). The mixture was stirred at 90° C. for 12 hours at N2 atmosphere. After cooled to room temperature, the reaction mixture was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by chromatograph column on silica gel (DCM/MeOH=50/1) to obtain the product (508 mg) as a yellow oil. MS (ESI, m/e) [M+1]+396.8.


Step 7: tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methyl-1,2,3,6-tetrahydropyridine (508 mg, 1.28 mmol) and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3,3,4,4-tetramethylborolan-1-yl)benzoate (725.3 mg, 1.66 mmol) in 1,4-dioxane (50 mL) and H2O (5 mL) was added Pd(ddpf)Cl2 (93.6 mg, 0.128 mmol) and Cs2CO3 (1248 mg, 3.84 mmol). The mixture was stirred at 100° C. for 3 hours under N2 protection. After cooled to room temperature, the reaction mixture was diluted with DCM (200 mL), then washed with brine (200 mL×2) and dried over Na2SO4. After concentration, the residue was purified by chromatography column on silica (eluent: DCM/MeOH=25/1) to obtain the product (367 mg) as a yellow solid. MS (ESI, m/e) [M+1]+626.9.


Step 8: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid

To a solution of tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (367 mg, 0.585 mmol) in DCM (30 ml) was added TFA (15 ml). The mixture was stirred at room temperature for 2 hours. After removal of solvent and TFA, the crude product was obtained as a yellow solid, which was used in next step without further purification. MS (ESI, m/e) [M+1]+570.9.


The desired compound was then synthesized with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide and (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedure similar to those in Example A1. 1H NMR (400 MHz, DMSO-d5) δ ppm: 12.34 (br, 1H), 11.71 (s, 1H), 8.69-8.46 (m, 2H), 8.12-7.95 (m, 1H), 7.87-7.74 (m, 1H), 7.65-7.45 (m, 3H), 7.40-6.94 (m, 8H), 6.89 (s, 1H), 6.53-6.23 (m, 3H), 5.71 (s, 1H), 4.78 (d, J=8.0 Hz, 1H), 4.04-3.45 (m, 6H), 3.41-3.36 (m, 2H), 3.32-3.19 (m, 6H), 2.92-2.81 (m, 3H), 2.44-2.33 (m, 1H), 2.06-1.67 (m, 4H), 1.67-1.51 (m, 2H), 1.32-1.16 (m, 2H), MS (ESI, m/e) [M+1]+868.5.


Example A68-S: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A68-R by replacing (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine with (S)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 8.39 (s, 1H), 8.36 (s, 1H), 7.96 (d, J=2.3 Hz, 1H), 7.66 (d, J=8.8 Hz, 1H), 7.56 (d, J=8.1 Hz, 1H), 7.42 (s, 1H), 7.35 (s, 1H), 7.29 (d, J=8.6 Hz, 2H), 7.27-7.09 (m, 4H), 7.03 (d, J=7.1 Hz, 1H), 6.91 (s, 1H), 6.85 (d, J=9.0 Hz, 1H), 6.37 (d, J=8.6 Hz, 2H), 6.30 (s, 1H), 5.69 (s, 1H), 4.84 (d, J=6.9 Hz, 1H), 3.83 (d, J=8.3 Hz, 2H), 3.74 (s, 1H), 3.30-3.21 (m, 6H), 3.08-2.91 (m, 3H), 2.40-2.29 (m, 3H), 2.10-1.70 (m, 6H), 1.60 (d, J=12.6 Hz, 2H), 1.30-1.18 (m, 3H), MS (ESI, m/e). [M+1]+868.8.


Example A69: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3′-fluoro-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromo-2-fluorophenyl)-2-(2-cyclopropylphenyl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.25 (s, 1H), 11.66 (s, 1H), 8.56-8.53 (m, 2H), 8.01 (s, 1H), 7.78 (d, J=8.8 Hz, 1H), 7.54-7.48 (m, 3H), 7.36 (d, J=8.1 Hz, 1H), 7.25 (d, J=15.8 Hz, 1H), 7.13 (d, J=8.1 Hz, 1H), 7.09-7.04 (m, 2H), 7.01-6.96 (m, 3H), 6.46 (t, J=8.8 Hz, 1H), 6.36 (s, 1H), 5.38 (s, 1H), 3.94 (s, 1H), 3.84 (d, J=8.7 Hz, 2H), 3.57-3.49 (m, 1H), 3.30-3.24 (m, 4H), 2.09-2.01 (m, 1H), 1.96-1.82 (m, 3H), 1.78-1.68 (m, 1H), 1.65-1.55 (m, 2H), 1.31-1.16 (m, 3H), 1.07-0.89 (m, 3H), 0.78-0.71 (m, 1H), 0.68-0.63 (d, J=3.6 Hz, 1H), MS (ESI, m/e) [M+1]+830.8.


Example A70: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′-fluoro-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromo-3-fluorophenyl)-2-(2-cyclopropylphenyl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.24 (s, 1H), 11.72 (s, 1H), 8.68-8.52 (m, 2H), 8.05 (d, J=1.6 Hz, 1H), 7.85 (d, J=8.4 Hz, 1H), 7.63 (d, J=1.6 Hz, 1H), 7.57-7.48 (m, 2H), 7.22-6.99 (m, 6H), 6.86-6.75 (m, 2H), 6.40 (s, 1H), 6.22-6.06 (m, 2H), 5.24-5.12 (m, 1H), 3.87-3.80 (m, 2H), 3.74-3.65 (m, 1H), 3.29-3.23 (m, 3H), 2.47-2.35 (m, 1H), 2.07-1.82 (m, 5H), 1.65-1.52 (m, 2H), 1.29-1.21 (m, 2H), 1.08-0.93 (m, 4H), 0.81-0.62 (m, 2H), MS (ESI, m/e) [M+1]+830.8.


Example A71: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-2-(trifluoromethyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-2-(trifluoromethyl)pyrrolidine following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+880.7.


Example A72: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)piperidine following the procedures similar to those in Example A1. MS (ESI, me)[M+1]+880.7.


Example A73: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (CDCl3-d6) δ ppm: 10.90-10.17 (m, 1H), 8.89 (s, 1H), 8.53 (s, 1H), 8.28-7.32 (m, 5H), 7.23-6.30 (m, 10H), 5.52-5.19 (m, 2H), 4.16-3.91 (m, 3H), 3.54-3.23 (m, 4H), 3.08-2.63 (m, 5H), 2.53-2.26 (m, 1H), 2.04-1.60 (m, 4H), 1.34-1.18 (m, 1H), 1.04-0.67 (m, 4H), MS (ESI, m/e) [M+1]+830.7.


Example A74: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4-chloro-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-chloro-2-(2-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.19 (s, 1H), 11.70 (s, 1H), 8.66-8.51 (m. 2H), 8.05 (d, J=2.4 Hz, 1H), 7.83 (dd, J=8.8 Hz, 2.0 Hz, 1H), 7.62-7.48 (m, 3H), 7.37-7.27 (m, 3H), 7.21-7.06 (m, 3H), 7.01 (t, J=6.4 Hz, 2H), 6.91 (s, 1H), 6.46-6.34 (m, 3H), 5.26-5.16 (m, 1H), 4.90-4.80 (m, 1H), 3.96 (d, J=4.4 Hz, 2H), 3.87-3.80 (m, 2H), 3.29-3.17 (m, 4H), 2.18-2.09 (m, 1H), 2.04-1.96 (m, 1H), 1.92-1.82 (m, 1H), 1.63-1.55 (m, 2H), 1.30-1.21 (m, 4H), 1.01-0.91 (m, 2H), 0.80-0.66 (m, 2H), MS (ESI, m/e) [M+1]+846.7.


Example A75: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-methoxypyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-4-methoxypyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.16 (br, 1H), 11.68 (s, 1H), 8.62-8.55 (m, 2H), 8.03 (s, 1H), 7.83-7.79 (m, 1H), 7.57-7.47 (m, 3H), 7.34-7.27 (m, 3H), 7.14-6.96 (m, 5H), 6.90 (s, 1H), 6.42-6.35 (m, 3H), 4.17-4.08 (m, 1H), 3.98-3.83 (m, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.47-3.42 (m, 1H), 3.25-3.16 (m, 6H), 3.06-2.93 (m, 1H), 2.67-2.51 (m, 1H), 2.09-1.95 (m, 4H), 1.92-1.81 (m, 1H), 1.61 (d, J=12.4 Hz, 2H), 1.50-1.43 (m, 1H), 0.95-0.84 (m, 2H), 0.68-0.45 (m, 2H), MS (ESI, m/e) [M+1]+842.8.


Example A76: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-3-methylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-3-methylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.70 (s, 1H), 8.65-8.50 (m, 2H), 8.08-8.00 (m, 1H), 7.87-7.74 (m, 1H), 7.62-7.48 (m, 3H), 7.36-7.25 (m, 3H), 7.15-7.07 (m, 2H), 7.05-6.88 (m, 3H), 6.86-6.80 (m, 1H), 6.44-6.31 (m, 3H), 5.28 (d, J=8.0 Hz, 0.66H), 4.79 (s, 0.33H), 3.87-3.80 (m, 2H), 3.75-3.64 (m, 1H), 3.30-3.22 (m, 4H), 2.77-2.64 (m, 1H), 2.22-2.03 (m, 2H), 1.92-1.82 (m, 1H), 1.80-1.64 (m, 1H), 1.63-1.56 (m, 2H), 1.32-1.18 (m, 3H), 1.13 (d, J=6.8 Hz, 1H), 1.06-0.94 (m, 2H), 0.90-0.80 (m, 1H), 0.75-0.64 (m, 3H), MS (ESI, m/e) [M+1]+826.8.


Example A77: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-3,3-dimethylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-3,3-dimethylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.60-8.55 (m, 2H), 8.03 (s, 1H), 7.81 (d, J=8.7 Hz, 1H), 7.62-7.45 (m, 3H), 7.33-7.27 (m, 3H), 7.10-7.04 (m, 2H), 7.02 (t, J=7.6 Hz, 1H), 6.95 (d, J=7.6 Hz, 1H), 6.92-6.83 (m, 2H), 6.37-6.35 (m, 2H), 4.87 (s, 1H), 3.84 (d, J=8.7 Hz, 2H), 3.70 (t, J=9.0 Hz, 1H), 3.51-3.43 (m, 1H), 3.29-3.22 (m, 3H), 2.09 (s, 1H), 2.04-1.95 (m, 2H), 1.87 (s, 1H), 1.74-1.71 (m, 1H), 1.60 (d, J=12.4 Hz, 2H), 1.45 (s, 1H), 1.18 (s, 3H), 1.08 (d, J=8.6 Hz, 1H), 0.98 (d, J=4.6 Hz, 1H), 0.95-0.82 (m, 2H), 0.70-0.68 (m, 4H), MS (ESI, m/e) [M+1]+840.8.


Example A78: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-2 (1H)-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-(2-cyclopropylphenyl)octahydrocyclopenta[c]pyrrole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 11.54 (s, 1H), 8.40 (s, 1H), 8.36 (s, 1H), 7.95 (s, 1H), 7.66 (d, J=8.4 Hz, 1H), 7.54 (d, J=8.1 Hz, 1H), 7.42 (s, 1H), 7.35 (s, 1H), 7.30-7.21 (m, 3H), 7.12-6.98 (m, 3H), 6.93-6.77 (m, 3H), 6.36 (d, J=8.5 Hz, 2H), 6.30 (s, 1H), 5.34 (d, J=8.6 Hz, 1H), 3.83 (d, J=8.5 Hz, 2H), 3.72 (t, J=9.4 Hz, 1H), 3.49-3.38 (m, 1H), 3.30-3.19 (m, 6H), 2.10-1.98 (m, 2H), 1.90-1.76 (m, 2H), 1.66-1.35 (m, 6H), 1.08-0.90 (m, 3H), 0.90-0.71 (m, 2H), 0.71-0.59 (m, 1H), MS (ESI, m/e) [M+1]+852.8.


Example A79: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-cyclopropylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-cyclopropylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+736.8.


Example A80: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-ethylcyclohexyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-ethylcyclohexyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+806.8.


Example A81: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylbenzyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylbenzyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+826.8.


Example A82: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-cyclopropylpyridin-3-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-cyclopropyl-3-(pyrrolidin-2-yl)pyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.61-8.57 (m, 2H), 8.41 (s, 1H), 8.05-8.02 (m, 2H), 7.83 (d, J=8.6 Hz, 1H), 7.61 (s, 1H), 7.57-7.49 (m, 2H), 7.36-7.32 (m, 3H), 7.24-7.11 (m, 2H), 6.89 (s, 1H), 6.65 (s, 2H), 6.42-6.39 (m, 3H), 5.23 (d, J=7.3 Hz, 1H), 3.84 (d, J=10.7 Hz, 2H), 3.28-3.22 (m, 4H), 2.02-1.99 (m, 6H), 1.91-1.89 (m, 1H), 1.61-1.58 (m, 2H), 1.45 (s, 3H), 0.85 (s, 4H), MS (ESI, m/e) [M+1]+813.8.


Example A83: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(1-cyclopropyl-1H-pyrazol-5-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-cyclopropyl-5-(pyrrolidin-2-yl)-1H-pyrazole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+802.8


Example A84: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(3-chloro-2-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+846.8


Example A85: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-methylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropyl-5-methylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.68 (s, 1H), 8.55 (s, 2H), 8.04 (s, 1H), 7.80 (s, 1H), 7.58-7.50 (m, 3H), 7.36-7.30 (m, 2H), 7.14-7.08 (m, 1H), 6.91 (s, 2H), 6.79-6.63 (m, 3H), 6.40-6.30 (m, 3H), 5.16-5.10 (m, 1H), 3.8-3.80 (m, 3H), 3.73 (s, 1H), 2.99-2.86 (m, 5H), 2.10 (s, 2H), 2.05 (s, 1H), 1.97 (s, 3H), 1.66-1.58 (m, 2H), 1.30-1.20 (m, 2H), 0.95-0.89 (m, 2H), 0.74 (s, 1H), 0.64 (s, 1H), MS (ESI) m/e [M+1]+826.8.


Example A86: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,3-dihydrobenzofuran-7-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2,3-dihydrobenzofuran-7-yl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI) m/e [M+1]+814.7.


Example A87: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(1-phenylhexahydrocyclopenta[c]pyrrol-2 (1H)-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-phenyloctahydrocyclopenta[c]pyrrole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (br, 1H), 11.61 (s, 1H), 8.51-8.42 (m, 2H), 8.00 (d, J=2.4 Hz, 1H), 7.74 (d, J=8.0 Hz, 1H), 7.55 (d, J=8.4 Hz, 1H), 7.46 (s, 2H), 7.31-7.21 (m, 5H), 7.17-6.95 (m, 4H), 6.90 (s, 1H), 6.43 (d, J=8.8 Hz, 2H), 6.34 (s, 1H), 4.92 (d, J=8.4 Hz, 2H), 3.85 (d, J=8.4 Hz, 2H), 3.66 (t, J=9.2 Hz, 2H), 3.45-3.39 (m, 1H), 3.30-3.20 (m, 4H), 3.07-2.98 (m, 1H), 2.85-2.76 (m, 1H), 1.94-1.75 (m, 2H), 1.62 (d, J=12.8 Hz, 2H), 1.56-1.35 (m, 4H), 1.30-1.22 (m, 2H), 1.12-1.05 (m, 2H), MS (ESI, m/e) [M+1]+812.8.


Example A88: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-3′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon y -[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(3-bromophenyl)-2-(2-cyclopropylphenyl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.30 (s, 1H), 11.73 (s, 1H), 8.65-8.55 (m, 2H), 8.01 (s, 1H), 7.82 (d, J=8.9 Hz, 1H), 7.59-7.47 (m, 3H), 7.28-7.20 (m, 1H), 7.15-7.06 (m, 2H), 6.98-6.80 (m, 4H), 6.73 (s, 1H), 6.62 (d, J=7.4 Hz, 1H), 6.39 (s, 2H), 6.30 (s, 1H), 5.15 (d, J=7.4 Hz, 1H), 3.87-3.83 (m, 2H), 3.74-3.71 (m, 1H), 3.28-3.23 (m, 5H), 2.68 (s, 1H), 2.04-1.74 (m, 6H), 1.61-1.58 (m, 2H), 1.00-0.75 (m, 4H), 0.47-0.45 (m, 1H), MS (ESI) m/e [M+1]+812.8.


Example A89: 3-((l H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-phenoxyphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-phenoxyphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI) m/e [M+1]+864.7.


Example A90: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(tetrahydro-2H-pyran-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(tetrahydro-2H-pyran-4-yl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.61 (d, J=5.6 Hz, 1H), 8.56 (d, J=1.8 Hz, 1H), 8.04 (d, J=2.3 Hz, 1H), 7.83 (d, J=7.9 Hz, 1H), 7.59 (d, J=1.9 Hz, 1H), 7.52 (d, J=8.1 Hz, 2H), 7.35-7.28 (m, 4H), 7.21-7.08 (m, 2H), 7.01 (t, J=7.4 Hz, 1H), 6.90 (s, 1H), 6.85 (d, J=7.6 Hz, 1H), 6.36 (d, J=9.3 Hz, 3H), 5.04 (d, J=7.9 Hz, 1H), 3.96 (t, J=9.9 Hz, 2H), 3.90-3.80 (m, 2H), 3.70 (t, J=7.9 Hz, 1H), 3.55-3.41 (m, 2H), 3.31-3.21 (m, 5H), 2.85 (s, 2H), 1.91-1.78 (m, 3H), 1.85-1.68 (m, 3H), 1.65-1.54 (m, 3H), 1.34-1.16 (m, 3H), MS (ESI, m/e) [M+1]+856.7.


Example A91: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylcyclohex-1-en-1-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylcyclohex-1-en-1-yl)pyrrolidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.18 (s, 1H), 11.71 (s, 1H), 8.561-8.51 (m, 2H), 8.10-8.01 (m, 1H), 7.85-7.78 (m, 1H), 7.74-7.45 (m, 3H), 7.36 (d, J=8.6 Hz, 3H), 7.18-7.03 (m, 2H), 6.96 (s, 1H), 6.55-6.48 (m, 1H), 6.38 (s, 1H), 5.32 (s, 1H), 4.77 (s, 1H), 3.84 (d, J=9.4 Hz, 2H), 3.12-3.07 (m, 6H), 2.02-1.82 (m, 3H), 1.73 (s, 2H), 1.64-1.56 (m, 4H), 1.60-1.39 (m, 4H), 1.37-1.30 (m, 3H), 0.85-0.72 (m, 2H), 0.65-0.47 (m, 3H), MS (ESI, m/e) [M+1]+816.8.


Example A92: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylcyclopentyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylcyclopentyl)-[1,1′-biphenyl]-4-carboxylic acid and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide following the procedure similar to those in Example A1. MS (ESI, m/e) [M+1]+772.8.


Example A93:3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-(methyl(3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl oxo)-16-sulfaneylidene)-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (100 mg, 0.194 mmol) in DCM (30 mL) was added EDCI (56 mg, 0.291 mmol) and DMAP (71 mg, 0.582 mmol). The mixture was stirred at room temperature for 0.5 hour. Then imino(methyl)(3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)-16-sulfanone (138 mg, 0.388 mmol) was added to the mixture. The mixture was stirred at room temperature for 2 days. The mixture was diluted with DCM (100 mL), then washed with saturated aq. NaHCO3, brine, dried over Na2SO4, concentrated and purified by chromatography column on silica gel (eluent: DCM/EA=1/1 then MeOH/DCM=1/10) to give the crude product. The crude product was purified by prep-HPLC to give the desired compound (9 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm. 11.63 (s, 1H), 8.71-8.63 (m, 1H), 8.61-8.54 (m, 1H), 8.08-7.96 (m, 1H), 7.91-7.84 (m, 1H), 7.74-7.65 (m, 1H), 7.51-7.34 (s, 5H), 7.16-6.95 (m, 5H), 6.91-6.83 (m, 1H), 6.45-6.31 (m, 3H), 5.28-5.13 (m, 1H), 3.91-3.79 (m, 2H), 3.79-3.67 (m, 1H), 3.46-3.39 (m, 4H), 3.32-3.20 (m, 4H), 3.11-2.85 (m, 1H), 2.49-2.38 (m, 1H), 2.09-1.82 (m, 5H), 1.65-1.53 (m, 2H), 1.32-1.26 (m, 1H), 1.10-0.91 (m, 2H), 0.85-0.66 (m, 2H), MS (ESI, m/e) [M+1]+810.8.


Example A94: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(cyclopropylmethyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(cyclopropylmethyl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.58 (m, 8.56-8.61, 2H), 8.04 (d, J=2.1 Hz, 1H), 7.82 (m, 1H), 7.58 (s, 1H), 7.55-7.47 (m, 2H), 7.39 (d, J=7.5 Hz, 1H), 7.31 (m, 3H), 7.16-7.11 (m, 2H), 7.05-7.01 (m, 1H), 6.89-6.84 (m, 2H), 6.38-6.35 (m, 3H), 4.92 (d, J=7.9 Hz, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.71 (t, J=7.7 Hz, 1H), 3.30-3.21 (m, 4H), 2.78-2.72 (m, 1H), 2.61-2.54 (m, 2H), 2.43-2.33 (m. 1H), 1.96-1.87 (m, 3H), 1.61-1.58 (m, 2H), 1.33-1.18 (m, 3H), 1.12-1.01 (m, 1H), 0.56 (d, J=7.7 Hz, 2H) 0.28 (d, J=2.1 Hz, 2H), MS (ESI, m/e) [M+1]+826.8


Example A95: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-2′-chloro-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)pyrrolidine and 1-bromo-2-chloro-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.30 (s, 1H), 11.70 (s, 1H), 8.56 (s, 2H), 8.02 (s, 1H), 7.83 (d, J=8.8 Hz, 1H), 7.61 (s, 1H), 7.52 (d, J=8.2 Hz, 2H), 7.19-6.93 (m, 6H), 6.86 (d, J=7.5 Hz, 1H), 6.66 (s, 1H), 6.37 (s, 2H), 6.29 (d, J=8.3 Hz, 1H), 5.18 (d, J=7.9 Hz, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.71 (t, J=7.7 Hz, 1H), 3.31-3.16 (m, 5H), 2.48-2.30 (m, 1H), 2.09-1.73 (m, 5H), 1.59 (d, J=12.4 Hz, 2H), 1.35-1.17 (m, 2H), 1.12-0.89 (m, 2H), 0.80 (dd, J=9.2, 4.2 Hz, 1H), 0.65 (dd, J=9.0, 3.8 Hz, 1H). MS (ESI, m/e) [M+1]+846.7


Example A96: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(4,4-difluorocyclohexyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-2-(2-(4,4-difluorocyclohexyl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+890.8.


Example A97: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R)-2-(2-(2-(dimethylamino)cyclopropyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-2-(2-((R)-pyrrolidin-2-yl)phenyl)cyclopropan-1-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 9.77 (s, 1H), 8.59-8.29 (m, 2H), 7.99 (s, 1H), 7.80-7.64 (m, 1H), 7.64-7.37 (m, 3H), 7.30-7.17 (m, 3H), 7.17-6.76 (m, 5H), 6.49-6.20 (m, 3H), 5.18-5.06 (m, 1H), 3.99-3.65 (m, 3H), 3.62-3.35 (m, 3H), 3.30-3.16 (m, 4H), 3.12-2.82 (m, 1H), 2.48-2.26 (m, 7H), 2.12-1.78 (m, 5H), 1.67-1.55 (m, 2H), 0.88-0.78 (m, 2H), MS (ESI, m/e) [M+1]+855.8


Example A98: tert-butyl 4-(2-(1-(3′-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)carbamoyl)-[1,1′-biphenyl]-4-yl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate



embedded image


The desired compound was synthesized starting from tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6): δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.62-8.56 (m, 2H), 8.04 (s, 1H), 7.82 (d, J=9.2 Hz, 1H), 7.61-7.49 (m, 3H), 7.35-7.28 (m, 4H), 7.19-7.11 (m, 2H), 7.01 (t, J=7.3 Hz, 1H), 6.90 (s, 1H), 6.84 (d, J=7.6 Hz, 1H), 6.67 (s, 1H), 6.37-6.35 (m, 3H), 5.03 (d, J=7.6 Hz, 1H), 4.10 (s, 2H), 3.84 (d, J=8.0 Hz, 2H), 3.71 (t, J=4 Hz, 1H), 3.39-3.33 (s, 2H), 3.27-3.17 (m, 4H), 3.06 (s, 1H), 2.99 (s, 1H), 2.02-1.97 (m, 3H), 1.85 (s, 2H), 1.74-1.56 (m, 5H), 1.43 (s, 10H), 1.27 (s, 2H), MS (ESI, m/e) [M+1]+955.8.


Example A99:3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized by Boc deprotection of A98 in TFA/DCM. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 11H), 8.58-8.56 (m, 2H), 8.04 (s, 1H), 7.81 (s, 1H), 7.59-7.50 (m, 3H), 7.30-7.22 (m, 5H), 7.14-7.11 (m, 1H), 7.05 (t, J=7.3 Hz, 1H), 6.88-6.86 (m, 2H), 6.67 (s, 1H), 6.38-6.36 (m, 2H), 5.05 (d, J=7.3 Hz, 1H), 3.84 (d, J=9.3 Hz, 2H), 3.72 (s, 1H), 3.40-3.38 (m, 2H), 3.29-3.23 (m, 5H), 3.06-2.96 (m, 3H), 2.0-1.96 (m, 4H), 1.88-1.82 (m, 3H), 1.69 (s, 1H), 1.60 (d, J=12.4 Hz, 2H), 1.45 (s, 1H), 1.28 (s, 2H), MS (ESI, m/e) [M+1]+856.2.


Example A100: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: tert-butyl (R)-2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidine-1-carboxylate

To a solution of tert-butyl (R)-2-(2-bromophenyl)pyrrolidine-1-carboxylate (14.6 g, 44.8 mmol) in dioxane/H2O (100 mL/20 mL) were added 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine (10 g, 44.8 mmol), Pd(dppf)Cl2 (3.3 mg, 4.48 mmol) and Cs2CO3 (29 g, 90 mmol). The mixture was stirred at 90° C. for 12 hours under N2 atmosphere. The reaction mixture was cooled to room temperature and then washed with brine, dried over Na2SO4, concentrated. The residue was purified by chromatograph column on silica gel (eluent: EA/CH3OH=50/1 to 10/1) to give the product (4 g) as yellow oil. MS (ESI, m/e) [M+1]+343.0.


Step 2: (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine

To a solution of tert-butyl (R)-2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidine-1-carboxylate (4 g, 11.7 mmol) in DCM (100 mL) was added TFA (20 mL). The mixture was stirred at room temperature for 2 hours. After removal of solvent, the residue was dissolved with DCM (200 mL), washed with saturated aq. NaHCO3, brine, dried over Na2SO4, and then concentrated to give the product (2 g) as a brown oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.51 (d, J=7.8 Hz, 1H), 7.30-7.22 (m, 1H), 7.17 (td, J=7.4, 1.2 Hz, 1H), 7.07 (dd, J=7.6, 1.2 Hz, 1H), 5.57-5.51 (m, 1H), 4.27 (t, J=7.9 Hz, 1H), 3.25-3.21 (m, 1H), 3.08 (dd, J=5.7, 2.8 Hz, 2H), 2.99-2.94 (m, 1H), 2.65 (dd, J=8.3, 3.6 Hz, 2H), 2.46-2.38 (m, 5H), 2.12-2.07 (m, 2H), 1.95-1.92 (m, 1H), 1.90-1.77 (m, 1H), 1.68-1.55 (m, 1H), MS (ESI, m/e) [M+1]+243.0. The residue was used into next step without further purification.


Step 3: (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperidine

To a solution of (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine (2 g, 8.2 mmol) in MeOH (100 mL) was added Pd(OH)2 (0.5 g) under H2 atmosphere. The mixture was stirred at 90° C. for 14 hours. The mixture was filtered. The filtrate was concentrated to give (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperidine as a colorless oil, which was used in next step without further purification. 1H NMR (400 MHz, DMSO-d6) δ ppm: δ 7.58-7.51 (m, 1H), 7.24-7.20 (m, 1H), 7.16-7.09 (m, 2H), 4.29 (t, J=7.7 Hz, 1H), 3.08-3.01 (m, 1H), 2.92-2.83 (m, 2H), 2.76-2.72 (m, 2H), 2.63-2.60 (m, 1H), 2.19 (s, 3H), 2.15-2.08 (m, 1H), 1.99-1.96 (m, 2H), 175-1.66 (m, 6H), 1.39-1.32 (m, 1H), MS (ESI, m/e) [M+1]+245.0.


Step 4: (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methylpiperidine

To a solution of (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperidine 2 g, 8 mmol) in toluene (100 mL) was added 1-bromo-4-iodobenzene (4.6 g, 16 mmol), Pd2(dba)s (732 mg, 0.8 mmol), BINAP(I mg, 1.6 mmol) and t-BuOK (2.7 g, 24 mmol). The mixture was stirred at 90° C. for 12 hours at N2 atmosphere. The reaction mixture was washed with brine, dried over Na2SO4, concentrated. The residue was purified by chromatograph column on silica gel (eluent: DCM/MeOH=50/1) to give the title product (2 g). MS (ESI, m/e) [M+1]+398.6, 400.6.


Step 5: tert-butyl-(R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methylpiperidine (2 g, 5 mmol) and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3,3,4,4-tetramethylborolan-1-yl)benzoate (2.18 g, 5 mmol) in 1,4-dioxane (50 mL) and H2O (5 mL) were added Pd(ddpf)Cl2 (365 mg, 0.5 mmol) and Cs2CO3 (4.9 g, 15 mmol). The mixture was stirred at 90° C. overnight under nitrogen protection. The mixture was cooled to room temperature and then diluted with DCM (200 mL), washed with brine (200 mL×2), dried over Na2SO4. After concentrated, the residue was purified by chromatography column on silica gel (eluent: DCM/MeOH=25/1) to give tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1l-yl)-[1,1′-biphenyl]-4-carboxylate (2 g) as a brown oil. MS (ESI, m/e) [M+1]+629.0


Step 6: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid

To a solution of tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (2 g, crude) in DCM (50 mL) was added TFA (15 mL). The mixture was stirred at room temperature for 2 hours. The mixture was concentrated to give the crude product as a yellow solid, which was used in next step without further purification. MS (ESI, m/e) [M+1]+573.0.


The desired compound was then synthesized with (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.71 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.05 (d, J=2.2 Hz, 1H), 7.82 (d, J=8.7 Hz, 1H), 7.59 (s, 1H), 7.57-7.49 (m, 2H), 7.37-7.18 (m, 4H), 7.17-7.02 (m, 2H), 6.87 (d, J=7.7 Hz, 2H), 6.37 (d, J=8.5 Hz, 3H), 5.04 (d, J=7.6 Hz, 1H), 3.88-3.82 (m, 2H), 3.75-3.71 (m, 1H), 3.51 (s, 2H), 3.47-3.39 (m, 1H), 3.30-3.22 (m, 4H), 3.19-3.13 (m, 3H), 2.99-2.93 (m, 1H), 2.85-2.78 (m, 3H), 2.15-1.79 (m, 7H), 1.75-1.69 (m, 1H), 1.65-1.61 (m, 2H), 1.28-1.21 (m, 3H), MS (ESI, m/e) [M+1]+869.8.


Example A101: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R)-2-(2-(1-methyl-2-oxopiperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-4-(2-((R)-pyrrolidin-2-yl)phenyl)piperidin-2-one and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.72-8.44 (M, 2H), 8.05 (s, 1H), 7.90-7.67 (m, 1H), 7.66-7.44 (m, 3H), 7.44-7.24 (m, 4H), 7.24-6.98 (m, 3H), 6.96-6.78 (m, 2H), 6.43-6.25 (m, 3H), 5.15-4.95 (m, 1H), 3.96-3.76 (m, 2H), 3.76-3.63 (m, 1H), 3.59-3.38 (m, 3H), 3.31-3.13 (m, 5H), 2.87 (s, 3H), 2.42-2.27 (m, 2H), 2.15-1.44 (m, 9H), 0.91-0.71 (m, 2H), MS (ESI, m/e) [M+1]+883.8.


Example A102: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(1-(3,3,3-trifluoropropyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-4-(2-(pyrrolidin-2-yl)phenyl)-1-(3,3,3-trifluoropropyl)piperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.61 (s, 1H), 9.67 (s, 1H), 8.64-8.34 (m, 2H), 7.99 (s, 1H), 7.82-7.63 (m, 1H), 7.63-7.13 (m, 8H), 7.13-6.80 (m, 4H), 6.46-6.25 (m, 3H), 5.09-4.87 (m, 1H), 3.89-3.78 (m, 2H), 3.77-3.65 (m, 1H), 3.44-3.36 (m, 2H), 3.31-3.18 (m, 4H), 3.15-3.01 (m, 2H), 2.97-2.85 (m, 1H), 2.75-2.56 (m, 3H), 2.49-2.39 (m, 1H), 2.28-2.10 (m, 1H), 2.05-1.80 (m, 5H), 1.75-1.57 (m, 4H), 1.32-1.19 (m, 4H), MS (ESI, m/e) [M+1]+951.8.


Example A103: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(2-hydroxyethyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-2-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)ethan-1-ol and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 9.32-9.05 (m, 1H), 8.46-8.26 (m, 2H), 7.96 (s, 1H), 7.72-7.62 (m, 1H), 7.59-7.51 (m, 1H), 7.45-7.16 (m, 7H), 7.11-7.00 (m, 1H), 6.95-6.79 (m, 3H), 6.45-6.20 (m, 3H), 5.10-4.94 (m, 1H), 3.90-3.79 (m, 2H), 3.79-3.64 (m, 3H), 3.59-3.35 (m, 4H), 3.30-3.19 (m, 5H), 3.17-2.79 (m, 4H), 2.18-1.65 (m, 9H), 1.65-1.55 (m, 2H), 1.33-1.26 (m, 2H), MS (ESI, m/e) [M+1]+899.9.


Example A104: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(2-(dimethylamino)-2-oxoethyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)—N,N-dimethyl-2-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)acetamide and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 9.61 (s, 1H), 8.42 (s, 2H), 7.97 (s, 1H), 7.72-7.69 (m, 1H), 7.58-7.53 (m, 1H), 7.46-7.38 (m, 2H), 7.34-7.16 (m, 5H), 7.05 (s, 1H), 6.90 (s, 3H), 6.41-6.28 (m, 3H), 5.02 (s, 1H), 3.88-3.76 (m, 2H), 3.71 (s, 1H), 3.40-3.38 (m, 1H), 3.29-3.21 (m, 5H), 3.01 (s, 4H), 2.89 (s, 3H), 1.99-1.80 (m, 7H), 1.78-1.51 (m, 5H), 1.23 (s, 6H), MS (ESI) m/e [M+1]+940.8.


Example A105: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(2-(N-methylacetamido)ethyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)—N-methyl-N-(2-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)ethyl)acetamide and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 8.56-8.22 (m, 2H), 7.99 (s, 1H), 7.83-7.66 (m, 1H), 7.60-7.39 (m, 3H), 7.38-7.13 (m, 5H), 7.12-6.78 (m, 4H), 6.46-6.25 (m, 3H), 5.10-4.93 (m, 1H), 3.91-3.77 (m, 2H), 3.77-3.66 (m, 1H), 3.66-3.33 (m, 6H), 3.32-3.17 (m, 4H), 3.16-2.90 (m, 4H), 2.88-2.67 (m, 2H), 2.48-2.38 (m, 1H), 2.11-1.66 (m, 10H), 1.65-1.53 (m, 2H), 1.53-1.23 (m, 3H), MS (ESI, m/e) [M+1]+954.9.


Example A106: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(3-(methylamino)propanoyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound A106 was synthesized by Boc-deprotection in TFA/DCM of tert-butyl (R)-(3-(4-(2-(1-(3′-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)carbamoyl)-[1,1′-biphenyl]-4-yl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-3-oxopropyl)(methyl)carbamate, which was synthesized starting from tert-butyl (R)-methyl(3-oxo-3-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)propyl)carbamate and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d4) δ ppm: 11.52 (s, 1H), 8.38 (s, 1H), 8.33 (s, 1H), 8.18 (s, 1H), 7.94 (s, 1H), 7.64 (d, J=8.6 Hz, 1H), 7.54 (d, J=7.9 Hz, 1H), 7.40 (s, 1H), 7.35-7.12 (m, 6H), 7.04-7.01 (m, 1H), 6.89 (s, 2H), 6.82 (d, J=9.0 Hz, 1H), 6.36 (d, J=7.8 Hz, 2H), 6.28 (s, 1H), 5.04 (s, 1H), 4.56 (s, 1H), 3.83-3.80 (m, 4H), 3.22-3.20 (m, 3H), 3.12 (s, 2H), 2.72-2.70 (m, 3H), 2.58 (s, 3H), 1.94-1.90 (m, 5H), 1.69 (s, 2H), 1.59-1.57 (m, 3H), 1.22 (s, 8H), MS (ESI) m/e [M+1]+940.9.


Example A107: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-cyclopropyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-cyclopropyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A68-R. 1H NMR (DMSO-d6) δ ppm: 11.66 (s, 1H), 8.56-8.52 (m, 2H), 8.02 (s, 1H), 7.78 (d, J=8.9 Hz, 1H), 7.57-7.46 (m, 3H), 7.37-7.23 (m, 3H), 7.22-6.95 (m, 5H), 6.91 (s, 1H), 6.36-6.34 (m, 3H), 5.67 (s, 1H), 4.84-4.82 (m, 1H), 3.85-3.83 (m, 2H), 3.72 (s, 1H), 3.46-3.43 (m, 2H), 3.30-3.26 (m, 4H), 3.10-3.08 (m, 2H), 2.44-2.32 (m, 1H), 2.01-1.99 (m, 3H), 1.87 (s, 1H), 1.76-1.60 (m, 3H), 1.23 (s, 6H), 0.85-0.83 (m, 1H), 0.59 (s, 3H), MS (ESI) m/e [M+1]+893.9.


Example A108: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-benzyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-benzyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A68-R. 1H NMR (DMSO-d6) δ ppm: 11.60 (s, 1H), 8.46 (s, 2H), 7.98 (s, 1H), 7.74-7.69 (m, 1H), 7.54 (d, J=8.0 Hz, 1H), 7.53-7.38 (m, 7H), 7.33-7.27 (m, 4H), 7.18-7.10 (m, 3H), 7.00 (d, J=7.5 Hz, 1H), 6.98-6.91 (m, 1H), 6.91 (s, 1H), 6.39-6.27 (m, 3H), 5.67 (s, 1H), 4.83 (d, J=6.1 Hz, 1H), 3.84 (d, J=7.7 Hz, 3H), 3.73 (s, 2H), 3.31-3.21 (m, 6H), 3.28-3.19 (m, 3H), 2.41-2.33 (m, 1H), 2.01-1.77 (m, 5H), 1.63-1.59 (m, 2H), 1.26-1.21 (m, 3H), MS (ESI, m/e) [M+1]+943.8.


Example A109: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-(4-(2-(pyrrolidin-2-yl)phenyl)-3,6-dihydropyridin-1 (2H)-yl)ethan-1-one and 1-bromo-4-iodobenzene following the procedures similar to those in Example A68-R. 1H NMR (DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.67-8.43 (m, 2H), 8.10-7.99 (m, 1H), 7.87-7.76 (m, 1H), 7.62-7.46 (m, 3H), 7.42-7.25 (m, 3H), 7.25-7.05 (m, 4H), 7.05-6.94 (m, 1H), 6.93-6.84 (m, 1H), 6.42-6.29 (m, 3H), 5.71 (s, 1H), 4.87-4.76 (m, 1H), 4.17-4.02 (m, 2H), 3.92-3.78 (m, 2H), 3.81-3.59 (m, 3H), 3.39-3.35 (m, 1H), 3.31-3.17 (m, 4H), 2.48-2.44 (m, 1H), 2.43-2.26 (m, 2H), 2.13-2.01 (m, 3H), 2.01-1.92 (m, 2H), 1.92-1.83 (m, 1H), 1.80-1.70 (m, 1H), 1.64-1.54 (m, 2H), 1.33-1.18 (m, 2H), [M+1]+895.8.


Example A110: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-acetylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)ethan-1-one and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.57-8.55 (m, 2H), 8.05 (d, J=2.5 Hz, 1H), 7.83 (d, J=9.4 Hz, 1H), 7.59 (s, 1H), 7.54-7.49 (m, 2H), 7.36-7.30 (m, 4H), 7.17-7.08 (m, 2H), 7.03-7.00 (m, 1H), 6.90 (s, 1H), 6.86-6.8 (m, 1H), 6.38-6.36 (m, 3H), 5.06 (s, 1H), 4.55 (s, 1H), 4.24 (s, 1H), 3.93 (s, 1H), 3.71 (s, 1H), 3.39-3.38 (m, 1H), 3.26-3.23 (m, 3H), 3.18-3.16 (m, 2H), 2.70-2.60 (m, 2H), 2.04 (s, 3H), 1.97 (s, 1H), 1.86 (s, 2H), 1.69-1.65 (m, 4H), 1.56-1.53 (m, 2H), 1.33-1.30 (m, 2H), 1.15-1.00 (m, 5H), MS (ESI) m/e [M+1]+925.8.


Example A111: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(methylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-(methylsulfonyl)-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A68-R. 1H NMR (DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.70-8.51 (m, 2H), 8.08-7.98 (m, 1H), 7.86-7.74 (m, 1H), 7.63-7.46 (m, 3H), 7.39-7.25 (m, 3H), 7.25-7.04 (m, 4H), 7.04-6.95 (m, 1H), 6.91 (s, 1H), 6.46-6.25 (m, 3H), 5.75 (s, 1H), 4.88-4.75 (m, 1H), 3.91-3.80 (m, 4H), 3.77-3.66 (m, 1H), 3.45-3.38 (m, 2H), 3.31-3.21 (m, 5H), 2.95 (s, 3H), 2.87-2.82 (m, 1H), 2.42-2.28 (m, 1H), 2.03-1.70 (m, 4H), 1.65-1.54 (m, 2H), 1.34-1.18 (m, 3H), MS (ESI, m/e) [M+1]+931.7.


Example A112: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((1-methylpiperidin-4-yl)methyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-methyl-4-(2-(pyrrolidin-2-yl)benzyl)piperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d4s) δ ppm: 12.15 (s, 1H), 11.64 (s, 1H), 9.09 (s, 1H), 8.51 (s, 2H), 8.01 (s, 1H), 7.76 (s, 1H), 7.59-7.43 (m, 3H), 7.30 (d, J=7.9 Hz, 3H), 7.22-6.97 (m, 4H), 6.91 (s, 2H), 6.35 (s, 3H), 4.90 (s, 1H), 3.84 (d, J=10.2 Hz, 2H), 3.72 (s, 1H), 3.39 (s, 3H), 3.30-3.21 (m, 4H), 2.89 (s, 2H), 2.75-2.65 (m, 4H), 1.99-1.92 (m, 7H), 1.70 (s, 1H), 1.68-1.57 (m, 4H), 1.45 (s, 2H), 1.24 (s, 7H), MS (ESI) m/e [M+1]+883.9.


Example A113: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((1-methylpiperidin-4-yl)oxy)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-4-(2-(pyrrolidin-2-yl)phenoxy)piperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.55 (s, 1H), 9.60 (s, 1H), 8.39-8.36 (m, 2H), 7.96 (s, 1H), 7.66 (d, J=8.9 Hz, 1H), 7.56 (d, J=7.8 Hz, 1H), 7.42 (s, 1H), 7.38-7.22 (m, 5H), 7.16-7.14 (m, 1H), 7.06-7.04 (m, 1H), 6.91 (s, 1H), 6.85 (s, 2H), 6.79-6.76 (m, 1H), 6.38-6.35 (m, 2H), 6.30 (s, 1H), 4.99 (s, 1H), 4.66 (s, 1H), 3.83-3.81 (m, 2H), 3.68 (s, 1H), 3.27-3.25 (m, 4H), 2.94 (s, 2H), 2.33 (s, 2H), 2.10-1.77 (m, 11H), 1.62-1.60 (m, 2H), 1.23 (s, 5H), MS (ESI) m/e [M+1]+885.8.


Example A114: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((4-methylpiperazin-1-yl)methyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-methyl-4-(2-(pyrrolidin-2-yl)benzyl)piperazine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: δ 11.56 (s, 1H), 9.91-9.17 (m, 1H), 8.44-8.37 (m, 2H), 7.97 (d, J=2.2 Hz, 1H), 7.68 (d, J=9.0 Hz, 1H), 7.58-7.55 (m, 1H), 7.48-7.40 (m, 2H), 7.33-7.18 (m, 4H), 7.18-7.07 (m, 2H), 6.99-6.92 (m, 1H), 6.89-6.83 (m, 2H), 6.46 (d, J=8.4 Hz, 2H), 6.31 (s, 1H), 5.26 (d, J=8.0 Hz, 1H), 3.92-3.69 (m, 4H), 3.45-3.34 (m, 2H), 3.28-3.21 (m, 5H), 3.12-2.58 (m, 6H), 1.97-1.70 (m, 6H), 1.61-1.58 (m, 3H), 1.28-1.21 (m, 4H), MS (ESI, m/e) [M+1]+884.8.


Example A115: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(4-carbamoylcyclohexyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenylsulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-4-(2-(pyrrolidin-2-yl)phenyl)cyclohexane-1-carboxamide and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 12.16 (s, 0.5H), 11.60 (s, 1H), 9.67 (s, 0.5H), 8.68-8.19 (m, 2H), 7.99 (s, 1H), 7.81-7.63 (m, 1H), 7.58-7.11 (m, 9H), 7.07-6.79 (m, 4H), 6.79-6.60 (m, 1H), 6.41-6.25 (m, 3H), 5.04-4.89 (m, 1H), 3.90-3.774 (m, 2H), 3.77-3.63 (m, 1H), 3.60-3.36 (m, 2H), 3.30-3.18 (m, 4H), 2.91-2.80 (m, 1H), 2.27-2.13 (m, 1H), 2.04-1.79 (m, 8H), 1.80-1.37 (m, 9H), MS (ESI, m/e) [M+1]+897.8.


Example A116: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(pyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-(2-(pyrrolidin-2-yl)phenyl)pyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 12.18 (s, 1H), 11.71 (s, 1H), 8.67 (d, J=5.3 Hz, 2H), 8.60-8.55 (m, 2H), 8.05 (d, J=2.3 Hz, 1H), 7.83 (d, J=9.1 Hz, 1H), 7.59 (s, 1H), 7.55-7.44 (m, 4H), 7.38-7.24 (m, 5H), 7.25-7.18 (m, 1H), 7.15-7.10 (m, 2H), 6.89 (s, 1H), 6.41-6.29 (m, 3H), 4.60 (d, J=6.6 Hz, 1H), 3.86-3.82 (m, 2H), 3.68 (s, 1H), 3.30-3.22 (m, 5H), 2.16-2.13 (m, 1H), 1.94-1.90 (m, 3H), 1.79-1.77 (m, 1H), 1.62-1.58 (m, 2H), 1.30-1.24 (m, 3H), MS (ESI) m/e [M+1]+849.8.


Example A117a and Example A117b: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-3-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-3-(2-(pyrrolidin-2-yl)phenyl)piperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. The crude product was separated and purified by prep-HPLC to afford 2 isomers.


The isomer as faster peak of HPLC (retention time: 6.28 minute) was obtained as Example A117a 1H NMR (400 MHz, DMSO-d6): δ 11.55 (s, 1H), 8.41 (s, 1H), 8.36 (s, 1H), 7.96 (s, 1H), 7.67 (d, J=9.6 Hz, 1H), 7.56 (d, J=7.9 Hz, 1H), 7.42 (s, 1H), 7.39-7.27 (m, 4H), 7.25-7.20 (m, 3H), 7.13-7.08 (m, 1H), 6.93-6.87 (m, 3H), 6.38-6.34 (m, 2H), 6.30 (s, 1H), 4.98 (s, 1H), 3.83 (d, J=11.2 Hz, 2H), 3.78-3.71 (m, 1H), 3.45-3.41 (m, 1H), 3.28-3.20 (m, 5H), 2.01-1.69 (m, 10H), 1.63-1.59 (m, 4H), 1.26-1.23 (m, 5H), 0.88-0.81 (m, 1H), MS (ESI, m/e) [M+1]+869.9: The isomer as slower peak of HPLC (retention time: 6.42 minute) was obtained as Example A117b, 1H NMR (400 MHz, DMSO-do): 11.55 (s, 1H), 8.41 (s, 1H), 8.36 (s, 1H), 7.96 (s, 1H), 7.67 (d, J=9.6 Hz, 1H), 7.56 (d, J=7.9 Hz, 1H), 7.42 (s, 1H), 7.39-7.27 (m, 4H), 7.25-7.20 (m, 3H), 7.13-7.08 (m, 1H), 6.93-6.87 (m, 3H), 6.38-6.34 (m, 2H), 6.30 (s, 1H), 4.98 (s, 1H), 3.83 (d, J=11.2 Hz, 2H), 3.78-3.71 (m, 1H), 3.47-3.41 (m, 1H), 3.28-3.21 (m, 5H), 2.00-1.70 (m, 10H), 1.65-1.60 (m, 4H), 1.25-1.23 (m, 5H), 0.86-0.80 (m, 1H), MS (ESI, m/e) [M+1]+869.9. MS (ESI, m/e) [M+1]+869.9.


Example A118a and Example A118b: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(3-(dimethylamino)piperidin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-1-(2-(pyrrolidin-2-yl)phenyl)piperidin-3-amine following the procedures similar to those in Example A100. After separation by prep-HPLC, two products had been obtained. Faster peak as Example A118a, 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 9.82 (br, 1H), 8.42-8.35 (m, 2H), 7.95 (s, 1H), 7.66 (d, J=8.8 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.42-7.15 (m, 7H), 7.03-6.84 (m, 4H), 6.38 (d, J=8.0 Hz, 1H), 6.35-6.28 (m, 2H), 5.09 (d, J=4.4 Hz, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.73-3.61 (m, 1H), 3.33-3.20 (m, 5H), 2.95-2.49 (m, 9H), 2.47-2.31 (m, 1H), 2.13-1.26 (m, 14H), MS (ESI, m/e) [M+1]+898.9, slower peak as Example A118b, 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 1H), 10.58 (br. 1H), 8.41-8.35 (m, 2H), 7.96 (s, 1H), 7.69 (d, J=8.8 Hz, 1H), 7.60 (d, J=8.0 Hz, 1H), 7.43-7.15 (m, 7H), 7.03-6.84 (m, 5H), 6.41 (d, J=8.0 Hz, 1H), 6.35-6.28 (m, 1H), 5.04 (d, J=4.4 Hz, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.73-3.61 (m, 1H), 3.33-3.20 (M, 5H), 2.90-2.52 (m, 9H), 2.47-2.31 (m, 1H), 2.13-1.18 (m, 14H), MS (ESI, m/e) [M+1]+898.9.


Example A119: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(8-methyl-3,8-diazabicyclo[3.2.1]octan-3-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 8-methyl-3-(2-(pyrrolidin-2-yl)phenyl)-3,8-diazabicyclo[3.2.1]octane and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, CDCl3) δ 11.62 (s, 1H), 9.85 (s, 1H), 8.53-8.35 (m, 2H), 8.07-7.97 (m, 11H), 7.78-7.69 (m, 1H), 7.68-7.58 (m, 1H), 7.54-7.22 (m, 7H), 7.17-7.00 (m, 2H), 7.00-6.85 (m, 2H), 6.49-6.25 (m, 3H), 5.22-5.07 (m, 1H), 4.14-3.71 (m, 5H), 3.36-3.21 (m, 5H), 3.18-2.91 (m, 3H), 2.91-2.69 (m, 3H), 2.32-2.12 (m, 4H), 2.13-1.77 (m, 5H), 1.78-1.59 (m, 2H), 1.57-1.43 (m, 1H), 1.42-1.36 (m, 1H), 0.95-0.80 (m, 2H), MS (ESI, m/e) [M+1]+896.9.


Example A120: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(piperazin-1-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound A120 was synthesized by Boc-deprotection in TFA/DCM of tert-butyl 4-(2-(1-(3′-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)carbamoyl)-[1,1′-biphenyl]-4-yl)pyrrolidin-2-yl)phenyl)piperazine-1-carboxylate, which was synthesized starting from tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperazine-1-carboxylate and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 11H), 8.42-8.31 (m, 2H), 7.67-7.61 (m, 11H), 7.59-7.52 (s, 1H), 7.43-7.38 (m, 11H), 7.34-7.26 (m, 4H), 7.25-7.16 (m, 3H), 7.05-6.98 (m, 2H), 6.90 (s, 1H), 6.85-6.78 (m, 11H), 6.41-6.35 (m, 2H), 6.31-6.27 (m, 1H), 5.11-5.08 (m, 1H), 3.89-3.77 (m, 3H), 3.76-3.68 (m, 1H), 3.28-3.21 (m, 5H), 3.18-3.08 (m, 4H), 3.04-2.95 (m, 4H), 2.02-1.97 (m, 2H), 1.88-1.78 (m, 3H), 1.63-1.57 (m, 4H), MS (ESI, m/e) [M+1]+856.8.


Example A121: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(4-methylpiperazin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperazine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.58 (s, 1H), 10.34 (s, 1H), 8.51-8.27 (m, 2H), 7.97 (s, 1H), 7.74-7.65 (m, 1H), 7.59-7.51 (m, 1H), 7.47-7.34 (m, 2H), 7.33-7.13 (m, 5H), 7.08-6.% (m, 2H), 6.95-6.85 (m, 2H), 6.45-6.25 (m, 3H), 5.15-4.98 (m, 1H), 3.88-3.79 (m, 2H), 3.9-3.67 (m, 1H), 3.41-3.36 (m, 1H), 3.32-3.19 (m, 2H), 3.13-2.77 (m, 8H), 2.67-2.53 (m, 3H), 2.47-2.38 (m, 1H), 2.07-1.94 (m, 3H), 1.93-1.73 (m, 2H), 1.66-1.52 (m, 2H), MS (ESI, m/e) [M+1]+870.8.


Example A122: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-morpholinophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-(2-(pyrrolidin-2-yl)phenyl)morpholine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.63-8.55 (m, 2H), 7.56 (s, 1H), 7.34 (s, 1H), 7.33-7.20 (m, 3H), 7.19-7.13 (m, 7H), 7.00 (s, 2H), 6.90 (s, 1H), 6.43-6.37 (m, 3H), 5.16-5.13 (m, 11H), 3.86-3.75 (m, 8H), 3.33-3.25 (m, 5H), 3.10-2.95 (m, 4H), 1.84 (s, 3H), 1.60-1.57 (m, 4H), MS (ESI) m/e [M+1]+857.8.


Example A123: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-2-(2-(tetrahydro-2H-thiopyran-4-yl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.71 (s, 1H), 8.62-8.58 (m, 2H), 8.05 (s, 1H), 7.83 (d, J=8.8 Hz, 1H), 7.64-7.48 (m, 3H), 7.38-7.24 (m, 4H), 7.15-7.10 (m, 3H), 6.94-6.81 (m, 2H), 6.37-6.35 (m, 3H), 5.05-5.04 (m, 1H), 3.85-3.83 (m, 1H), 3.67 (s, 1H), 3.52-3.37 (m, 3H), 3.29-3.21 (m, 1H), 3.14 (s, 2H), 2.28-2.26 (m, 1H), 2.13-2.10 (m, 2H), 2.01-1.99 (m, 2H), 1.87 (s, 2H), 1.73-1.54 (m, 3H), 1.24 (s, 5H), MS (ESI) m/e [M+1]+904.7.


Example A124: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(4-hydroxypiperidin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-(2-(pyrrolidin-2-yl)phenyl)piperidin-4-ol and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.67 (s, 1H), 8.53 (s, 2H), 8.02 (s, 1H), 7.79 (s, 1H), 7.58-7.46 (m, 3H), 7.35-7.28 (m, 3H), 7.21-7.04 (m, 3H), 6.96-6.88 (m, 3H), 6.44-6.31 (m, 3H), 5.06-5.04 (m, 1H), 4.68-4.65 (m, 1H), 3.89-3.85 (m, 2H), 3.68-3.63 (m, 2H), 3.30-3.21 (m, 4H), 3.10-2.95 (m, 4H), 2.79-2.74 (m, 2H), 1.99 (s, 3H), 1.86-1.82 (m, 4H), 1.62-1.58 (m, 4H), 1.25-1.21 (m, 2H), MS (ESI) m/e [M+1]+871.8.


Example A125: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(4-(dimethylamino)piperidin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-1-(2-(pyrrolidin-2-yl)phenyl)piperidin-4-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.67 (s, 1H), 8.62-8.42 (m, 2H), 8.02 (s, 1H), 7.78 (d, J=9.2 Hz, 1H), 7.60-7.42 (m, 3H), 7.36-7.24 (m, 3H), 7.23-7.14 (m, 2H), 7.10-6.96 (m, 3H), 6.91 (s, 1H), 6.48-6.30 (m, 3H), 5.06 (d, J=7.6 Hz, 1H), 3.84 (d, J=8.0 Hz, 2H), 3.76-3.67 (m, 1H), 3.30-3.18 (m, 6H), 3.10-3.00 (m, 1H), 2.87 (t, J=11.6 Hz, 1H), 2.77 (s, 6H), 2.47-2.39 (m, 1H), 2.16-1.95 (m, 4H), 1.90-1.74 (m, 4H), 1.60 (d, J=12.4 Hz, 2H), 1.30-1.18 (m, 4H), MS (ESI, m/e) [M+1]+898.8.


Example A126: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpyrrolidin-3-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-3-(2-(pyrrolidin-2-yl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 12.37-11.97 (m, 0.4H), 11.66 (s, 1H), 10.39-9.79 (m, 0.6H), 8.61-8.36 (m, 2H), 8.02 (s, 1H), 7.85-7.68 (m, 1H), 7.63-7.41 (m, 4H), 7.36-7.17 (m, 4H), 7.14-6.97 (m, 2H), 6.95-6.82 (m, 2H), 6.43-6.26 (m, 2H), 5.10-4.89 (m, 1H), 3.88-3.66 (m, 4H), 3.43-3.36 (m, 1H), 3.30-3.18 (m, 5H), 2.92 (s, 3H), 2.45-2.36 (m, 2H), 2.05-1.79 (m, 5H), 1.78-1.41 (m, 5H), 0.87-0.81 (m, 2H), MS (ESI, m/e) [M+1]+855.9.


Example A127: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-(dimethylamino)ethoxy)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-2-(2-(pyrrolidin-2-yl)phenoxy)ethan-1-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.56 (s, 1H), 8.44-8.32 (m, 2H), 7.96 (s. 1H), 7.71-7.64 (m, 2H), 7.58-7.52 (m, 1H), 7.46-7.35 (m, 2H), 7.32-7.22 (m, 3H), 7.21-7.16 (m, 1H), 7.07-7.01 (m, 1H), 6.97-6.71 (m, 5H), 6.40-6.34 (m, 2H), 6.31-6.27 (m, 1H), 5.33 (s, 1H), 5.06-4.99 (m, 1H), 4.38-4.22 (m, 2H), 3.88-3.79 (m, 2H), 3.70-3.65 (m, 1H), 3.30-3.19 (m, 5H), 2.71-2.59 (m, 6H), 2.05-1.92 (m, 3H), 1.88-1.78 (m, 3H), 1.65-1.55 (m, 3H), MS (ESI, m/e) [M+1]+859.8.


Example A128: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(methoxymethyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(methoxymethyl)phenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.71-8.49 (m, 2H), 8.04 (s, 1H), 7.81 (d, J=8.7 Hz, 1H), 7.60-7.47 (m, 3H), 7.38-7.25 (m, 4H), 7.22-7.10 (m, 3H), 6.92-6.88 (m, 2H), 6.49-6.33 (m, 3H), 4.99 (d, J=7.7 Hz, 1H), 4.69-4.60 (m, 1H), 4.55-4.46 (m, 11H), 3.91-3.78 (m, 2H), 3.72 (s, 1H), 3.34 (s, 3H), 3.29-3.25 (m, 2H), 3.24-3.18 (m, 1H), 3.06-2.98 (m, 1H), 2.39 (s, 1H), 2.07-1.82 (m, 4H), 1.76 (s, 1H), 1.68-1.54 (m, 2H), 1.26 (s, 2H), MS (ESI, m/e) [M+1]+816.8.


Example A129: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((dimethylamino)methyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)—N,N-dimethyl-1-(2-(pyrrolidin-2-yl)phenyl)methanamine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.64 (s, 1H), 8.60-8.40 (m, 2H), 8.01 (s, 1H), 7.80-7.75 (m, 1H), 7.60-7.40 (m, 4H), 7.39-7.13 (m, 5H), 7.10-6.85 (m, 3H), 6.49-6.26 (m, 3H), 5.25-5.15 (m, 1H), 3.75-3.88 (m, 2H), 3.75-3.65 (m, 1H), 3.35-3.25 (m, 5H), 3.15-3.06 (m, 1H), 2.45-2.30 (m, 2H), 2.07-1.80 (m, 4H), 1.70-1.65 (m, 1H), 1.64-1.60 (m, 2H), 1.35-1.15 (m, 6H), MS (ESI, m/e) [M+1]+829.8.


Example A130: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-(dimethylamino)ethyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-2-(2-(pyrrolidin-2-yl)phenyl)ethan-1-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.54 (s, 1H), 9.75 (br, 1H), 8.41-8.33 (m, 2H), 7.96 (s, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.48 (d, J=8.0 Hz, 1H), 7.37-7.07 (m, 7H), 7.03-6.84 (m, 4H), 6.41 (d, J=8.0 Hz, 2H), 6.30 (s, 1H), 4.94 (d, J=4.4 Hz, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.73-3.61 (m, 1H), 3.33-3.20 (m, 6H), 3.05-2.92 (m, 4H), 2.80 (s, 6H), 2.07-1.26 (m, 8H), MS (ESI, m/e) [M+1]+843.9.


Example A131: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(3-(dimethylamino)propyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-3-(2-(pyrrolidin-2-yl)phenyl)propan-1-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.58 (s, 1H), 8.43 (s, 2H), 7.98 (s, 1H), 7.69 (d, J=8.0 Hz, 1H), 7.56 (d, J=7.8 Hz, 1H), 7.43 (d, J=12.8 Hz, 2H), 7.33-7.12 (m, 6H), 7.08-7.07 (m, 1H), 6.96-6.84 (m, 3H), 6.41-6.28 (m, 3H), 3.88-3.82 (m, 2H), 3.73 (s, 1H), 3.39-3.37 (m, 1H), 3.27-3.23 (m, 4H), 3.13 (s, 2H), 2.86-2.62 (m, 9H), 1.96-1.90 (m, 6H), 1.71 (s, 1H), 1.62-1.58 (m, 2H), 1.24 (s, 5H), MS (ESI) m/e [M+1]+857.9.


Example A132: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((1-methylpyrrolidin-3-yl)oxy)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon 1-1,1′-biphenyl-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-3-(2-(pyrrolidin-2-yl)phenoxy)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.57 (s, 1H), 10.58 (br, 1H), 8.47-8.45 (m. 2H), 7.97 (s, 1H), 7.70 (d, J=8.8 Hz, 1H), 7.55 (d, J=8.0 Hz, 1H), 7.43-7.15 (m, 6H), 7.03-6.84 (m, 5H), 6.41-6.28 (m, 3H), 5.15 (d, J=24.4 Hz, 2H), 3.85 (d, J=8.4 Hz, 2H), 3.73-3.71 (m, 1H), 3.33-3.00 (m, 6H), 2.70 (s, 3H), 2.90-2.52 (m, 8H), 2.17-2.72 (m, 6H), 1.75 (d, J=8.4 Hz, 2H), MS (ESI, m/e) [M+1]+871.9.


Example A133: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R)-2-(2-(methyl(1-methylpyrrolidin-3-yl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N, 1-dimethyl-N-(2-((R)-pyrrolidin-2-yl)phenyl)pyrrolidin-3-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.55 (s, 1H), 9.80 (s, 1H), 8.45-8.28 (m, 2H), 7.95 (s, 1H), 7.74-7.61 (m, 1H), 7.60-7.52 (m, 1H), 7.42 (s, 1H), 7.39-7.31 (m, 1H), 7.31-7.12 (m, 5H), 7.06-6.94 (m, 2H), 6.94-6.77 (m, 2H), 6.44-6.23 (m, 3H), 5.18-4.98 (m, 1H), 3.93-3.64 (m, 4H), 3.31-3.12 (m, 5H), 3.10-2.75 (m, 3H), 2.70-2.53 (m, 6H), 2.45-2.36 (m, 2H), 2.19-1.93 (m, 3H), 1.90-1.72 (m, 3H), 1.66-1.53 (m, 2H), 1.26-1.21 (m, 2H), MS (ESI, m/e) [M+1]+884.9.


Example A134: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(methyl(1-methylpiperidin-3-yl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N, 1-dimethyl-N-(2-(pyrrolidin-2-yl)phenyl)piperidin-3-anine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.56 (s, 1H), 8.41-8.37 (m, 2H), 7.96 (s, 1H), 7.68 (d, J=8.6 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.43-7.38 (m, 2H), 7.28-7.24 (m, 6H), 6.99 (s, 2H), 6.89 (s, 2H), 6.42-6.26 (m, 3H), 5.01 (s, 1H), 3.85-3.81 (m, 2H), 3.71 (s, 1H), 3.37 (s, 1H), 3.27-3.23 (m, 6H), 3.09 (s, 3H), 2.69 (s, 5H), 2.42 (s, 1H), 2.01-1.98 (m, 4H), 1.86 (s, 4H), 1.63-1.58 (m, 5H), MS (ESI) m/e [M+1]+898.8.


Example A135: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(methyl((1-methylpyrrolidin-2-yl)methyl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N-methyl-N-((1-methylpyrrolidin-2-yl)methyl)-2-(pyrrolidin-2-yl)aniline and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.65-8.45 (m, 2H), 8.04 (d, J=2.0 Hz, 1H), 7.81 (d, J=8.8 Hz, 1H), 7.64-7.45 (m, 3H), 7.36-7.20 (m, 5H), 7.15-6.94 (m, 3H), 6.87 (s, 1H), 6.42-6.28 (m, 3H), 5.11-4.99 (m, 1H), 3.84 (d, J=8.0 Hz, 2H), 3.74-3.68 (m, 1H), 3.62-3.46 (m, 2H), 3.30-3.20 (m, 4H), 3.17-2.93 (m, 5H), 2.72-2.64 (m, 3H), 2.45-2.22 (m, 2H), 2.02-1.74 (m, 7H), 1.60 (d, J=12.0 Hz, 2H), 1.34-1.16 (m, 4H), MS (ESI, m/e) [M+1]+898.8.


Example A136: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(7-methyl-2,7-diazaspiro[3.5]nonan-2-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-7-methyl-2-(2-(pyrrolidin-2-yl)phenyl)-2,7-diazaspiro[3.5]nonane and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.55 (s, 1H), 9.44 (s, 1H), 8.51-8.27 (m, 2H), 8.01-7.92 (m, 1H), 7.74-7.60 (m, 1H), 7.60-7.47 (m, 1H), 7.47-7.16 (m, 5H), 7.13-6.99 (m, 1H), 6.94-6.73 (m, 3H), 6.68-6.56 (m, 1H), 6.56-6.36 (m, 3H), 6.31 (s, 1H), 4.92-4.66 (m, 1H), 3.90-3.55 (m, 6H), 3.30-3.18 (m, 4H), 3.12-2.74 (m, 4H), 2.68-2.52 (m, 3H), 2.30-2.19 (m, 1H), 2.06-1.70 (m, 7H), 1.67-1.52 (m, 2H), 1.36-1.08 (m, 4H), MS (ESI, m/e) [M+1]+910.9.


Example A137: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-((dimethylamino)methyl)pyrrolidin-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon yl-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from N,N-dimethyl-1-(1-(2-(pyrrolidin-2-yl)phenyl)pyrrolidin-2-yl)methanamine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.56 (s, 1H), 9.62 (s, 1H), 8.47-8.28 (m, 2H), 7.97 (s, 1H), 7.76-7.63 (m, 1H), 7.61-7.50 (m, 1H), 7.47-7.14 (m, 7H), 6.96-6.80 (m, 4H), 6.47-6.24 (m, 3H), 5.05-4.85 (m, 1H), 3.97-3.76 (m, 3H), 3.70-3.54 (m, 2H), 3.40-3.33 (m, 3H), 3.31-3.19 (m, 4H), 3.07-2.93 (m, 1H), 2.87-2.80 (m, 1H), 2.37-2.20 (m, 4H), 2.04-1.65 (m, 9H), 1.62-1.54 (m, 2H), 1.37-1.23 (m, 3H), MS (ESI, m/e) [M+1]+899.0.


Example A138: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1H-pyrazol-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1H-pyrazole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm; 12.15 (s, 1H), 11.70 (s, 1H), 8.66-8.53 (m, 2H), 8.04 (d, J=2.8 Hz, 1H), 7.94 (s, 1H), 7.82 (dd, J=1.6 Hz, 9.2 Hz, 1H), 7.66 (s, 1H), 7.58 (d, J=2.4 Hz, 1H), 7.54-7.48 (m, 2H), 7.39-7.10 (m, 7H), 7.05-7.00 (m, 1H), 6.88 (s, 1H), 6.41-6.35 (m, 1H), 6.26 (d, J=8.4 Hz, 1H), 4.86 (d, J=7.2 Hz, 1H), 3.90 (s, 3H), 3.84 (dd, J=2.8 Hz, 11.2 Hz, 2H), 3.77-3.68 (m, 1H), 3.29-3.25 (m, 2H), 3.14-3.06 (m, 1H), 2.46-2.32 (m, 1H), 2.06-1.94 (m, 2H), 1.92-1.74 (m, 2H), 1.60 (d, J=12.4 Hz, 2H), 1.28-1.22 (m, 2H), 1.18 (t, J=7.6 Hz, 2H), MS (ESI, m/e) [M+1]+852.8.


Example A139: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-5-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-methyl-4-(5-(pyrrolidin-2-yl)-1H-pyrazol-1-yl)piperidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.56 (s, 1H), 9.74 (s, 1H), 8.56-8.25 (m, 2H), 8.04-7.89 (m, 1H), 7.74-7.51 (m, 2H), 7.49-7.18 (m, 6H), 6.97-6.77 (m, 2H), 6.51-6.37 (m, 2H), 6.31 (s, 1H), 5.76 (s, 1H), 5.15-4.93 (m, 1H), 4.60-4.29 (m, 1H), 3.94-3.75 (m, 2H), 3.68-3.55 (m, 1H), 3.39-3.32 (m, 2H), 3.30-3.16 (m, 5H), 3.01-2.72 (m, 2H), 2.72-2.56 (m, 3H), 2.42-1.73 (m, 9H), 1.67-1.53 (m, 2H), 1.29-1.19 (m, 2H), MS (ESI, m/e) [M+1]+859.9.


Example A140: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(5-chloro-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-(4-chloro-2-(pyrrolidin-2-yl)phenyl)-1-methyl-1,2,3,6-tetrahydropyridine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A68-R 1H NMR (DMSO-d6) δ ppm: 11.55 (s, 1H), 9.62 (s, 1H), 8.46-8.29 (m, 2H), 7.96 (s, 1H), 7.73-7.51 (m, 2H), 7.48-7.10 (m, 7H), 7.04 (s, 1H), 6.93 (s, 1H), 6.89-6.78 (m, 1H), 6.46-6.26 (m, 3H), 5.71 (s, 1H), 4.85-4.68 (m, 1H), 3.92-3.72 (m, 3H), 3.31-3.19 (m, 5H), 3.18-2.81 (m, 3H), 2.39-2.23 (m, 2H), 2.07-1.92 (m, 3H), 1.92-1.73 (m, 2H), 1.70-1.52 (m, 2H), 1.34-1.22 (m, 6H), MS (ESI, m/e) [M+1]+901.9.


Example A141: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(isoquinolin-8-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 8-(pyrrolidin-2-yl)isoquinoline and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.68 (s, 1H), 9.71 (s, 1H), 8.58-8.52 (m, 3H), 8.04 (s, 1H), 7.65-7.53 (m, 3H), 7.57-7.46 (m, 4H), 7.37-7.23 (m, 3H), 7.22-6.95 (m, 2H), 6.87 (s, 1H), 6.36-6.34 (m, 3H), 5.73 (s, 1H), 3.85-3.83 (m, 3H), 3.46-3.43 (m, 1H), 3.30-3.26 (m, 4H), 3.10-3.08 (m, 2H), 2.65-2.58 (m, 1H), 1.95-1.85 (m, 4H), 1.66-1.50 (m, 2H), 1.23 (s, 3H), MS (ESI) m/e [M+1]+823.8.


Example A142: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-methyl-2H-indazol-7-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-methyl-7-(pyrrolidin-2-yl)-2H-indazole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 11.58 (s, 11H), 10.34 (s, 11H), 8.51-8.27 (m, 2H), 7.97 (s. 1H), 7.74-7.65 (m, 1H), 7.59-7.51 (m, 1H), 7.47-7.34 (m, 2H), 7.33-7.13 (m, 5H), 7.08-6.96 (m, 2H), 6.95-6.85 (m, 2H), 6.45-6.25 (m, 3H), 5.15-4.98 (m, 1H), 3.88-3.79 (m, 2H), 3.9-3.67 (m, 1H), 3.41-3.36 (m, 1H), 3.32-3.19 (m, 2H), 3.13-2.77 (m, 8H), 2.67-2.53 (m, 3H), 2.47-2.38 (m, 1H), 2.07-1.94 (m, 3H), 1.93-1.73 (m, 2H), 1.66-1.52 (m, 2H), MS (ESI, m/e) [M+1]+870.8.


Example A143: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-methyl-1,2,3,4-tetrahydroisoquinolin-8-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-methyl-8-(pyrrolidin-2-yl)-1,2,3,4-tetrahydroisoquinoline and 1-bromo-4-iodobenzene following the procedures similar to those in Example A100. 1H NMR (DMSO-d6) δ ppm: 11.60 (s, 1H), 10.54 (s, 1H), 8.53-8.33 (m, 2H), 8.04-7.92 (m, 1H), 7.78-7.63 (m, 1H), 7.60-7.38 (m, 3H), 7.33-7.15 (m, 3H), 7.15-7.01 (m, 2H), 6.99-6.71 (m, 3H), 6.46-6.22 (m, 3H), 4.87-4.67 (m, 1H), 4.60-4.31 (m, 1H), 4.19-3.92 (m, 1H), 3.92-3.79 (m, 2H), 3.77-3.60 (m, 1H), 3.40-3.34 (m, 1H), 3.29-3.17 (m, 5H), 3.10-2.95 (m, 2H), 2.89-2.75 (m, 2H), 2.41-2.24 (m, 1H), 2.02-1.76 (m, 3H), 1.76-1.50 (m, 3H), 1.33-1.13 (m, 3H), MS (ESI, m/e) [M+1]+841.8.


Example A144: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyclopropylphenyl)propan-2-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(2-cyclopropylphenyl)propan-2-yl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.17 (s, 1H), 11.74 (s, 1H), 8.63-8.58 (m, 2H), 8.09 (s, 1H), 7.85 (d, J=8.1 Hz, 1H), 7.59-7.53 (m, 3H), 7.36-7.30 (m, 4H), 7.19-7.00 (m, 3H), 6.90 (s, 2H), 6.73-6.69 (m, 2H), 6.41 (s, 1H), 4.85 (s, 1H), 3.87-3.83 (m, 2H), 3.49 (s, 1H), 3.28-3.15 (m, 3H), 2.02-1.84 (m, 2H), 1.72-1.58 (m, 5H), 1.40 (s, 6H), 1.24 (s, 4H), 0.98-0.92 (m, 4H), 0.61 (s, 1H), MS (ESI) m/e [M+1]+854.8.


Example A145a and Example A145b: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R,4S) or (2S,4R)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide, and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2S,4R) or (2R,4S)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1-biphenyl]-4-carboxamide



embedded image


Step 1: (E)-N-(2-cyclopropylbenzylidene)-2-methylpropane-2-sulfinamide

To a solution of 2-cyclopropylbenzaldehyde (126.95 g, 868.39 mmol) and 2-methylpropane-2-sulfinamide (210.89 g, 1.74 mol) in THF (1300 mL) was added Ti(OEt)4 (396.91 g, 1.74 mol). The mixture was stirred at 80° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was poured into water (500 mL) and filtered. The filtrate was extracted with Ethyl acetate (300 mL×3). The combined organic phase was washed with brine (50 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=200/1 to 50/1). (E)-N-(2-cyclopropylbenzylidene)-2-methylpropane-2-sulfinamide (190.13 g) was obtained as yellow solid.


Step 2: N-(1-(2-cyclopropylphenyl)but-3-en-1-yl)-2-methylpropane-2-sulfonamide

To a solution of (E)-N-(2-cyclopropylbenzylidene)-2-methylpropane-2-sulfinamide (190 g, 761.92 mmol) in DCM (1.50 L) was added allylmagnesium bromide (2.28 L. 2.28 mol, 1M) at −10° C. to 0° C., the mixture was stirred at 0° C. for 1 hours. LC/MS showed that the reaction was completely. The reaction mixture was quenched by saturated NH4Cl aqueous solution, and then extracted with DCM (200 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was washed with MTBE (200 mL) and filtered. N-(1-(2-cyclopropylphenyl)but-3-en-1-yl)-2-methylpropane-2-sulfonamide (130.12 g) was obtained as white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 0.59-0.84 (m, 2H) 0.89-1.08 (m, 2H) 1.20 (s, 9H) 1.95-2.09 (m, 1H) 2.49 (dt, J=14.03, 8.45 Hz, 1H) 2.59-2.71 (m, 1H) 3.69 (br s, 1H) 5.11-5.26 (m, 3H) 5.70-5.86 (m, 1H) 7.03-7.12 (m, 1H) 7.15-7.25 (m, 2H) 7.32-7.41 (m, 1H).


Step 3: N-(1-(2-cyclopropylphenyl)-2-(oxiran-2-yl)ethyl)-2-methylpropane-2-sulfonamide

To a solution of N-(1-(2-cyclopropylphenyl)but-3-en-1-yl)-2-methylpropane-2-sulfonamide (30 g, 102.93 mmol) in DCM (300 mL) was added m-CPBA (71.05 g, 411.73 mmol) at 0° C., the mixture was stirred at 20° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with saturated Na2CO3 aqueous solution (100 mL) and extracted with DCM (100 mL×3). The combined organic phase was washed with brine (100 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=1/0 to 2/1). N-(1-(2-cyclopropylphenyl)-2-(oxiran-2-yl)ethyl)-2-methylpropane-2-sulfonamide (24.75 g) was obtained as yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 0.55-0.86 (m, 2H) 0.88-1.09 (m, 2H) 1.25 (s, 2H) 1.28 (d, J=0.73 Hz, 6H) 1.86-1.96 (m, 1H) 2.11-2.25 (m, 1H) 2.40-2.64 (m, 1H) 2.73-2.87 (m, 1H) 2.94-3.12 (m, 1H) 4.66-5.15 (m, 1H) 5.37-5.54 (m, 1H) 6.98-7.10 (m, 1H) 7.16-7.26 (m, 2H) 7.30-7.64 (m, 1H) 7.94-8.12 (m, 1H).


Step 4: 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol

To a solution of N-(1-(2-cyclopropylphenyl)-2-(oxiran-2-yl)ethyl)-2-methylpropane-2-sulfonamide (24.75 g, 76.52 mmol) in DMF (300 mL) was added K2CO3 (31.73 g, 229.56 mmol) and KI (12.70 g, 76.52 mmol), the mixture was stirred at 100° C. for 12 hours. TLC indicated the reactant was consumed completely. The mixture was cooled to room temperature and then poured into ice/water and extracted with EA (300 mL×3), dried with Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: PE/EA=200/1 to 2/1). 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol (20.63 g) was obtained as yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 0.50-0.84 (m, 2H) 0.89-1.02 (m, 2H) 1.23 (d, J=5.29 Hz, 9H) 1.84-2.02 (m, 2H) 2.28 (d, J=4.85 Hz, 1H) 2.75 (br dd, J=7.17, 5.84 Hz, 1H) 3.38 (dd, J=11.47, 6.39 Hz, 1H) 4.03 (br d, J=12.35 Hz, 1H) 4.27 (dd, J=11.36, 6.50 Hz, 1H) 4.46-4.61 (m, 1H) 5.85-6.12 (m, 1H) 7.05 (d, J=7.72 Hz, 1H) 7.11-7.26 (m, 2H) 7.47 (d, J=7.72 Hz, 1H).


Step 5: 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidine

DAST (23.47 g, 145.62 mmol) A was added into the solution of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol (15.70 g, 48.54 mmol) in DCM (200 mL) at 0° C. The mixture was stirred at 30° C. for 12 hours. TLC indicated the reactant was consumed completely. The reaction mixture was washed with saturated Na2CO3 aqueous solution (100 mL) and extracted with DCM (150 mL×3). The combined organic phase was washed with brine (100 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=1/0 to 2/1). 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidine (10.21 g) was obtained as yellow solid.


Step 6: 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine

A mixture of 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidine (10.21 g, 31.37 mmol) in TFA (80 mL) was stirred at 60° C. for 2 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated to remove the TFA in vacuum. The residue was adjusted to Ph ˜10 with saturated Na2CO3 aqueous solution and extracted with EA (150 mL×3). The combined organic phase was washed with brine (100 mL×2), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine (5.23 g) was obtained as yellow oil. The crude product was used into the next step without further purification. 1H NMR (400 MHz, CDCl3) δ ppm: 0.59-0.81 (m, 2H) 0.89-1.03 (m, 2H) 1.66-2.13 (m, 4H) 2.50-2.74 (m, 1H) 3.27-3.61 (m, 2H) 4.61-5.12 (m, 1H) 5.20-5.45 (m, 1H) 6.95-7.09 (m, 1H) 7.14-7.25 (m, 2H) 7.53 (d, J=7.02 Hz, 1H).


Step 7: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidine

To a solution of 2-(2-cyclopropylphenyl)-4-fluoropyrrolidine (1.6 g, 7.8 mmol) and 1-bromo-4-iodobenzene (6.6 g, 23.4 mmol) in toluene (20 mL) were added t-BuOK (2.62 g, 23.4 mmol), BINAP (968 mg, 1.56 mmol), Pd2(dba)3 (712 g, 780 umol). The mixture was stirred at 100° C. for 4 hours. TLC indicated the reactant was consumed completely. The reaction mixture was concentrated in vacuum. The residue was purified by prep-TLC (eluent: PE/EA=10/1) to give faster isomer as 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-trans-fluoropyrrolidine, and then give slower isomer as 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-cis-fluoropyrrolidine.


1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-trans-fluoropyrrolidine was then separated by SFC (Instrument: Thar SFC350 preparative SFC; Column: Chiralpak AD. 250×250 mm i.d. 10μ Mobile phase: A for CO2 and B for MeOH; Gradient: B %=30%: Flow rate: 200 g/min; Wavelength: 220 nm: Column temperature: 40° C.; System back pressure: 100 bar) to obtain two isomers.


With the faster isomer in SFC (retention time: 1.0 min) as starting material, 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R,4S) or (2S,4R)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A145a was synthesized following the similar procedures with example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.18 (s, 1H), 11.70 (s, 1H), 8.70-8.44 (m, 2H), 8.10-7.98 (m, 1H), 7.87-7.77 (m, 1H), 7.64-7.47 (m, 3H), 7.39-6.97 (m, 8H), 6.90 (s, 1H), 6.46-6.31 (m, 3H), 5.56-5.28 (m, 2H), 4.15-3.98 (m, 1H), 3.91-3.66 (m, 3H), 3.29-3.20 (m, 4H), 3.07-2.81 (m, 3H), 2.11-1.82 (m, 3H), 1.67-1.55 (m, 2H), 1.10-0.88 (m, 2H), 0.80-0.65 (m, 2H), MS (ESI, m/e) [M+1]+830.7.


With the slower isomer in SFC (retention time: 1.4 min) as starting material, 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2S,4R) or (2R,4S)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A145b was synthesized following the similar procedures with example A1. MS (ESI, m/e) [M+1]+830.7.


Example A145c and Example A145d: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R,4R) or (2S,4S)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide; and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2S,4S) or (2R,4R)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-cis-fluoropyrrolidine was separated by SFC (Instrument: Thar SFC350 preparative SFC; Column: Chiralcel OD, 250×50 mm i.d. 10u; Mobile phase: A for CO2 and B for MeOH: Gradient: B %=35%: Flow rate: 200 g/min; Wavelength: 220 nm; Column temperature: 40° C.: System back pressure: 100 bar) to obtain two isomers.


With the faster isomer in SFC (retention time: 1.6 min) as the starting material, 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2R,4R) or (2S,4S)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A145c was synthesized following the similar procedures with example A1. 1H NMR (DMSO-d6) δ ppm: 12.18 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.57 (s, 1H), 8.05 (s, 1H), 7.83 (d, J=9.4 Hz, 1H), 7.59 (s, 1H), 7.56-7.48 (m, 2H), 7.34 (t, J=8.6 Hz, 3H), 7.13-7.09 (m, 2H), 7.05-7.00 (m, 3H), 6.91 (s, 1H), 6.41-6.38 (m, 3H) 5.55 (s, 0.5H), 5.41 (s, 0.5H), 5.27 (d, J=9.7 Hz, 1H), 4.01-3.97 (m, 1H), 3.86-3.81 (m, 2H), 3.78-3.65 (m, 1H), 3.31-3.22 (m, 5H), 2.26-2.15 (m, 1H), 2.01-1.98 (m, 1H), 1.87 (s, 1H), 1.62-1.58 (m, 2H), 1.24 (s, 2H), 1.03-0.92 (m, 2H), 0.81-0.74 (m, 1H), 0.72-0.68 (m, 1H), MS (ESI) m/e [M+1]+830.8.


With the slower isomer in SFC (retention time: 1.8 min) as the starting material, 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2S,4S) or (2R,4R)-2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A145d was synthesized following the similar procedures with example A1. MS (ESI) m/e [M+1]+830.8.


Example A146: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-fluoro-2,5-dihydro-1H-pyrrol-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-4-fluoro-2,5-dihydro-1H-pyrrole and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.19 (s, 1H), 11.69 (s, 1H), 8.61-8.56 (m, 2H), 8.04 (s, 1H), 7.82 (d, J=8.8 Hz, 1H), 7.52-7.46 (m, 3H), 7.36-7.32 (m, 2H), 7.14-7.05 (m, 4H), 6.91 (s, 1H), 6.39 (d, J=8.1 Hz, 3H), 5.95 (s, 1H), 5.65 (s, 1H), 4.58 (d, J=13.3 Hz, 1H), 4.34 (d, J=13.3 Hz, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.29-3.22 (m, 4H), 2.98 (s, 1H), 2.13 (s, 1H), 2.03-1.94 (m, 1H), 1.87 (s, 1H), 1.60 (d, J=12.1 Hz, 2H), 1.04-0.91 (m, 2H), 0.82-0.68 (m, 2H), MS (ESI, m/e) [M+1]+828.7.


Example A147a and Example A147b: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide; and (S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one

To a mixture of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-ol (6.5 g, 20.1 mmol) in DCM (70 mL) was added NaHCO3 (1.69 g, 20.1 umol) and DMP (17.1 g, 40.19 mmol) at 0° C., the mixture was stirred at 25° C. for 12 hours. TLC showed the reaction was completed. The mixture was poured into saturated aq. NaHCO3 and was then extracted with EA (100 mL×3). The combined organic phase was washed with brine (200 mL), dried with Na2SO4 and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=20:1 to 1:1) to give 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one (5 g, 77.5% yield) as a white solid.


Step 2: 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine

To a mixture of 1-(tert-butylsulfonyl)-5-(2-cyclopropylphenyl)pyrrolidin-3-one (5 g, 15.56 mmol) in DCM (100 mL) was added DAST (7.52 g mg, 46.6 mmol) at 0° C., the mixture was stirred at 25° C. for 2 hours. TLC showed the reaction was completed. The mixture was added to saturated aq. Na2CO3 and was extracted with DCM (100 mL×3), the combined organic phase washed with brine (100 mL) dried with Na2SO4, concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1 to 5/1) to give 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine (4 g) as yellow solid.


Step 3: 2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine

To a mixture of 1-(tert-butylsulfonyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin (3.5 g, 10.15 mmol) in TFA (30 mL), the mixture was stirred at 60° C. for 4 hours. TLC showed the reaction was completed. Saturated aq. Na2CO3 was added to adjust pH at ˜11, the aqueous phase was extracted with EA (50 mL×3). The combined organic phase was washed with brine (50 mL), dried with Na2SO4 and concentrated in vacuum to give 2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine (1.8 g, crude) as yellow oil.


Step 4: 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine

To a mixture of 2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine (2 g, 8.96 mmol) and 1-bromo-4-iodobenzene (7.6 g, 26.87 mmol) in toluene (20 mL) was added t-BuOK(3.02 g, 26.87 mmol), BINAP (1.12 g, 1.79 mmol) and Pd2(dba)3 (820 mg, 895 umol). The mixture was stirred at 100° C. for 4 hours. TLC showed the reaction was completed. The mixture was concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA=100/1 to 20/1). The crude product was separated and purified by prep-SFC (Instrument: Thar SFC80; Column: Chiralcel OJ, 250×25 mm i.d., 10μ; Mobile phase: A for CO2 and B for EtOH; Gradient: B=30%; Flow rate: 65 g/min; Back pressure; 100 bar; Column temperature: 40° C.) to give (R or S)-1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine (360 mg) as faster isomer (retention time: 2.9 min) and (S or R)-1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine (330 mg) as slower isomer (retention time: 3.1 min).


With the faster isomer in SFC (retention time: 2.9 min) (R or S)-1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine as the starting material, (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A147a was synthesized. 1H NMR (DMSO-d6) δ ppm: 12.21 (s, 1H), 11.70 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.04 (d, J=2.4 Hz, 1H), 7.83 (d, J=9.4 Hz, 1H), 7.59 (d, J=2.4 Hz, 3H), 7.54 (d, J=8.1 Hz, 1H), 7.51 (s, 1H), 7.34 (t, J=8.1 Hz, 3H), 7.14-7.12 (m, 2H), 7.05-7.01 (m, 3H), 6.92 (s, 1H), 6.45-6.34 (m, 3H), 5.47-5.45 (m, 1H), 4.26-4.13 (m, 1H), 3.98-3.80 (m, 3H), 3.30-3.21 (m, 5H), 2.33 (s, 1H), 2.04-2.00 (m, 1H), 1.87 (s, 1H), 1.61-1.59 (m, 2H), 1.28-1.25 (m, 2H), 1.05-0.92 (m, 2H), 0.82-0.68 (m, 2H), MS (ESI) m/e [M+1]+848.7. With the slower isomer in SFC (retention time: 3.1 mm) (S or R)-1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine as starting material, (S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide as example A147b was synthesized. MS (ESI) m/e [M+1]+848.7.


Example A148: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4-cyclopropyl-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 4-cyclopropyl-2-(2-cyclopropylphenyl)pyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.59-8.57 (m, 2H), 8.04 (s, 1H), 7.82 (d, J=9.1 Hz, 1H), 7.58 (s, 1H), 7.55-7.48 (m, 2H), 7.36-7.22 (m, 3H), 7.12 (d, J=9.1 Hz, 11H), 7.09-6.95 (m, 4H), 6.89 (s, 1H), 6.41-6.30 (m, 3H), 5.17-5.13 (m, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.70-3.68 (m, 1H), 3.53-3.51 (m, 1H), 3.30-3.22 (m, 4H), 2.79-2.70 (m, 1H), 2.09-2.07 (m, 2H), 1.89-1.87 (m, 1H), 1.72-1.70 (m, 11H), 1.60-1.58 (m, 3H), 1.28-1.26 (m, 2H), 0.96 (s, 2H), 0.76 (s, 2H), 0.45-0.33 (m, 2H), 0.17-0.13 (m, 2H), MS (ESI) m/e [M+1]+852.8.


Example A149: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-4-phenylpyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. MS (ESI) m/e [M+1]+888.8.


Example A150: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-methylenepyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)-4-methylenepyrrolidine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.65 (br, 1H), 8.54-8.52 (m, 2H), 8.03 (s, 1H), 7.83-7.75 (m, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.52-7.45 (m, 2H), 7.33 (d, J=8.0 Hz, 3H), 7.10-6.90 (m, 6H), 6.72 (s, 1H), 6.35-6.28 (m, 3H), 5.45 (d, J=8.8 Hz, 1H), 5.12 (s, 1H), 4.97 (s, 1H), 4.22-4.15 (m, 2H), 3.85 (d, J=8.4 Hz, 2H), 3.33-3.20 (m. 5H), 2.09-1.76 (m, 4H), 1.62 (d, J=13.2 Hz, 2H), 1.05-0.95 (m, 2H), 0.76-0.68 (m, 2H), MS (ESI, m/e) [M+1]+824.8.


Example A151 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-(dimethylamino)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine and 1-bromo-4-iodobenzene following the procedures similar to those in Example A1. 1H NMR (400 MHz. CDCl3) δ ppm: 11.55 (s, 1H), 9.80 (s, 1H), 8.45-8.28 (m, 2H), 7.95 (s, 1H), 7.74-7.61 (m, 1H), 7.60-7.52 (m, 1H), 7.42 (s, 1H), 7.39-7.31 (m, 11H), 7.31-7.12 (m, 5H), 7.06-6.94 (m, 2H), 6.94-6.77 (m, 2H), 6.44-6.23 (m, 3H), 5.18-4.98 (m, 1H), 3.93-3.64 (m, 4H), 3.31-3.12 (m, 5H), 3.10-2.75 (m, 3H), 2.70-2.53 (m. 6H), 2.45-2.36 (m, 2H), 2.19-1.93 (m, 3H), 1.90-1.72 (m, 3H), 1.66-1.53 (m, 2H), 1.26-1.21 (m, 2H), MS (ESI, m/e) [M+1]+855.8.


Example A152: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)piperidine following the procedures similar to those in Example A1. MS (ESI, m/e) [M+1]+827.8.


Example A153: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)-5-oxomorpholino)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 4-(4-bromophenyl)-5-(2-cyclopropylphenyl)morpholin-3-one following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.41 (s, 1H), 11.72 (s, 1H), 8.60-8.50 (m, 2H), 8.03 (d, J=2.1 Hz, 1H), 7.81 (d, J=8.5 Hz, 1H), 7.58 (d, J=8.5 Hz, 2H), 7.52-7.45 (m, 3H), 7.45-7.34 (m, 4H), 7.20-7.05 (m, 3H), 7.04 (s, 1H), 6.95-6.90 (m, 1H), 6.37 (s, 1H), 5.84 (s, 1H), 4.48 (d, J=16.7 Hz, 1H), 4.37-4.22 (m, 2H), 3.92 (d, J=9.4 Hz, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.30-3.20 (m, 3H), 2.69 (s, 4H), 1.95-1.85 (m, 1H), 1.59 (d, J=12.8 Hz, 2H), 0.90-0.85 (m, 2H), 0.62-0.58 (m, 1H), 0.40-0.32 (m, 1H), MS (ESI, m/e) [M+1]+842.8.


Example A154: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)morpholino)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropyl phenyl)-5-oxomorpholino)-[1,1′-biphenyl]-4-carboxylate

A mixture of 4-(4-bromophenyl)-5-(2-cyclopropylphenyl)morpholin-3-one (300 mg, 0.806 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (422 mg, 0.968 mmol), Pd(dppf)Cl2 (58 mg, 0.08 mmol), Cs2CO3 (523 mg, 1.612 mmol) in dioxane (10 mL) was heated to 100° C. for 16 hours under N2. The mixture was cooled to room temperature and then filtrated. The filtrate was concentrated and purified with column chromatograph on silica gel (eluent: EA/PE=1/1) to afford 260 mg tert-butyl-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropyl phenyl)-5-oxomorpholino)-[1,1′-biphenyl]-4-carboxylate as a yellow oil. MS (ESI) m/e [M+1]+610.9.


Step 2: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)morpholino)-[1,1′-biphenyl]-4-carboxylate

A solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropyl phenyl)-5-oxomorpholino)-[1,1′-biphenyl]-4-carboxylate (100 mg. 0.167 mmol) in THF (5 mL) was added BH3—SMe2 (2 N, 1 mL) at room temperature. After stirred at room temperature for 16 hours, the reaction mixture was quenched with aq. HCl acid (IN, 5 mL) and then was extracted with EA (5 mL×3). The combined organic layers were dried over anhydrous Na2SO4, concentrated and purified with column chromatograph on silica gel (eluent: EA/PE=1/1) to afford 60 mg of tert-butyl-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)-morpholino)-[1,1′-biphenyl]-4-carboxylate (yield: 61.2%). MS (ESI, m/e) [M+1]+587.9.


The desired compound was then synthesized from tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)-morpholino)-[1,1′-biphenyl]-4-carboxylate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.72 (s, 1H), 8.64-8.53 (m, 2H), 8.04 (d, J=2.5 Hz, 1H), 7.82 (dd, J=9.1. 1.8 Hz, 1H), 7.60-7.47 (m, 3H), 7.40-7.30 (m, 3H), 7.18 (d, J=7.2 Hz, 1H), 7.12 (d, J=9.3 Hz, 1H), 7.05-7.00 (m, 1H), 6.98-6.90 (m, 3H), 6.87 (d, J=8.7 Hz, 2H), 6.41-6.34 (m, 1H), 4.90-4.80 (m, 1H), 4.01-3.78 (m, 4H), 3.65-3.60 (m, 1H), 3.55-3.50 (m, 1H), 3.30-3.20 (m, 4H), 3.20-3.06 (m, 1H), 2.25-2.10 (m, 1H), 1.95-1.80 (m, 1H), 1.59 (d, J=11.7 Hz, 2H), 1.33-1.18 (m, 2H), 1.05-0.89 (m, 2H), 0.79-0.63 (m, 2H), MS (ESI, m/e) [M+1]+828.8.


Example A155: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)-4-methylpiperazine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.32 (s, 1H), 11.70 (s, 1H), 11.20 (s, 1H), 8.58 (s, 1H), 8.54 (s, 1H), 8.02 (s, 1H), 7.80 (d, J=8.4 Hz, 1H), 7.54 (d, J=7.6 Hz, 2H), 7.50 (s, 1H), 7.35 (d, J=8.4 Hz, 3H), 7.26 (d, J=7.6 Hz, 1H), 7.11-7.04 (m, 2H), 7.03-6.88 (m, 5H), 6.36 (s, 1H), 5.15 (s, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.76-3.66 (m, 1H), 3.57-3.49 (m, 1H), 3.29-3.20 (m, 5H), 3.08-2.93 (m, 2H), 2.79 (s, 3H), 2.23-2.16 (m, 1H), 1.91-1.83 (m, 1H), 1.59 (d, J=12.3 Hz, 2H), 1.09-0.96 (m, 3H), 0.87-0.81 (m, . 2H), 0.68-0.62 (m, 1H), MS (ESI, m/e) [M+1]+841.9.


Example A156: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrazolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 1-(4-bromophenyl)-2-(2-cyclopropylphenyl)pyrazolidine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (s, 0.5H), 11.59 (s, 1H), 9.70 (s, 0.5H), 8.55-8.31 (m, 2H), 8.00 (s, 1H), 7.79-7.63 (m, 1H), 7.79-7.63 (m, 1H), 7.48-7.52 (m, 6H), 7.00-6.86 (m, 2H), 6.83-6.71 (m, 4H), 6.54-6.45 (m, 1H), 6.33 (s, 1H), 3.90-3.78 (m, 4H), 3.12-3.02 (m, 3H), 2.05-2.01 (m, 4H), 1.90-1.82 (m, 3H), 1.66-1.56 (m, 3H), 1.50-1.41 (m, 2H), 0.87-0.84 (m, 2H), 0.54-0.46 (m, 2H), MS (ESI, m/e) [M+1]+813.8.


Example A157: (R)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(3-(pyrimidin-2-ylamino)phenoxy)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine and replacing tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate with methyl 2-(3-(pyrimidin-2-ylamino)phenoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate. MS (ESI, m/e) [M+1]+865.8.


Example A158: (R)-5-((4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-4-(((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)carbamoyl)-[1,1′-biphenyl]-3-yl)oxy)-N-methylpicolinamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine and replacing tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate with methyl 2-((6-(methylcarbamoyl)pyridin-3-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate. MS (ESI, m/e) [M+1]+830.8.


Example B1: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1-(4-chlorobenzyl)-2-phenylpyrrolidine



embedded image


The mixture of 2-phenylpyrrolidine (450 mg, 3 mmol), 1-(bromomethyl)-4-chlorobenzene (678 mg, 3.3 mmol) and K2CO3 (828 mg, 6 mmol) in DMF (10 ML) was heated to 50° C., and stirred for 2 hours. Then the reaction mixture was concentrated in vacuo and the residue was diluted with DCM, washed with brine (100 mL), dried over Na2SO4 and evaporated in vacuo, then the crude product was purified by chromatography column on silica (eluent: PE/EA=2/1 to 1/1) to afford a colorless oil (670 mg). 1H NMR (400 MHz, CDCl3) δ ppm: 7.46 (d, J=8.0 Hz, 2H), 7.34 (t, J=8.0 Hz, 2H), 7.25-7.20 (m, 5H), 3.80 (d, J=12.0 Hz, 1H), 3.35 (t, J=8.0 Hz, 1H), 3.08-2.99 (m, 2H), 2.21-2.14 (m, 2H), 1.91-1.70 (m, 3H), MS (ESI, m/e) [M+1]+272.1.


Step 2: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxylate



embedded image


The mixture of 1-(4-chlorobenzyl)-2-phenylpyrrolidine (670 mg, 2.5 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.2 g, 2.75 mmol), 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (183 mg, 0.25 mmol), K2CO3 (863 mg, 6.25 mmol) in a solution of 1,4-dioxane (20 mL) and water (10 mL) was heated to 90° C., and stirred overnight. After cooled to room temperature, the reaction mixture was concentrated in vacuo and purified by chromatography column on silica (eluent: EA/PE=1/1) to give the product (211 mg) as a red oil. MS (ESI, me) [M+1]+546.2.


Step 3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To a solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxylate (200 mg, 0.37 mmol ) in DCM (2 mL) was added trifluoroacetic acid (2 mL) and stirred at room temperature overnight. The mixture was concentrated in vacuo and purified by chromatography column on silica (eluent: DCM/MeOH=10/1) to give the product (170 mg) as a grey solid. MS (ESI, m/e) [M+1]+490.1.


Step 4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The mixture of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-phenylpyrrolidin-1-yl)methyl)-[1,1′-biphenyl]-4-carboxylic acid (170 mg, 0.35 mmol), triethylamine (106 mg, 1.05 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (201 mg, 0.53 mmol) in DCM (10 mL) was stirred for 2 hours at room temperature. To the resulted reaction mixture were added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (167 mg, 0.53 mmol) and DMAP (5 mg, 0.04 mmol) and then stirred overnight. The reaction mixture was extracted with DCM (30 mL) and water (30 mL). The organic layer was concentrated in vacuo and purified by chromatography column on silica (eluent: DCM/MeOH=20/1 to 10/1) to afford a crude product, which was then purified with Pre-HPLC to give the product (14.28 mg). 1H NMR (400 MHz, DMSO-do) δ ppm: 12.41 (br, 1H), 11.67 (br, 1H), 8.51 (br, 2H), 8.04 (m, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.62 (d, J=8.0 Hz, 1H), 7.42-7.27 (m, 12H), 6.99 (m, 2H), 6.37 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.67 (m, 1H), 3.28-3.23 (m, 6H), 3.10-2.96 (m, 2H), 2.15 (m, 2H), 2.01 (m, 1H), 1.87 (m, 2H), 1.61 (d, J=8.0 Hz, 2H), 1.45 (m, 2H), MS (ESI, m/e) [M+1]+787.2.


Example B2: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-(2-chlorophenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-chlorophenyl)pyrrolidine and 1-(bromomethyl)-4-chlorobenzene following the procedures similar to those in Example B1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.30 (br, 1H), 11.73 (br, 1H), 8.60-8.58 (m, 2H), 8.09 (d, J=4.0 Hz, 1H), 7.86 (d, J=8.0 Hz, 1H), 7.77 (d, J=12.0 Hz, 1H), 7.64-7.59 (m, 2H), 7.53-7.43 (m, 4H), 7.39-7.31 (m, 4H), 7.23 (t, J=8.0 Hz, 1H), 7.14 (d, J=12.0 Hz, 1H), 6.99 (s, 1H), 6.41 (m, 1H), 3.86 (m, 3H), 3.69 (m, 1H), 3.28-3.23 (m, 4H), 3.01 (m, 1H), 2.32 (m, 2H), 1.87-1.76 (m, 3H), 1.61-1.58 (m, 2H), 1.46 (m, 1H), 1.30-1.21 (m, 3H), MS (ESI, m/e) [M+1]+821.1.


Example B3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)pyrrolidine and 1-(bromomethyl)-4-chlorobenzene following the procedures similar to those in Example B1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.36 (s, 1H), 11.70 (s, 1H), 8.55 (s, 2H), 8.06 (s, 1H), 7.81 (d, J=8.4 Hz, 1H), 7.69-7.56 (m, 3H), 7.56-7.38 (m, 4H), 7.32 (d, J=7.6 Hz, 2H), 7.14 (m, 3H), 7.03-6.90 (m, 2H), 6.39 (s, 1H), 3.90-3.87 (m, 3H), 3.29-3.21 (m, 5H), 3.05-3.01 (m, 1H), 2.15-2.01 (m, 3H), 1.87-1.77 (m, 4H), 1.60 (d, J=12.0 Hz, 3H), 1.33-1.17 (m, 3H), 0.89 (t, J=12.0 Hz, 3H), MS (ESI, m/e) [M+1]+827.2


Example B4: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(1-((1-phenylpyrrolidin-2-yl)methyl)-1,2,3,6-tetrahydropyridin-4-yl)benzamide



embedded image


Step 1: tert-butyl 4-(((trifluoromethyl)sulfonyl)oxy)-3,6-dihydropyridine-1 (2H)-carboxylate



embedded image


LDA (15 ml, 2M in hexane) was added dropwise to a solution of 4-oxo-piperidine-1-carboxylic acid tert-butyl ester (5 g, 25 mmol) in THF (40 mL). The mixture was stirred for 1 hour at −78° C., and then 1,1,1-trifluoro-N-phenyl-N-((trifluoromethyl)sulfonyl)methanesulfonamide (10.1 g, 27.5 mmol) was added. The mixture was allowed to room temperature and stir overnight. The reaction mixture was extracted with ethyl acetate and the extracts were washed with water. The organic extracts were dried over Na2SO4, filtered, evaporated, and purified by chromatography on an alumina column to give 4-trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (5 g).


Step 2: tert-butyl 4-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(tert-butoxycarbonyl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate



embedded image


Under nitrogen atmosphere, a mixture of tert-butyl 4-(((trifluoromethyl)sulfonyl)oxy)-3,6-dihydropyridine-1 (2H)-carboxylate (331 mg, 1 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (523 mg, 1.2 mmol), Pd(dppf)Cl2 (73 mg, 0.1 mmol), and K2CO3 (276 mg, 0.2 mmol) in 1,4-dioxane/H2O (25 ml/5 ml) was heated to 90° C. with stirring overnight. Then the reaction was cooled to room temperature, the mixture was washed with water, brine and dried over anhydrous Na2SO4. The organic layers were concentrated and purified by column chromatography with 10%-50% EA/PE as eluent to give tert-butyl 4-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(tert-butoxycarbonyl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate. MS (ESI, m/e) [M+1]+492.2.


Step 3: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzoate



embedded image


To a solution of tert-butyl 4-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(tert-butoxycarbonyl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate (246 mg, 0.5 mmol) in dioxane (15 mL) was added HCl-dioxane (10 mL). The reaction was stirred for 0.5 hour at r.t. the mixture was basified by sat. NaHCO3solution in H2O (10 mL), then extracted with EA. The organic layer was then concentrated to give tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzoate (190 mg) as a colorless oil. MS (ESI, m/e) [M+1]+392.1.


Step 4: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-((1-phenylpyrrolidin-2-yl)methyl)-1,2,3,6-tetrahydropyridin-4-yl benzoate



embedded image


A mixture of 1-phenylpyrrolidine-2-carbaldehyde and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzoate in DCM (25 mL) was stirred for 0.5 hour, then NaBH(OAc)3 was added. The reaction was continually stirred for 3 hours, then the solvent was removed and the residue was purified by chromatography to give tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-((1-phenylpyrrolidin-2-yl)methyl)-1,2,3,6-tetrahydropyridin-4-yl)benzoate(80 mg) as a colorless oil MS (ESI, m/e) [M+1]+551.2.


Then following the similar procedures in Example B1, proceeded with hydrolysis in step 5 and condensation of the resulted 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-((1-phenylpyrrolidin-2-yl)methyl)-1,2,3,6-tetrahydropyridin-4-yl)benzoic acid and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide in step 6, to afford the product. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (s, 1H), 11.66 (s, 1H), 8.49 (s, 2H), 8.00 (s, 1H), 7.75 (s, 1H), 7.62-7.37 (m, 3H), 7.23 (d, J=8.0 Hz, 1H), 7.14 (t, J=7.5 Hz, 2H), 7.01 (s, 1H), 6.83 (s, 1H), 6.57 (d, J=6.8 Hz, 3H), 6.37 (s, 1H), 6.12 (s, 1H), 3.84 (d, J=8.7 Hz, 3H), 3.30-3.23 (m, 7H), 3.08-3.01 (m, 2H), 2.44-2.37 (m, 1H), 2.08-1.76 (m, 6H), 1.60 (d, J=12.2 Hz, 2H), 1.28-1.21 (m, 5H), MS (ESI, m/e) [M+1]+792.2.


Example B5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-(4-chlorophenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(4-chlorophenyl)pyrrolidine and 1-(bromomethyl)-4-chlorobenzene following the procedures similar to those in Example B1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.34 (s, 1H), 11.70 (s, 1H), 8.54 (s, 2H), 8.06 (s. 1H), 7.81 (d, J=7.3 Hz, 1H), 7.59-7.63 (m, 2H), 7.37-7.50 (m, 8H), 7.27-7.34 (m, 2H), 7.07 (s, 1H), 6.99 (s, 1H), 6.39 (s, 1H), 3.85 (d, J=7.9 Hz, 2H), 3.64 (s, 1H), 3.29-3.23 (m, 4H), 2.97 (s, 2H), 2.18 (s, 2H), 1.95-2.04 (m, 1H), 1.77-1.87 (m, 4H), 1.60 (d, J=11.7 Hz, 2H), 1.26 (s, 2H), MS (ESI, m/e) [M+1]+821.1.


Example B6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 2-chloro-4,4-dimethylcyclohex-1-ene-1-carbaldehyde



embedded image


To a mixture of DMF (70 mL) and DCM (600 mL) was added POCl3 (80 mL) dropwise at −10° C. Then the mixture was stirred at r.t. for 0.5 hour. Then 3,3-dimethylcyclohexan-1-one (110 mL) was added. The mixture was stirred at reflux for overnight. The mixture was basified with sat. NaHCO3 solution in water and separated. The organic layer was dried over Na2SO4, concentrated to give the product 130 g as a yellow oil.


Step 2: 4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-carbaldehyde



embedded image


To a solution of 2-chloro-4,4-dimethylcyclohex-1-ene-1-carbaldehyde (17.1 g, 100 mmol) and (4-chlorophenyl)boronic acid (17.2 g, 110 mmol) in toluene (150 mL) and H2O (15 mL) were added Pd (PPh3)-4 (3.45 g, 3 mmol), K2CO3 (28 g, 200 mmol). The mixture was stirred at 100° C. for 2 hours under nitrogen protection. The mixture was filtered. Then the filtrate was washed with brine, dried over Na2SO4, concentrated and purified by chromatography column on silica (eluent: EA/PE=1/20) to give the product (18 g) as a yellow oil.


Step 3: N′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methylene)-4-methylbenzenesulfonohydrazide



embedded image


To a solution of 4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-carbaldehyde (3 g, 12.06 mmol) in 1,4-dioxane (100 mL) was added 4-methylbenzenesulfonohydrazide (2.695 g, 14.47 mmol). The mixture was stirred at 90° C. for 2 hours. The mixture was concentrated. The residue was dissolved with DCM (200 mL), then washed with brine (200 mL×2), dried over Na2SO4, concentrated and purified by chromatography column on silica (eluent: EA/PE=1/10) to give the product (4.6 g, 91.5%) as a yellow solid. MS (ESI, m/e) [M+1]+417.1.


Step 4: 6-(4-bromobenzyl)-4′-chloro-3,3-dimethyl-2,3,4,5-tetrahydro-1,1′-biphenyl



embedded image


To a solution of N′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methylene)-4-methylbenzenesulfonohydrazide (2 g, 4.8 mmol) in 1,4-dioxane (50 mL) were added (4-bromophenyl)boronic acid (1.445 g, 7.2 mmol) and K2CO3 (1.325 g, 9.6 mmol). The mixture was stirred at reflux for overnight under nitrogen protection. The mixture was diluted with DCM (200 ml), washed with brine, dried over Na2SO4, concentrated and purified by chromatography column on silica (eluent: EA/PE=1/100) to give the product (1.65 g, 88.2%) as a clear oil. 1H NMR (40 (0 MHz, DMSO-d6) δ ppm: 7.45 (d, J=8.3 Hz, 2H), 7.39 (d, J=8.2 Hz, 2H), 7.18 (d, J=8.3 Hz, 2H), 7.02 (d, J=8.2 Hz, 2H), 3.18 (s, 2H), 2.04 (s, 2H), 1.90 (t, J=5.8 Hz, 2H), 1.36 (t, J=5.8 Hz, 2H), 0.93 (s, 6H).


Step 5: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-[1,1′-biphenyl]-4-carboxylate



embedded image


To a solution of 6-(4-bromobenzyl)-4′-chloro-3,3-dimethyl-2,3,4,5-tetrahydro-1,1′-biphenyl (200 mg, 0.513 mmol) and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3,3,4,4-tetramethylborolan-1-yl)benzoate (291 mg, 0.67 mmol) in toluene (30 mL) and H2O (2 mL) were added Pd(PPh3)-4 (118.5 mg, 0.103 mmol) and K2CO3 (106.2 mg, 0.77 mmol). The mixture was stirred at reflux for overnight under nitrogen protection. The mixture was washed with brine, dried over Na2SO4, concentrated and purified by chromatography column on silica (eluent: EA/PE=1/2) to give the product (60 mg) as a yellow solid. MS (ESI, m/e) [M+1]+619.2.


Step 6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To a solution of tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-[1,1′-biphenyl]-4-carboxylate (60 mg, 0.097 mmol) in DCM (30 mL) was added TFA (5 mL). The mixture was stirred at room temperature for overnight. The mixture was concentrated and purified by chromatography column on silica (eluent: MeOH/DCM=1/30) to give the product (31 mg) as a brown solid. MS (ESI, m/e) [M+1]+563.1.


Step 7: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)-[1,1′-biphenyl]-4-carboxylic acid (30 mg, 0.0533 mmol) in DCM (50 mL) was added HATU (30.4 mg, 0.08 mmol) and triethylamine (27 mg, 0.267 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture were added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (33.6 mg, 0.107 mmol). The mixture was stirred at room temperature for overnight. The mixture was washed with brine, dried over Na2SO4, concentrated and purified by chromatography column on silica (eluent: EA/PE=1/1 then MeOH/DCM=1/10) to give the crude product. The crude product was further purified by prep-TLC (MeOH/DCM=1/20) to give the product (1.79 mg, 3.9%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.35 (s, 1H), 11.73 (s, 1H), 8.68-8.50 (m, 2H), 8.10-8.02 (m, 1H), 7.84 (d, J=8.0 Hz, 1H), 7.67-7.56 (m, 2H), 7.56-7.48 (m, 1H), 7.43 (d, J=8.0 Hz, 3H), 7.37 (d, J=8.2 Hz, 2H), 7.17 (d, J=8.2 Hz, 2H), 7.10 (d, J=8.0 Hz, 2H), 6.99 (s, 1H), 6.40 (s, 1H), 5.41-5.21 (m, 1H), 3.85 (d, J=8.5 Hz, 2H), 3.28-3.15 (m, 6H), 2.07-1.94 (m, 4H), 1.94-1.79 (m, 3H), 1.67-1.54 (m, 2H), 1.38-1.31 (m, 2H), 0.91 (s, 6H), MS (ESI, m/e) [M+1]+860.1.


Example B8: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(1-(phenylprolyl)-1,2,3,6-tetrahydropyridin-4-yl)benzamide



embedded image


The desired compound was synthesized starting from phenylproline and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,2,3,6-tetrahydropyridin-4-yl)benzoate following the procedures similar to those in Example B4. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.32 (s, 1H), 11.72 (s, 1H), 8.69-8.53 (m, 1H), 8.04 (s, 1H), 7.83 (d, J=8.0 Hz, 1H), 7.64-7.46 (m, 3H), 7.28 (d, J=8.0 Hz, 1H), 7.13 (d, J=8.0 Hz, 1H), 7.10-7.05 (m, 2H), 6.87 (d, J=12.0 Hz, 1H), 6.51 (t, J=8.0 Hz, 1H), 6.40 (s, 1H), 6.35-6.25 (m, 1H), 6.18 (s, 1H), 4.79-4.59 (m, 1H), 4.47-4.15 (m, 1H), 4.11-3.91 (m, 1H), 3.90-3.74 (m, 3H), 3.72-3.47 (m, 4H), 3.29-3.18 (m, 5H), 2.41-2.15 (m, 3H), 2.04-1.72 (m, 5H), 1.61 (d, J=8.0 Hz, 2H), 1.35-1.15 (m, 3H), MS (ESI, m/e) [M+1]+806.1.


Example B12: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate

To a solution of methyl 2,4-difluorobenzoate (3.44 g, 20.00 mmol) in DMF (50 mL) was added 1H-pyrrolo[2,3-b]pyridin-5-ol (2.70 g, 20.00 mmol) and K2CO3 (5.6 g, 40.00 mmol), the mixture was stirred at 80° C. for 20 h. Cooled to room temperature, partitioned between EA (40 ml) and H2O (40 mL), the aqueous layer was extracted with EA (20 mL). The combined organic layers were washed with H2O (30 mL×3), concentrated and purified by CombiFlash (0-60%, EA/PE) to give the crude product, which was crystallized from EA/PE=1/1 (50 mL) to give the isomer. The mother liquid was left standing over night, the precipitate was collected by filtration to give methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (600 mg) as a white solid. [M+1]+286.9.


Step 2: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoate

To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (200 mg, 0.70 mmol) in DMF (10 mL) was added 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine (180 mg, 0.70 mmol) and TEA (355 mg, 3.50 mmol), the solution was stirred at 100° C. for 6 h. Cooled to ambient temperature, partitioned between DCM (30 mL) and H2O (50 mL). The organic layer was separated, washed with H2O (20 mL), dried over Na2SO4, concentrated and purified by CombiFlash (0-10%, MeOH/DCM) to give methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoate (100 mg) as colorless oil. [M+1]+522.9.


Step 3: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoic acid

To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoate (100 mg, 0.19 mmol) in CH3OH (20 mL) was added 6N NaOH (5 mL), the mixture was heated at ambient temperature for 16 h. The mixture was acidified with con. HCl. The mixture was partitioned between DCM (40 mL) and H2O (30 mL). The organic layer was washed with Brine (10 mL), dried over Na2SO4 and concentrated to give the crude 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoic acid as white solid (40 mg). [M+1]+508.9.


Step 4: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide

To a solution of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)azetidin-1-yl)benzoic acid (40 mg, 0.08 mmol) in DCM (10 mL) was added HATU (36 mg, 0.09 mmol) and TEA (86 mg, 0.85 mmol), the solution was stirred for about 0.5 h, 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (27 mg, 0.170 mmol) and DMAP (12 mg, 0.09 mmol) was then added, the solution was stirred at r, t for 16 h. The reaction solution was concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: MeOH/DCM=1/10) to give the crude product, which was purified by Pre-TLC (MeOH/DCM=1/18) to obtain the desired compound. 1H NMR (CDCl3) δ ppm: 10.12 (s, 1H), 9.14 (s, 1H), 8.89 (s, 1H), 8.57-8.46 (m, 1H), 8.24-8.09 (m, 2H), 7.90 (d. J=8.8 Hz, 1H), 7.69 (s, 1H), 7.55-7.37 (m, 2H), 7.16-7.03 (m, 2H), 6.97-6.82 (m, 2H), 6.55 (s, 1H), 6.01 (d, J=8.4 Hz, 1H), 5.37 (s, 1H), 4.10-3.98 (m, 2H), 3.84-3.71 (m, 2H), 3.49-3.14 (m, 7H), 2.80-2.51 (m, 2H), 2.39-2.11 (m, 3H), 2.04-1.67 (m, 7H), 1.50-1.35 (m, 3H), 0.93-0.81 (m, 2H), 0.73-0.46 (m, 2H), MS (ESI, m/e) [M+1]+805.8.


Example B13: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-3′-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B3. MS (ESI, m/e) [M+1]+827.5.


Example B14: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)ethyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B3. MS (ESI, m/e) [M+1]+841.5.


Example B15: (S)-34 (1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)ethyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B3. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.36 (s, 1H), 11.72 (s, 1H), 8.70-8.50 (m, 2H), 8.06 (s, 1H), 7.83 (d, J=9.0 Hz, 1H), 7.80-7.70 (m, 1H), 7.65-7.56 (m, 2H), 7.52 (s, 1H), 7.50-7.40 (m, 3H), 7.35-7.25 (m, 2H), 7.20-7.05 (m, 4H), 6.97 (s, 1H), 6.39 (s, 1H), 5.15-4.95 (m, 1H), 3.90-3.70 (m, 2H), 3.29-3.21 (m, 3H), 3.10-2.80 (m, 4H), 2.29-1.79 (m, 5H), 1.60 (d, J=9.0 Hz, 2H), 1.30-1.20 (m, 3H), 1.00-0.78 (m, 5H), 0.65-0.55 (m, 2H), MS (ESI, m/e) [M+1]+841.5.


Example B16: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 1,4-dioxaspiro[4.5]decane-8-carbaldehyde

To a solution of ethyl 1,4-dioxaspiro[4.5]decane-8-carboxylate (3.21 g, 15.00 mmol) in toluene (40 mL) was added DIBAL-H(10 mL, 15.00 mmol) dropwise at about −65° C., the mixture was stirred at −65° C. under N2 for 0.5 h. Quenched by CH3OH (20 mL), warmed to ambient temperature, Sat. NH4Cl (20 mL) was added. The organic layer was separated, dried over Na2SO4 and concentrated to give the crude product as yellow oil. (2.5 g).


Step 2: (S)-1-((1,4-dioxaspiro[4.5]decan-8-yl)methyl)-2-(2-cyclopropylphenyl)pyrrolidine

To a solution of 1,4-dioxaspiro[4.5]decane-8-carbaldehyde (2.5 g, 15.00 mmol) in DCM (50 mL) was added (S)-2-(2-cyclopropylphenyl)pyrrolidine (2.8 g, 15.00 mmol) and NaBH(OAc)3 (6.4 g, 30.00 mmol), the mixture was stirred at ambient temperature for 2 h. The reaction solution was washed with Sat. NaCl (20 mL), concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA/DCM=1/2) to give the product as brown oil. (2.0 g). [M+1]+341.8.


Step 3: (S)-4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)cyclohexan-1-one

To a solution of (S)-1-((1,4-dioxaspiro[4.5]decan-8-yl)methyl)-2-(2-cyclopropylphenyl)pyrrolidine (2.0 g, 5.85 mmol) in DCM (10 mL) and CH3OH (5 mL) was added con. HCl (5 mL), the mixture was stirred at ambient temperature for 2d. The reaction mixture was partitioned between DCM (40 mL) and 2N NaOH (20 mL). The organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA/DCM=1/2) to give the product as yellow oil. (1.25 g). [M+1]+297.8.


Step 4: 4-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)cyclohex-1-en-1-yl trifluoromethanesulfonate

To a solution of (S)-4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)cyclohexan-1-one (1.2 g, 4.04 mmol) and 1,1,1-trifluoro-N-phenyl-N-((trifluoromethyl)sulfonyl)methanesulfonamide (1.73 g, 4.85 mmol) in THF (40 mL) was added NaHMDS (2.2 ml, 4.44 mmol) dropwise at about −65° C., the solution was stirred at −65° C. under N2 for 1 h, warmed to r, t for about 16 h.


The reaction solution was partitioned between EA (20 mL) and Sat. NaCl (20 mL). The organic layer was separated, concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA:PE=1:10) to give the product as yellow oil. (250 mg). [M+1]+429.8.


Step 5: tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate

To a solution of 4-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)cyclohex-1-en-1-yl trifluoromethanesulfonate (230 mg, 0.537 mmol) in 1,4-dioxane (10 mL) was added tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (251 mg, 0.645 mmol), Cs2CO3 (700 mg, 2.148 mmol), H2O (2 mL) and Pd(dppf)Cl2 (40 mg, 0.054 mmol), the mixture was stirred at 100° C. under N2 for 6 h. Cooled to r, t, partitioned between EA (20 mL) and Sat. NaCl (10 mL). The organic layer was separated, concentrated and purified by pre-TLC(MeOH/DCM=1/15) to give the product as brown oil. (200 mg). [M+1]+589.9.


Step 6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid

To a solution of 5tert-butyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (200 mg, 0.340 mmol) in DCM (10 mL) was added TFA (5 ml), the solution was stirred at r, t for 2 h. the reaction solution was concentrated. The residue was partitioned between DCM (50 mL) and H2O (20 mL), the organic layer was washed with Sat. NaCl (20 mL), dried over Na2SO4 and concentrated to give the crude product as yellow solid. (150 mg).


Step 7: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide

To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (150 mg, 0.281 mmol) in DCM (20 mL) was added HATU (128 mg, 0.338 mmol), DMAP (34 mg, 0.281 mmol), TEA (141 mg, 1.405 mmol) and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (106 mg, 0.338 mmol), the solution was stirred at r, t for 16 h. The reaction solution was concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: MeOH/DCM=1/20) to give the crude product, which was purified by pre-TLC (MeOH/DCM=1/15) to give the product as yellow solid. (60 mg, 25.7%). 1H NMR (DMSO-d6) δ ppm: 12.22 (s, 1H), 11.70 (s, 1H), 8.90-8.42 (m, 2H), 8.01 (s, 1H), 7.85-7.40 (m, 5H), 7.32-6.80 (m, 5H), 6.74-6.61 (m, 1H), 6.39 (s, 1H), 6.10-5.89 (m, 1H), 5.16-4.92 (m, 1H), 3.94-3.66 (m, 3H), 3.53-3.44 (m, 1H), 3.30-3.17 (m, 5H), 2.27-1.96 (m, 7H), 1.91-1.54 (m, 7H), 1.44-1.13 (m, 4H), 1.06-1.01 (m, 1H), 0.94-0.81 (m, 2H), 0.71-0.42 (m, 2H), [M+1]+830.8.


Example B17: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.67 (s, 1H), 11.36 (s, 1H), 8.69-8.44 (m, 2H), 8.10-7.96 (m, 1H), 7.77 (d, J=8.8 Hz, 1H), 7.58-7.36 (m, 4H), 7.17-6.84 (m, 4H), 6.70-6.60 (m, 1H), 6.37 (s, 1H), 6.14 (s, 1H), 3.86-3.69 (m, 3H), 3.60-3.48 (m, 2H), 3.30-3.19 (m, 5H), 2.71-2.59 (m, 2H), 2.24-2.09 (m, 2H), 2.02-1.74 (m, 6H), 1.62-1.56 (m, 2H), 1.50-1.38 (m, 2H), 1.28-1.19 (m, 4H), 0.92-0.80 (m, 4H), 0.68-0.58 (m, 1H), 0.54-0.43 (m, 1H), MS (ESI, m/e) [M+1]+833.8.


Example B18: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.39 (s, 1H), 8.74-8.42 (m, 2H), 8.05 (s, 1H), 7.80 (d, J=8.8 Hz, 1H), 7.65-7.35 (m, 4H), 7.25-6.84 (m, 4H), 6.73-6.61 (m, 1H), 6.39 (s, 1H), 6.15 (s, 1H), 3.90-3.68 (m, 3H), 3.65-3.51 (m, 2H), 3.31-3.20 (m, 5H), 2.76-2.59 (m, 2H), 2.28-1.74 (m, 9H), 1.69-1.56 (m, 3H), 1.53-1.34 (m, 2H), 1.32-1.19 (m, 2H), 0.97-0.79 (m, 4H), 0.68-0.46 (m, 2H), MS (ESI, m/e) [M+1]+833.9.


Example B19a and Example B19b: (R or S) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide/(S or R) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12. The faster in column chromatograph on silica gel is Example B19a: MS (ESI, m/e) [M+1]+834.8: The slower is Example B19b: MS (ESI, m/e) [M+1]+834.8.


Example B20a and Example B20b: (R or S) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide/(S or R) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12. The faster in column chromatograph on silica gel is Example B20a: MS (ESI, m/e) [M+1]+834.8, The slower is Example B20b: MS (ESI, m/e) [M+1]+834.8.


Example B21: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-(3-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (S)-2-(3-cyclopropylphenyl)pyrrolidine and 1-(bromomethyl)-4-chlorobenzene following the procedures similar to those in Example B1. 1H NMR (DMSO-d6) δ ppm: 12.37 (br, 1H), 11.71 (s, 1H), 8.55 (s, 2H), 8.06 (s, 1H), 7.83 (d, J=8.8 Hz, 1H), 7.65-7.56 (m, 2H), 7.52-7.39 (m, 4H), 7.31-7.26 (m, 2H), 7.20-7.15 (m, 2H), 7.12-7.03 (m, 2H), 6.98 (s, 1H), 6.95-6.89 (m, 1H), 6.39 (s, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.79-3.55 (m, 1H), 3.31-2.90 (m, 8H), 2.29-1.70 (m, 6H), 1.62 (d, J=12.4 Hz, 2H), 1.31-1.26 (m, 2H), 0.93-0.81 (m, 2H), 0.66-0.55 (m, 2H), MS (ESI, m/e) [M+1]+826.9.


Example B22: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((2-(3-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from (R)-2-(3-cyclopropylphenyl)pyrrolidine and 1-bromo-4-(bromomethyl)benzene following the procedures similar to those in Example B1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.36 (br. 1H), 11.70 (s, 1H), 8.54 (s, 2H), 8.06 (s, 1H), 7.82 (d, J=8.8 Hz, 1H), 7.65-7.56 (m, 2H), 7.52-7.39 (m, 4H), 7.31-7.26 (m, 2H), 7.20-7.15 (m, 2H), 7.12-7.03 (m, 2H), 6.98 (s, 1H), 6.95-6.89 (m, 1H), 6.39 (s, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.79-3.55 (m, 1H), 3.31-2.90 (m, 8H), 2.29-1.70 (m, 6H), 1.62 (d, J=12.4 Hz, 2H), 1.31-1.26 (m, 2H), 0.93-0.81 (m, 2H), 0.66-0.55 (m, 2H), MS (ESI, m/e) [M+1]+826.9.


Example B23: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)propan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-(2-(4-bromophenyl)propan-2-yl)-2-(2-cyclopropylphenyl)pyrrolidine and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.36 (s, 1H), 11.78 (s, 1H), 8.92 (s, 1H), 8.62 (d, J=8.4 Hz, 2H), 8.12 (d, J=14.0 Hz, 1H), 7.88 (s, 1H), 7.78 (d, J=15.6 Hz, 1H), 7.72-7.49 (m, 3H), 7.46-7.30 (m, 3H), 7.18-7.07 (m, 3H), 7.05-6.97 (m, 1H), 6.89-6.78 (m, 1H), 6.62 (s, 0.5H), 6.45 (d, J=14.8 Hz, 1H), 6.18 (s, 0.5H), 4.89-4.71 (m, 1H), 3.93-3.65 (m, 3H), 3.32-3.21 (m, 4H), 2.85-2.70 (m, 1H), 2.45-2.30 (m, 1H), 2.23-2.07 (m, 1H), 1.93-1.84 (m, 1H), 1.81-1.69 (m, 3H), 1.60 (d, J=12.0 Hz, 3H), 1.41-1.39 (m, 1H), 1.25 (d, J=12.0 Hz, 3H), 1.05-0.98 (m, 2H), 0.92-0.73 (m, 2H), 0.71-0.60 (m, 1H), 0.42-0.33 (m, 1H), 0.26-0.08 (m, 11H), MS (ESI, m/e) [M+1]+854.8


Example B24: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)furan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B1 by replacing 1-(bromomethyl)-4-chlorobenzene with 1-((5-bromofuran-2-yl)methyl)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 2-phenylpyrrolidine with 2-(2-cyclopropylphenyl)pyrrolidine. MS (ESI, m/e) [M+1]+816.8


Example B25: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate

A mixture of 2-(2-cyclopropylphenyl)pyrrolidine (300 mg, 1.60 mmol) tert-butyl 3-oxoazetidine-1-carboxylate (820 mg, 4.8 mmol) and NaBH(OAc)3 (509 mg, 2.4 mmol) in DCM (15 mL) and HOAc (1 drop) was stirred at rt overnight. I was diluted with DCM (30 mL) and washed with brine (30 mL). The organic layer was concentrated. The residue was purified by pre-TLC (eluent: MeOH/DCM=1/30) to give the crude product (234 mg), which was directly used in next step.


Step 2: 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine

A solution of tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate (284 mg, 0.83 mmol) in DCM (5 mL) and TFA (2 mL) was stirred at room temperature overnight. The solvents were removed. The residue was dissolved with DCM (50 mL) and washed with aq. NaHCO3 (30 mL×2), dried over anhydrous Na2SO4, filtered and concentrated to give the desired product as a yellow oil (125 mg, 61%). MS (ESI, m/e) [M+1]+243.0.


Step 3: 141-(4-bromophenyl)azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine

A mixture of 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine (125 mg, 0.51 mmol), 1-bromo-4-iodobenzene (146 mg. 0.51 mmol), Pd2(dba)3 (47 mg, 0.051 mmol), BINAP (63 mg) and t-BuOK (124 mg, 1.02 mmol) in toluene (10 mL) was stirred at 80° C. overnight. It was cooled to room temperature and toluene was removed. The residue was purified by Pre-TLC (eluent: EA/PE=1/5) to give the desired product as a yellow oil (104 mg). MS (ESI, m/e) [M+1]+396.8


Then 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide was synthesized following the procedures similar to those in Example A1, 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.71 (s, 1H), 8.61-8.56 (m, 2H), 8.05 (s, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.63-7.45 (m. 4H), 7.40-7.26 (m, 3H), 7.12 (s, 3H), 6.95-6.91 (m, 2H), 6.39 (s, 1H), 6.32 (d, J=8.2 Hz, 2H), 4.06 (s, 1H), 3.86-3.83 (m, 2H), 3.71 (s, 1H), 3.62 (s, 2H), 3.30-3.23 (m, 6H), 2.99 (s, 2H), 2.27 (s, 1H), 2.02-1.97 (m, 3H), 1.87 (s, 2H), 1.60 (d, J=11.9 Hz, 2H), 1.45 (s, 1H), 1.26-1.22 (m, 2H), 0.87-0.84 (m, 3H), 0.67 (s, 1H), MS (ESI, m/e) [M+1]+867.8.


Example B26: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,3′-biazetidin]-1′-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate

To a solution of 2-(2-cyclopropylphenyl)pyrrolidine (375 mg, 2.00 mmol) in DCM (20 mL) was added tert-butyl 3-oxoazetidine-1-carboxylate (342 mg, 2.00 mmol) and NaBH(OAc)3 (848 mg, 4.00 mmol), the mixture was stirred at r.t for 16 hours. The reaction solution was washed with H2O (20 mL), concentrated and purified by column chromatograph on silica gel (eluent: MeOH/DCM=0/20 to 1/20) to give the product as a light yellow oil. (540 mg, 78.9%). MS (ESI, m/e) [M+1]+343.0.


Step 2: 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine hydrochloride

To a solution of tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidine-1-carboxylate (540 mg, 1.58 mmol) in DCM (5 mL) was added HCl in 1,4-dioxane solution (5 mL, 4 M) was then stirred at r.t for 20 hours. The reaction solution was concentrated to give the crude product as a white solid. (440 mg). MS (ESI, m/e) [M+1]+243.0.


Step 3: tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,3′-biazetidine]-1′-carboxylate

To a solution of 1-azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine hydrochloride (450 mg, 1.505 mmol) in DCM (20 mL) was added tert-butyl 3-oxoazetidine-1-carboxylate (386 mg, 2.258 mmol) TEA (235 mg, 2.258 mmol) and NaBH(OAc)3 (641 mg, 3.010 mmol) and the mixture was stirred at r.t for 16 hours. The reaction solution was washed with H2O (10 mL), concentrated and purified by column chromatograph on silica gel (eluent: MeOH/DCM=0/20 to 1/20) to give the product as a light yellow oil. (500 mg, 83.2%). MS (ESI, m/e) [M+1]+398.0.


Step 4: 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-1,3′-biazetidine hydrochloride

To a solution of tert-butyl 3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,3′-biazetidine]-1′-carboxylate (500 mg, 1.259 mmol) in DCM (10 mL) was added HCl in 1,4-dioxane solution (10 mL, 4 M) and the solution was stirred at r.t for 4 hours. The reaction solution was concentrated to give the crude product as a brown solid. (500 mg). MS (ESI, m/e) [M+1]+298.0.


Then 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,3′-biazetidin]-1′-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide was synthesized following the procedures similar to those in Example B12. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.14 (s, 1H), 8.63-8.46 (m, 2H), 8.02 (d, J=2.0 Hz, 1H), 7.80 (d, J=9.2 Hz, 1H), 7.59-7.33 (m. 4H), 7.14-6.97 (m, 3H), 6.86 (s, 1H), 6.37 (s, 1H), 6.08 (d, J=8.8 Hz, 1H), 5.53 (s, 1H), 4.03-3.63 (m, 5H), 3.58-3.37 (m, 4H), 3.27-2.65 (m, 9H), 2.25-2.09 (m, 1H), 2.06-1.94 (m, 1H), 1.90-1.68 (m, 3H), 1.63-1.42 (m, 3H), 1.29-1.14 (m, 3H), 0.90-0.76 (m, 2H), 0.63-0.55 (m, 1H), 0.50-0.40 (m, 1H), MS (ESI, m/e) [M+1]+846.9.


Example B27: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)benzoate

To a solution of (S)-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidine (100 mg, 0.3 mmol), methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (88 mg, 0.3 mmol) in DMF (10 mL) was added Na2CO3 (318 mg, 3 mmol). The mixture was stirred at 100° C. for 18 hours. After the solvent was removed in vacuum, the residue was diluted with DCM (50 mL)/H2O (50 mL) and then stirred for 30 minutes. The organic phase was separated and washed with saturated aq. NaCl (10 mL). H2O (10 mL) and dried over anhydrous Na2SO4, concentrated to give a crude product. The crude was purified by pre-TLC (eluent: PE/EA=3/1) to obtain 120 mg methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)benzoate. MS (ESI, m/e) [M+1]+591.0.


Step 2: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)benzoic acid

To a mixture of methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)benzoate (120 mg, 0.2 mmol) in MeOH (5 mL), THF (5 mL), H2O (5 mL) was added NaOH (80 mg, 2 mmol). The mixture was stirred at 50° C. for 14 hours. The mixture was adjusted to PH ˜3 with 2N HCl acid and then extracted with DCM (30 mL×2). The combined the organic phase was washed with saturated aq. NaCl (10 mL), H2O (10 mL) and concentrated to obtain 100 mg (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)piperidin-1-yl)benzoic acid, which used in next step without further purification. MS (ESI, m/e) [M+1]+577.0.


The desired compound was then synthesized following the procedures similar to those in Example B12. 1H NMR (400 MHz, DMSO-d5) δ ppm: 11.70 (s, 1H), 11.41 (s, 1H), 9.52 (s, 1H), 8.62 (s, 2H), 8.57 (s, 1H), 8.04 (s, 1H), 7.81 (d, J=9.0 Hz, 1H), 7.61-7.46 (m, 3H), 7.30 (s, 2H), 7.16-7.03 (m, 2H), 6.67 (d, J=9.0 Hz, 1H), 6.39 (s, 1H), 6.15 (s, 1H), 5.02-5.00 (m, 1H), 3.87-3.84 (m, 2H), 3.72-3.52 (m, 4H), 3.35-3.18 (m, 5H), 2.68-2.55 (m, 5H), 2.21-1.98 (m, 6H), 1.93-1.77 (m, 2H), 1.63-1.60 (m, 3H), 1.45 (s, 1H), 1.31-1.22 (m, 9H), 0.98-0.95 (m, 2H), 0.85-0.83 (m, 2H), 0.67-0.65 (m, 2H), MS (ESI) m/e [M+1]+873.9.


Example B28: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)benzyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: (R)-4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)benzaldehyde

To a mixture solution of (R)-1-(4-bromophenyl)-2-(2-cyclopropylphenyl)pyrrolidine (500 mg, 1.50 mmol) in THF (10 mL) was added n-BuLi (1.6 N, 1.2 mL, 1.80 mmol) at −70° C.˜−75° C. under N2. After the mixture was stirred for 30 mins, DMF (219 mg, 3.0 mmol) was added at −70° C.˜−75° C. under N2, Then the mixture was allowed to warm to room temperature and stirred for 2 hours. The reaction was quenched with diluted HCl acid (IN, 5 mL) and extracted with EA (5 mL×3). The combined organic layers were dried over anhydrous Na2SO4, concentrated and then purified with column chromatograph on silica gel (eluent: EA/PE=1/1) to afford 200 mg of (R)-4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)benzaldehyde. MS (ESI, m/e) [M+1]+291.9.


Step 2: methyl (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropyl phenyl)pyrrolidin-1-yl)benzyl)benzoate

A mixture of (R)-4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)benzaldehyde (200 mg, 1.05 mmol), 4-methylbenzenesulfonohydrazide (195 mg, 1.05 mmol) in dioxane (10 mL) was heated to 100° C., and stirred for 2 hours. Then (3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(methoxycarbonyl)phenyl)boronic acid (326 mg, 1.05 mmol) and K2CO3 (290 mg, 2.10 mmol) were added to the mixture and stirred for another 5 hours. After cooled to room temperature, the reaction mixture was quenched with H2O (20 mL) and extracted with EA (10 mL×3). The combined organic layers were dried over anhydrous Na2SO4, concentrated and then purified with column chromatograph on silica gel (eluent: EA/PE=1/1) to afford 280 mg (yield: 49.2%) of methyl (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)benzyl)benzoate as a yellow solid. MS (ESI, m/e) [M+1]+543.9.


The desired compound was then synthesized from methyl (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropyl phenyl)pyrrolidin-1-yl)benzyl)benzoate following the procedures similar to those in Example B1. MS (ESI, me) [M+1]+827.1.


Example B29: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)methyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized with 4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexane-1-carbaldehyde following the procedures similar to those in Example B28. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 9.50 (s, 1H), 8.59-8.56 (m, 2H), 7.99 (s, 1H), 7.85-7.71 (m, 2H), 7.48-7.44 (m, 3H), 7.30-7.28 (m, 2H), 7.09 (s, 2H), 6.90-6.86 (m, 1H), 6.53 (d, J=11.8 Hz, 1H), 6.39 (d, J=11.8 Hz, 1H), 5.12-5.09 (m, 1H), 3.85-3.83 (m, 2H), 3.61 (s, 1H), 3.24-3.17 (m, 2H), 2.94 (s, 1H), 2.33-2.30 (m, 2H), 2.06-2.02 (m, 4H), 1.87-1.84 (m, 4H), 1.56-1.53 (m, 5H), 1.29 (s, 5H), 0.96-0.90 (m, 2H), 0.83-0.80 (m, 3H), 0.55-0.52 (m, 1H), MS (EST) m/e [M+1]+832.9


Example B30: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized with 4-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)benzaldehyde following the procedures similar to those in Example B28. MS (ESI) m/e [M+1]+832.9


Example B31: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)phenyl)amino)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon yl benzamide



embedded image


To a solution of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)phenyl)amino)benzoic acid (200 mg, 0.38 mmol) in 30 mL dichloromethane was added 2-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (160 mg, 0.42 mmol) and 0.3 mL N,N-diisopropyl ethylamine. It was stirred at room temperature for 1 hour, then 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (132 mg, 0.42 mmol) and 4-dimethyl aminopyridine (40 mg, 0.35 mmol) was added. And the mixture was stirred at room temperature for 16 h. Then organic layer was combined, dried over sodium sulfate and it was concentrated in vacuum. The residue was purified by prep-HPLC to give 20 mg the desired compound. 1H NMR (400 MHz, DMSO-d5) δ ppm: 11.77 (s, 1H), 11.18 (s, 1H), 8.69-8.54 (m, 2H), 8.29-8.18 (m, 1H), 8.10 (s, 1H), 7.94-7.86 (m, 1H), 7.77-7.69 (m, 1H), 7.54 (s, 1H), 7.46-7.40 (m, 1H), 7.25-7.17 (m, 1H), 7.14-7.07 (m, 11H), 7.05-6.98 (m, 2H), 6.93-6.87 (m, 1H), 6.82-6.77 (m, 2H), 6.47-6.37 (m, 2H), 6.28-6.21 (m, 2H), 5.99 (s, 1H), 5.10-5.05 (m, 1H), 3.90-3.80 (m, 2H), 3.71-3.60 (m, 1H), 3.32-3.20 (m, 5H), 2.46-2.35 (m, 1H), 2.10-2.00 (m, 1H), 2.00-1.85 (m, 3H), 1.84-1.77 (m, 1H), 1.66-1.57 (m, 2H), 1.30-1.25 (m, 1H), 1.05-0.93 (m, 3H), 0.76-0.64 (m, 2H), MS (ESI, m/e) [M+1]+827.8.


Example B32: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-(2-cyclopropylphenyl)-1,8-diazaspiro[4.5]decan-8-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12 by replacing 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine with 1-(2-cyclopropylphenyl)-1,8-diazaspiro[4.5]decane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.40 (s, 1H), 8.63-8.58 (m, 2H), 8.02 (s, 1H), 7.79 (d, J=8.9 Hz, 1H), 7.55-7.38 (m, 3H), 7.20-7.07 (m, 2H), 7.06-6.94 (m, 2H), 6.66-6.63 (m, 2H), 6.38 (s, 1H), 6.13 (s, 1H), 3.86-3.84 (m, 2H), 3.60-3.57 (m, 2H), 3.31-3.17 (m, 6H), 2.74-2.72 (m, 2H), 1.88 (s, 5H), 1.59-1.55 (m, 4H), 1.30-1.28 (m, 5H), 0.85-0.83 (m, 2H), 0.54-0.52 (m, 2H), MS (ESI) m/e [M+1]+805.8.


Example B33: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)-1,8-diazaspiro[4.5]decan-8-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)-1,8-diazaspiro[4.5]decan-8-yl)-[1,1′-biphenyl]-4-carboxylic acid and 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide following the procedures similar to those in Example B32. MS (EST) m/e [M+1]+909.8.


Example B34: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-(2-bromophenyl)-1,8-diazaspiro[4.5]decan-8-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12 by replacing 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine with 1-(2-bromophenyl)-1,8-diazaspiro[4.5]decane. MS (ESI) m/e [M+1]+843.7.


Example B35: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-5,6,7,8-tetrahydronaphthalen-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 1-(4-bromophenyl)-2-phenylpyrrolidine with (2S)-1-(6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-2-(2-cyclopropylphenyl)pyrrolidine. 1H NMR (DMSO-d6) δ ppm: 12.32 (s, 1H), 11.62 (s, 1H), 9.56-9.36 (m, 1H), 8.48-8.45 (m, 2H), 8.01 (s, 1H), 7.73 (s, 1H), 7.60-7.58 (m, 1H), 7.46 (s, 2H), 7.35 (d, J=7.8 Hz, 1H), 7.20 (s, 2H), 7.09-7.07 (m, 1H), 6.99-6.96 (m, 3H), 6.34 (s, 1H), 4.40 (s, 1H), 4.23 (s, 1H), 3.62 (d, J=4.4 Hz, 1H), 3.26-3.20 (m, 3H), 2.86 (s, 1H), 2.67 (s, 3H), 2.06-1.93 (m, 2H), 1.77 (s, 1H), 1.69-1.67 (m, 3H), 1.56-1.50 (m, 3H), 1.30-1.20 (m, 9H), 1.15-1.08 (m, 5H), 0.98-0.84 (m, 2H), 0.70 (s, 1H), 0.52 (s, 1H), MS (ESI) m/e [M+1]+894.8


Example B36: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-1H-benzo[d]imidazol-5-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 1-(4-bromophenyl)-2-phenylpyrrolidine with 5-bromo-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-1H-benzo[d]imidazole. MS (ESI) m/e [M+1]+852.8


Example B37: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)ethyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 1-(1-(4-bromophenyl)ethyl)-2-(2-cyclopropylphenyl)pyrrolidine and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate following the procedures similar to those in Example A1. MS (ESI) m/e [M+1]+840.8.


Example B38: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)-1H-pyrazol-4-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: tert-butyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)-1H-pyrazol-4-yl)benzoate

The mixture of(S)-1-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (520 mg, 1.2 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate (389 mg, 1.0 mmol), Pd(dppf)2Cl2 (146 mg, 0.2 mmol), Cs2CO3 (975 mg, 3 mmol) in a 1,4-dioxane (40 nL) and water(5 mL) was heated to 100° C., and stirred for overnight. The reaction was concentrated in vacuo and purified by chromatography column on silica gel (eluent: EA/PE=1/10 to 1/2) to give the target product (412 mg). MS (ESI, m/e) [M+1]+615.9.


The desired compound was synthesized starting from tert-butyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclobutyl)-1H-pyrazol-4-yl)benzoate following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (br, 1H), 11.63 (s, 1H), 8.60-8.45 (m, 2H), 8.14 (s, 1H), 8.00 (d, J=2.4 Hz, 1H), 8.85 (s, 1H), 7.74 (d, J=9.2 Hz, 1H), 7.65-7.58 (m, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.47 (t, J=2.8 Hz, 1H), 7.43-7.41 (m, 1H), 7.37 (d, J=8.0 Hz, 1H), 7.22-7.10 (m, 2H), 7.04 (s, 1H), 7.00-6.95 (m, 2H), 6.35-6.32 (m, 1H), 4.43-4.40 (m, 1H), 3.86 (dd, J=11.6 Hz, J=3.2 Hz, 2H), 3.30-3.25 (m, 5H), 2.67-2.59 (m, 1H), 2.44-2.25 (m, 2H), 2.20-1.80 (m, 7H), 1.62 (d, J=11.2 Hz, 2H), 1.30-1.20 (m, 4H), 0.92-0.80 (m, 3H), 0.66-0.52 (m, 2H), MS (ESI, m/e) [M+1]+856.8.


Example B39: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(3-phenyl-6,7-dihydrothieno[3,2-c]pyridin-5 (4H)-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 1-(4-bromophenyl)-2-phenylpyrrolidine with 5-(4-bromophenyl)-3-phenyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine. MS (ESI) m/e [M+1]+841.2


Example B40: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-cyclopropylphenyl)-2,9-diazaspiro[5.5]undecan-9-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example B12 by replacing 1-(azetidin-3-ylmethyl)-2-(2-cyclopropylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-2,9-diazaspiro[5.5]undecane. MS (ESI) m/e [M+1]+819.8.


Example C1: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzoate



embedded image


To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate (3.3 g, 9.57 mmol) in 1,4-dioxane (50 mL) were added 4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-1,3,2-dioxaborolane (2.8-g 10.53 mmol), IN K2CO3 (20 mL, H2O) and Pd(dppf)Cl2 (700 mg. 0.96 mmol), the reaction was heated at 95° C. under N2 for about 2.5 h. The reaction mixture was cooled to ambient temperature, concentrated and purified by chromatography on silica gel (eluent: DCM. MeOH=40: 1) to afford the desired compound as a yellow solid (3.4 g, 87.8%). MS (ESI, m/e) [M+1]+407.1.


Step 2: methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate



embedded image


To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzoate (2.0 g, 4.93 mmol) in EA(20 mL) was added 6M HCl acid (10 mL), the mixture was stirred at ambient temperature for about 1 h. The pH of the reaction mixture was adjusted to about 9 with sat. Na2CO3, the organic layer was separated, dried over Na2SO4 and concentrated to give the crude product as a brown oil (2.0 g). MS (ESI, m/e) [M+1]+363.0


Step 3: methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate



embedded image


To a solution of methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (2.0 g, 5.52 mmol) in DCM (10 mL) and EtOH (20 mL) were added 2-phenylpyrrolidine (1.22 g, 8.29 mmol) and HOAc (0.5 mL), the solution was stirred at ambient temperature for 1.5 h, NaBH3CN (1.7 g, 27.62 mmol) was then added, the reaction was stirred at ambient temperature for 1 h. The reaction mixture was portioned between DCM (50 mL) and H2O (20 mL). The organic layer was washed with H2O (20 mL), concentrated and purified by chromatography on silica gel (eluent: DCM: MeOH=15: 1) to afford the desired compound as a yellow solid (1.4 g, 51.4%). MS (ESI, m/e) [M+1]+494.1


Step 4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To a mixture of methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (200 mg, 0.45 mmol) in MeOH (10 mL) was added 3N NaOH (5 mL), the reaction was stirred at ambient temperature for about 20 h. The pH of the reaction mixture was adjusted to about 4 with 1M HCl acid, the resulting solution was concentrated. The residue was slurried with DCM/MeOH (20 mL/2 mL), filtered, the filtrate was concentrated to afford the crude product as yellow solid (200 mg). MS (ESI, m/e) [M+1]+480.1.


Step 5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


A mixture of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-phenylpyrrolidin-1-yl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (200 mg, 0.416 mmol), 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (131 mg, 0.416 mmol), EDCI (120 mg, 0.624 mmol), DMAP (76 mg, 0.624 mmol) and DIPEA (161 mg, 1.247 mmol) in DCM (10 mL) was stirred at ambient temperature for 20 h. The reaction solution was concentrated and purified by pre-HPLC to give the product (30 mg). 1H NMR (DMSO-d6) δ ppm: 11.63 (s, 11H), 8.46 (s, 2H), 7.96 (t, J=4.0 Hz, 1H), 7.73 (d, J=8.0 Hz, 11H), 7.55-6.97 (m, 11H), 6.72 (s, 1H), 6.34 (s, 1H), 5.98-5.86 (m, 1H), 3.84 (dd, J=12.0, 4.0 Hz, 2H), 3.28-3.22 (m, 5H), 2.33-1.83 (m, 10H), 1.61-1.58 (d, J=12.0 Hz, 4H), 1.29-1.18 (m, 3H), MS (EST) m/e [M+1]+777.2.


Example C2: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-bromophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-bromophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (br, 1H), 11.86 (br, 1H), 8.56-8.53 (m, 2H), 8.00 (m, 1H), 7.78 (m, 1H), 7.65-7.58 (m, 1H), 7.50-7.45 (m, 4H), 7.31 (m, 1H), 7.14-7.08 (m, 3H), 6.72 (d, J 4.0, 1H), 6.38 (m, 1H), 6.01-5.77 (m, 1H), 4.10 (m, 1H), 3.85 (m, 2H), 3.28-3.22 (m, 5H), 2.67 (m, 1H), 2.31-2.00 (m, 5H), 1.86 (m, 2H), 1.72 (m, 2H), 1.61 (d, J=12.0, 2H), 1.28-1.21 (m, 5H), MS (ESI, m/e) [M+1]+855.1, 857.1.


Example C3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate



embedded image


To a mixture of methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (764 mg, 2.1 mmol), 2-(2-cyclopropylphenyl)pyrrolidine (473 mg, 2.53 mmol) in MeOH was added AcOH (0.2 mL) and the resultant mixture was stirred for 1 h. To the reaction was added NaBH3CN (889 mg, 4 mmol) and stirred for another 1 hour. Then the reaction mixture was concentrated in vacuum and diluted with EA (200 mL), washed with NaHCO3 (200 mL), brine (100 mL), dried over Na2SO4, concentrated in vacuum and purified by chromatography column on silica (eluent: EA/PE=5/1 to 1/2) to give the product (412 mg, 36.76%) as alight yellow solid. 1H NMR (4 (00 MHz, CDCl3) δ ppm: 11.70 (br, 1H), 8.01 (s, 1H), 7.75 (d, J=0.8 Hz, 1H), 7.56-7.51 (m, 3H), 7.23 (d, J=0.8 Hz, 1H), 7.09-7.02 (m, 1H), 6.98-6.96 (m, 1H), 6.91-6.85 (m, 1H), 4.32-4.25 (m, 1H), 3.74 (s, 3H), 3.18-2.97 (m, 2H), 2.38-1.99 (m, 7H), 1.73 (m, 2H), 1.54-1.41 (m, 2H), 0.89-0.85 (m, 2H), 0.65-0.52 (m, 2H), MS (ESI, m/e) [M+1]+534.2.


Step 2: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To the solution of methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (700 mg, 1.31 mmol) in a mixture solvent of MeOH (10 mL), THF (10 mL), H2O (2 mL) was added NaOH (524 mg, 13.1 mmol) and the resultant mixture was stirred overnight. The reaction was quenched with HCl acid (6 M) to pH ˜4, extracted with DCM (400 mL), washed with brine (100 mL), dried over Na2SO4 and evaporated in vacuum Then the reaction mixture was concentrated in vacuum to afford a crude product (836 mg, crude). 1H NMR (400 MHz, CDCl3) δ ppm: 12.91 (br, 1H), 11.60 (br, 1H), 8.01 (s, 1H), 786-7.76 (m, 1H), 7.78 (d, J 0.8 Hz, 1H), 7.50-7.47 (m, 2H), 7.30-7.27 (m, 3H), 7.10-7.02 (m, 1H), 6.89-6.88 (m, 1H), 6.39 (s, 1H), 6.05-5.96 (m, 1H), 5.25-5.09 (m, 1H), 3.75-3.68 (m, 3H), 2.37-2.06 (m, 7H), 1.76-1.60 (m, 2H), 1.23 (m, 2H), 0.96 (m, 2H), 0.72-0.61 (m, 2H), MS (ESI, m/e) [M+1]+520.2


Step 3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The mixture of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (700 mg, 1.34 mmol), triethylamine (106 mg, 4.05 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (616 mg, 1.62 mmol) in DCM (10 mL) was stirred for 2 hours at room temperature. To the reaction mixture was added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (512 mg, 1.62 mmol) and DMAP (17 mg, 0.14 mmol) and stirred overnight. The reaction mixture was washed with brine, dried over Na2SO4 and concentrated in vacuo, then purified by chromatography column on silica (eluent: DCM/MeOH=50/1 to 15/1) to afford a crude product (490 mg). The crude product was purified with Pre-HPLC to give the product (1.65 mg, 1.26%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (br, 1H), 11.68 (br, 1H), 8.51 (m, 2H), 7.99 (s, 1H), 7.79 (d, J=12.0 Hz, 1H), 7.61-7.47 (m, 4H), 7.28-7.07 (m, 5H), 6.73 (s, 1H), 6.37 (s, 1H), 5.99-5.85 (m, 1H), 5.32-5.28 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.75-3.51 (m, 2H), 3.22 (m, 5H), 2.42-1.97 (m, 8H), 1.86 (s, 2H), 1.73 (s, 1H), 1.61-1.57 (m, 2H), 1.45-1.37 (m, 1H), 1.23 (m, 2H), 1.07-0.93 (m, 2H), 0.71-0.59 (m, 2H), MS (ESI, m/e) [M+1]+817.2.


Example C3a and Example C3b: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide; and (S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1; tert-butyl (S)-2-(2-bromophenyl)pyrrolidine-1-carboxylate



embedded image


To a solution of (S)-2-(2-bromophenyl)pyrrolidine (5.0 g, 22.12 mmol) in DCM (50 mL) was added Boc2O (5.3 g, 24.34 mmol) slowly, the resulted solution was stirred at room temperature for 20 min. Then the reaction mixture was concentrated to give the product (7.8 g, crude) as a brown solid. MS (ESI, nm/e) [M+1]+270.0, 271.9.


Step 2: tert-butyl (S)-2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate



embedded image


To a solution of tert-butyl (S)-2-(2-bromophenyl)pyrrolidine-1-carboxylate (7.8 g, 22.12 mmol) in 1,4-dioxane (150 ml) was added cyclopropylboronic acid (5.78 g, 66.36 mmol), Pd(dppf)Cl2 (810 mg, 1.11 mmol), K2CO3 (9.16 g, 66.36 mmol) and water (2.5 mL), the mixture was stirred at 90° C. under N2 atmosphere for 4 h. After cooled to r.t, the reaction mixture was filtered. The filtrate was concentrated and purified by prep-MPLC (eluent: 0-5%, EA/PE) to give the product (5.0 g, 78.4%) as a colorless oil. MS (ESI, nm/e) [M+1]+232.1


Step 3: (S)-2-(2-cyclopropylphenyl)pyrrolidine



embedded image


To a solution of tert-butyl (S)-2-(2-cyclopropylphenyl)pyrrolidine-m-carboxylate (5.0 g, 17.54 mmol) in MeOH (50 mL) was added HCl (1,4-dioxane solution. 4M, 50 mL) and stirred at room temperature for 1 hour. The reaction solution was concentrated in vacuum. The residue was partitioned between EA (20 mL) and H2O (100 mL). Then aqueous layer was extracted with EA (20 mL). The aqueous layer was separated, basified with Sat. NaHCO3, then extracted with DCM (50 mL×3). The combined organic layers were dried over Na2SO4 and concentrated to give the product (2.5 g, 77.0%) as a brown oil without further purification for next synthesis. MS (ESI, , m/e) [M+1]+188.2.


Step 4: methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate



embedded image


To a solution of (S)-2-(2-cyclopropylphenyl)pyrrolidine (555 mg, 3.00 mmol) in DCM (30 mL) was added methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (1.09 g, 3.00 mmol), AcOH (2 drops) and NaBH(OAc). (1.27 g, 6.00 mmol), the solution was stirred at room temperature for overnight. The reaction solution was washed with H2O (20 mL), concentrated and purified by prep-MPLC (eluent: MeOH/DCM=0/10 to 1/10) to give the product (1.3 g, 81.3%) as a yellow solid. MS (ESI, m/e) [M+1]+534.


Step 5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid



embedded image


To the solution of methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate (70) mg, 1.31 mmol) in MeOH (15 mL) was added THF (15 mL) and NaOH (6M, 10 mL) and stirred at room temperature for 3 hours. The PH value of the reaction mixture was adjusted to ˜3 with Con. HCl acid. The resulting mixture was concentrated in vacuum. The residue was washed with DCM/MeOH=10/1 (v/v, 50 mL), filtered. The filtrate was concentrated to give the product as a yellow solid (650 mg, crude). MS (ESI, m/e) [M+1]+520.2


Step 6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The a mixture of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (650 mg, 1.25 mmol) in DCM (20 mL) was added EDCI (480 mg, 2.50 mmol), triethylamine (630 mg, 6.26 mmol), 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (395 mg, 1.25 mmol) and DMAP (306 mg, 2.50 mmol), the solution was stirred at r.t for 40 h. The reaction solution was washed with H2O (30 mL×3), concentrated and purified by chromatography column on silica (eluent: MeOH/DCM=0/25 to 1/25) to afford the product (700 mg, 68.5%). MS (ESI, m/e) [M+1]+817.2. 1H NMR (400 MHz, DMSO-d4) δ ppm: 11.64 (s, 1H), 8.48 (s, 2H), 7.96 (s, 1H), 7.80-7.40 (m, 5H), 7.30-6.84 (m, 5H), 6.73 (s, 1H), 6.35 (s, 1H), 6.04-5.79 (m, 1H), 3.88-3.81 (m, 2H), 3.32-3.16 (m, 6H), 2.38-1.21 (m, 18H), 0.97-0.84 (m, 2H), 0.72-0.50 (m, 2H), MS (ESI) m/e [M+1]+763.2. MS (ESI) m/e [M+1]+805.2


Two enantiomers C3a (faster isomer) and C3b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 1.8 min to give C3a. The slower enantiomer was eluted at retention time of 2.6 min to give C3b.













Column
CHIRAL ART Cellulose-SB







Column size
2 cm × 25 cm, 5 um


Injection
1.2 mL


Mobile phase
CO2:[MeOH:DCM = 2:1(0.1% MSA + NH4HCO3)] =



60:40


Flow rate
45 mL/min


Wave length
UV 220 nm


Temperature
25° C.


Sample solution
18 mg/mL in MeOH:DCM = 3:1


Prep-SFC
Prep-SFC-100-1









Example C3c and Example C3d: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide; and (S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Using (R)-2-(2-cyclopropylphenyl)pyrrolidine instead of (S)-2-(2-cyclopropylphenyl)pyrrolidine in the reductive amnination step and then following the similar procedures in Example C3a and Example C3b, the mixture of Example C3c and Example C3d were afforded, then proceeded by chiral-HPLC separation, Two enantiomers C3c (faster isomer) and C3d (slower isomer) were separated. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 8.4 min to give C3c. The slower enantiomer was eluted at retention time of 9.6 min to give C3d.















Column
CHIRALPAK IA








Column size
2 cm × 25 cm, 5 um



Injection
1.0 mL



Mobile phase
MTBE:MeOH(0.2% MSA) = 60:40



Flow rate
20 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
13.7 mg/ml in MeOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC









Example C4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(3-cyclopropylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C3. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.61 (br, 1H), 11.61 (br, 1H), 8.44 (m, 2H), 7.95 (s, 1H), 7.72 (d, J=8.0 Hz, 1H), 7.48-7.40 (m, 3H), 7.20-6.93 (m, 6H), 6.73 (s, 1H), 6.34 (s, 1H), 5.98-5.88 (m, 1H), 3.85-3.82 (m, 2H), 3.28-3.00 (m, 6H), 2.33-1.86 (m, 11H), 1.61 (d, J=12.0 Hz, 2H), 1.45-1.25 (m, 4H), 0.92-0.84 (m, 2H), 0.65-0.59 (m, 2H), MS (ESI, m/e) [M+1]+817.2.


Example C5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(pyridin-3-yl)pyrrolidin-1-yl)-2,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 3-(pyrrolidin-2-yl)pyridine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.27 (s, 1H), 11.73 (s, 1H), 9.90-9.69 (m, 1H), 8.78 (s, 1H), 8.67-8.59 (m, 1H), 8.56 (s, 1H), 8.11-8.04 (m, 1H), 8.02 (s, 1H), 7.82 (d, J=9.0 Hz, 1H), 7.61-7.42 (m, 4H), 7.22-7.06 (m, 2H), 6.71 (s, 1H), 6.40 (s, 1H), 6.05-5.86 (m, 1H), 3.90-3.76 (m, 5H), 3.35-3.14 (m, 4H), 2.55-2.41 (m, 4H), 2.22-1.99 (m, 4H), 1.93-1.78 (m, 1H), 1.64-1.51 (m, 3H), 1.33-1.13 (m, 4H), MS (ESI) m/e [M+1]+778.1.


Example C6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-benzylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-benzylpyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.59 (s, 1H), 9.41 (Brs, 1H), 8.42 (s, 1H), 8.37 (s, 1H), 7.96 (d, J=2.0 Hz, 1H), 7.72-7.64 (m, 1H), 7.52 (d, J=8.0 Hz, 1H), 7.45 (s, 1H), 7.39 (s, 1H), 7.35-7.25 (m, 4H), 7.25-7.18 (m, 1H), 7.17-7.09 (m, 1H), 6.92-6.83 (m, 1H), 6.78 (d, J=8.0 Hz, 1H), 6.34 (s, 1H), 6.03 (s, 1H), 3.92-3.76 (m, 3H), 3.45-3.335 (s, 1H), 3.30-3.19 (m, 6H), 2.46-2.32 (m, 4H), 2.26-2.10 (m, 11H), 1.95-1.73 (m, 5H), 1.68-1.53 (m, 3H), 1.30-1.19 (m, 3H), MS (EST) m/e [M+1]+791.2.


Example C7: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(pyridin-2-yl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(pyrrolidin-2-yl)pyridine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43 (br, 1H), 11.62 (s, 1H), 8.55 (s, 1H), 8.44 (s, 2H), 7.95 (s, 2H), 7.72 (s, 1H), 7.62-7.23 (m, 5H), 7.11 (d, J=7.8 Hz, 1H), 6.93 (s, 1H), 6.73 (s, 1H), 6.34 (s, 1H), 5.97-5.85 (m, 1H), 3.84 (d, J=9.4 Hz, 2H), 3.29-3.16 (m, 5H), 2.45-2.25 (m, 5H), 2.12-1.75 (m, 6H), 1.59 (d, J=12.6 Hz, 3H), 1.31-1.16 (m, 4H), MS (ESI, m/e) [M+1]+778.2


Example C8: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(furan-3-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(furan-3-yl)phenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (br, 1H), 11.63 (s, 1H), 8.46 (s, 2H), 7.95 (s, 1H), 7.82-7.62 (m, 4H), 7.52-7.35 (m, 4H), 7.27-7.03 (m, 3H), 6.99-6.86 (m, 1H), 6.76-6.49 (m, 2H), 6.34 (s, 1H), 5.92-5.74 (m, 1H), 3.84 (d, J=10.9 Hz, 3H), 3.29-3.20 (m, 5H), 3.16-2.93 (m, 2H), 2.20-1.64 (m, 9H), 1.60 (d, J=12.7 Hz, 3H), 1.24 (s, 3H), MS (ESI, m/e) [M+1]+843.1


Example C9: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-chlorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (br, 1H), 11.69 (br, 1H), 8.57-8.53 (m, 2H), 7.99 (s, 1H), 7.80 (d, J=8.0 Hz, 1H), 7.70-7.61 (m, 1H), 7.51 (s, 2H), 7.48 (d, J=8.0 Hz, 1H), 7.36-7.21 (m, 2H), 7.14 (d, J=8.0 Hz, 1H), 7.09-7.01 (m, 2H), 6.72 (s, 1H), 6.38 (s, 1H), 6.01-5.79 (m, 1H), 4.15-4.09 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.26-3.22 (m, 4H), 3.17-2.90 (m, 2H), 2.67-2.55 (m, 1H), 2.32-2.08 (m, 6H), 1.86-1.67 (m, 5H), 1.61 (d, J=12.0 Hz, 2H), 1.47-1.23 (m, 2H), MS (ESI, m/e) [M+1]+811.1.


Example C10: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(trifluoromethyl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(trifluoromethyl)phenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.60 (s, 1H), 8.43 (s, 2H), 8.01-7.82 (m, 2H), 7.78-7.58 (m, 3H), 7.50-7.26 (m, 4H), 7.07 (s, 1H), 6.92 (s, 1H), 6.71 (d, J=8.0 Hz, 1H), 6.33 (s, 1H), 5.99-5.72 (m, 1H), 4.24-4.06 (m, 2H), 3.84 (d, J=9.0 Hz, 2H), 3.28-3.14 (m, 5H), 2.62-2.56 (m, 1H), 2.40-2.10 (m, 4H), 1.94-1.82 (m, 2H), 1.7-1.68 (m, 2H), 1.62-1.56 (m, 2H), 1.45-1.35 (m, 2H), 1.30-1.18 (m, 2H), 0.95-0.83 (m, 1H), MS (ESI, m/e) [M+1]+845.1.


Example C11: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(naphthalen-1-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(naphthalen-1-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.61 (s, 1H), 8.90 (s, 1H), 8.53 (s, 1H), 8.25-7.35 (m, 11H), 7.10-6.85 (m, 2H), 6.65-6.40 (m, 2H), 6.02-5.60 (m, 1H), 4.50 (s, 1H), 4.12-3.92 (m, 2H), 3.52-3.14 (m, 5H), 2.82-2.52 (m, 2H), 2.40-1.91 (m, 7H), 1.87-1.54 (m, 6H), 1.49-1.34 (m, 2H), MS (ESI) m/e [M+1]+827.1


Example C12: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4,4-dimethyl-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-P28C3 yl)meth y)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromo-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


To a mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoic acid (6.6 g, 19.88 mol) in DCM (200 mL) were added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (6.3 g, 19.88 mmol), EDCI (8.0 g, 41.75 mmol), DMAP (3.6 g, 29.82 mmol) and TEA (5.0 g, 49.70 mmol), the mixture was stirred at room temperature for about 2 days. 1 M HCl acid (100 mL) was added. The precipitate was filtered and dried under vacuum to give the product (9 g, 61.3%) as a yellow solid without further purification for next step. MS (ESI, m/e) [M+1]+630.0, 632.0.


Step 2: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzamide



embedded image


A mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromo-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide (100 mg, 0.16 mmol), 4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-1,3,2-dioxaborolane (64 mg, 0.24 mmol), Pd(dppf)Cl2 (12 mg, 0.016 mmol) and K2CO3 (44 mg, 0.32 mmol) in dioxane (5 mL) and H2O (0.5 mL) was stirred at 95° C. under N2 overnight. It was cooled to r.t, and filtered off the inorganic salt. The filtrate was concentrated. The residue was purified by pre-TLC (MeOH/DCM=1/10) to give the desired product as a yellow solid (76 mg, 68%). 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s, 1H), 11.70 (s, 1H), 8.56-8.59 (m, 2H), 8.03 (s, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.48-7.58 (m, 3H), 7.20 (d, J=7.9 Hz, 1H), 7.12 (d, J=7.9 Hz, 1H), 6.76 (s, 1H), 6.40 (s, 1H), 5.95 (s, 1H), 3.85 (s, 6H), 3.23-3.27 (m, 2H), 2.98 (s, 2H), 2.37 (s, 2H), 2.28 (s, 2H), 2.03-1.96 (m, 2H), 1.87 (s, 1H), 1.71 (t, J=6.2 Hz, 2H), 1.60 (d, J=12.4 Hz, 2H), MS (ESI, m/e) [M+1]+690.1.


Step 3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


A solution of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzamide (76 mg, 0.11 mmol) in DCM (5 mL) and 3 M HCl (1 mL) was stirred at room temperature overnight. It was diluted with DCM (20 mL) and neutralized with aq. NaHCO3. The organic layer was dried over anhydrous Na2SO4, filtered and concentrated to give the desired product as a yellow solid (42 mg, 59%) without further purification for next step. MS (ESI, m/e) [M+1]+646.1.


Step 4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4,4-dimethyl-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1-biphenyl]-4-carboxamide



embedded image


A solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide (32 mg, 0.05 mmol) and 4,4-dimethyl-2-phenylpyrrolidine (13 mg, 0.075 mmol) in THF was stirred at r.t. for 30 min. NaBH(OAc)3 was added and stirred overnight. THF was removed and the residue was purified by pre-HPLC to give the desired product(5 mg, 12%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.72 (s, 1H), 9.79 (d, J=52.7 Hz, 1H), 8.61 (s, 1H), 8.54 (s, 1H), 8.00 (s, 1H), 7.81 (d, J=8.7 Hz, 1H), 7.61-7.63 (m, 2H), 7.54 (s, 2H), 7.36-7.44 (m, 3H), 7.22-7.10 (m, 2H), 6.72 (d, J=6.1 Hz, 1H), 6.66 (s, 1H), 6.39 (s, 1H), 5.98-5.88 (m, 11H), 4.94-4.78 (m, 1H), 3.84 (d, J=8.9 Hz, 2H), 3.22-3.27 (m, 5H), 2.99 (s, 5H), 2.28 (s, 1H), 1.97-2.07 (m, 4H), 1.86 (s, 1H), 1.59 (d, J=12.5 Hz, 2H), 1.45 (s, 1H), 1.24 (s, 6H), MS (ESI, m/e) [M+1]+805.2.


Example C13: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,6-dichlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2,6-dichlorophenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedures similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (br, 1H), 11.71 (br, 1H), 8.58-8.54 (m, 2H), 7.99 (s, 1H), 7.81 (d, J=8.0 Hz, 1H), 7.52-7.48 (m, 2H), 7.44 (d, J=8.0 Hz, 1H), 7.34-7.30 (m, 1H), 7.20-7.11 (m, 4H), 6.71 (d, J=16.0 Hz, 1H), 6.39 (s, 1H), 6.01-5.67 (m, 1H), 4.52-4.49 (m, 1H), 3.85 (d, J=8.0 Hz, 21-1), 3.27-3.22 (m, 4H), 3.17-3.09 (m, 2H), 2.67-2.63 (m, 1H), 2.33-1.76 (m, 11H), 1.61 (d, J=12.0 Hz, 2H), 1.47-1.23 (m, 2H), MS (ESI, m/e) [M+1]+845.1.


Example C14: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-propylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-propylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedures similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (br, 0.5H), 11.65 (s, 1H), 9.34 (br, 0.5H), 8.49 (s, 2H), 7.96 (s, 1H), 7.79-7.67 (m, 1H), 7.55-7.40 (m, 4H), 7.33-7.21 (m, 3H), 7.15-6.96 (m, 3H), 7.72-6.67 (m, 1H), 6.35 (s, 1H), 5.98-5.82 (m, 1H), 4.74 (s, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.28-3.22 (m, 4H), 3.05-2.84 (m, 2H), 2.20-2.07 (m, 2H), 2.02-1.97 (m, 2H), 1.91-1.78 (m, 2H), 1.76-1.64 (m, 2H), 1.62-1.28 (m, 7H), 0.99-0.81 (m, 6H), MS (ESI, m/e) [M+1]+819.2.


Example C15: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(thiophen-2-yl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-(thiophen-2-yl)phenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.26 (s, 1H), 11.68 (s, 1H), 8.49-8.30 (m, 2H), 7.97 (s, 1H), 7.75 (d, J=7.9 Hz, 3H), 7.54-7.22 (m, 6H), 7.22-6.88 (m, 4H), 6.70 (d. J=3.7 Hz, 1H), 6.36 (s, 1H), 5.95-5.70 (m, 1H), 3.90-3.84 (m, 2H), 3.50-3.30 (m, 1H), 3.30-3.10 (m, 4H), 3.00-2.90 (m, 2H), 2.25-2.17 (m, 6H), 1.92-1.80 (m, 3H), 1.65-1.59 (m, 3H), 1.50-1.40 (m, 1H), 1.35-1.20 (m, 3H), MS (ESI, m/e) [M+1]+859.1.


Example C16: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-benzylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-benzylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedures similar to those in Example C12. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.22 (s, 1H), 11.71 (s, 1H), 8.52 (s, 2H), 8.01 (s, 1H), 7.79 (s, 1H), 7.36-7.56 (m, 5H), 6.88-7.08 (m, 9H), 6.59 (s, 1H), 6.40 (s, 1H), 5.75 (s, 1H), 3.93-4.04 (m, 2H), 3.83-3.85 (m. 3H), 3.22-3.27 (m, 5H), 3.02 (s, 2H), 2.46-2.36 (m, 1H), 2.28-2.07 (m, 2H), 2.04-1.96 (m. 2H), 1.86 (s, 2H), 1.59 (d, J=12.3 Hz, 5H), 1.23-1.28 (m, 2H), MS (ESI, m/e) [M+1]+867.2


Example C17: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(pyridin-4-yl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(pyrrolidin-2-yl)pyridine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm; 12.14 (s, 1H), 11.67 (s, 1H), 8.53-8.46 (m, 4H), 7.97 (d, J=2.2 Hz, 1H), 7.76 (d, J=8.8 Hz, 1H), 7.58-7.29 (m, 5H), 7.12 (d, J=8.0 Hz, 1H), 7.03 (d, J=8.8 Hz, 1H), 6.71 (s, 1H), 6.36 (s, 1H), 5.99 (s, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.25-3.22 (m, 5H), 2.33-2.08 (m, 4H), 191-1.76 (m, 4H), 1.61-1.53 (m, 3H), 1.50-1.43 (m, 1H), 1.31-1.18 (m, 6H), MS (ESI, m/e) [M+1]-778.2.


Example C18: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-isopropylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.27 (s, 1H), 11.71 (s, 1H), 9.480 (s, 0.5H), 9.283 (s, 0.5H), 8.60 (s, 1H), 8.54 (s, 1H), 7.99 (s, 1H), 7.80 (d, J=9.0 Hz, 1H), 7.61 (d, J=7.5 Hz, 1H), 7.52 (s, 2H), 7.48 (d, J=8.0 Hz, 1H), 7.22-7.42 (m, 3H), 7.16 (d, J=8.0 Hz, 1H), 7.11 (d, J=9.0 Hz, 1H), 6.73 (s, 1H), 6.38 (s, 1H), 5.98-5.84 (m, 1H), 5.11-4.94 (m, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.63-3.70 (m, 1H), 3.20-3.32 (m, 7H), 3.00-2.93 (m, 2H), 2.42-2.38 (m, 1H), 2.28-2.20 (m, 1H), 2.12-2.16 (m, 2H), 1.96-2.20 (m, 1H), 1.83-1.91 (m, 2H), 1.59 (d, J=12.0 Hz, 2H), 1.19-1.22 (m, 7H), 1.13 (d, J=6.6 Hz, 3H), MS (ESI, m/e) [M+1]+819.2.


Example C19: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(prop-1-en-2-yl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) meth yl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.64 (s, 1H), 8.48 (s, 1H), 7.98-7.94 (m, 1H), 7.80-7.70 (m, 1H), 7.47-7.45 (m, 4H), 7.12-7.00 (m, 4H), 6.73 (s, 1H), 6.35 (s, 1H), 5.98-5.82 (m, 0.5H), 5.22 (s, 0.5H), 4.90-4.60 (m, 2H), 4.10-3.84 (m, 2H), 3.28-3.22 (m, 4H), 3.20-3.15 (m, 2H), 2.30-2.10 (m, 4H), 1.99-1.90 (m, 6H), 1.88-1.80 (m, 2H), 1.75-1.70 (m, 2H), 1.65-1.55 (m, 2H), 1.50-1.40 (m, 1H), 1.30-1.20 (m, 4H), MS (ESI, m/e) [M+1]+817.2.


Example C21: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isobutylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-isobutylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) meth yl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI, m/e) [M+1]+832.8.


Example C22: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(cyclopropylmethyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(cyclopropylmethyl)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example Cl2. MS (ESI, m/e) [M+1]+830.8.


Example C26a and C26b: cis- or trans-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyanocyclopropyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide /trans- or cis-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-cyanocyclopropyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


C24a was synthesized with cis- or trans-2-(2-(pyrrolidin-2-yl)phenyl)cyclopropane-1-carbonitrile(faster peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (s, 1H), 11.67 (s, 1H), 8.51 (s, 2H), 7.98 (s, 1H), 7.75 (s, 1H), 7.64-7.58 (m, 1H), 7.55-7.38 (m, 4H), 7.20-7.12 (m, 4H), 6.70-6.66 (m, 2H), 6.36 (s, 1H), 5.99-5.82 (m, 1H), 4.19 (s, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.28-3.22 (m, 5H), 2.98 (s, 3H), 2.75-2.67 (m, 1H), 2.26-2.18 (s, 5H), 2.01-1.97 (m, 5H), 1.73 (s, 2H), 1.59 (d, J=12.5 Hz, 2H), 1.45 (s, 2H), 0.91-0.84 (m, 2H), MS (ESI, m/e) [M+1]+841.8. With trans- or cis-2-(2-(pyrrolidin-2-yl)phenyl)cyclopropane-1-carbonitrile(slower peak in HPLC) was C24b synthesized. MS (ESI, m/e) [M+1]+841.8.


Example C26a and C26b: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((S or R)-2,2-difluorocyclopropyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide /3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-((R or S)-2,2-difluorocyclopropyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound 26a was synthesized with 2-(2-((S or R)-2,2-difluorocyclopropyl)phenyl)pyrrolidine (faster peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) meth yl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (DMSO-d6) δ ppm: 12.23 (s, 1H), 11.68 (s, 1H), 8.65-8.42 (m, 2H), 7.98 (s, 1H), 7.77 (s, 1H), 7.63-7.39 (m, 4H), 7.27-7.00 (m, 5H), 6.76-6.54 (m, 1H), 6.37 (s, 1H), 6.07-5.70 (m, 1H), 4.01 (s, 1H), 3.91-3.76 (m, 2H), 3.27-3.19 (m, 4H), 3.17-3.04 (m, 2H), 3.01-2.89 (m, 1H), 2.29-2.09 (m, 3H), 2.06-1.83 (m, 5H), 1.78-1.69 (m, 2H), 1.64-1.54 (m, 2H), 1.47-1.34 (m, 2H), 1.31-1.24 (m, 3H), MS (ESI) m/e [M+1]+852.7. With 2-(2-((R or S)-2,2-difluorocyclopropyl)phenyl)pyrrolidine (slower peak in HPLC), 26b was synthesized. MS (ESI, m/e) [M+1]+852.7.


Example C28: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclobutylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclobutylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl))methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s, 1H), 11.64 (s, 1H), 8.60-8.40 (m, 2H), 7.96 (s, 1H), 7.85-7.65 (m, 1H), 7.60-7.40 (m, 4H), 7.35-7.15 (m, 2H), 7.11 (d, J=8.0 Hz, 1H), 7.05-6.90 (m, 2H), 6.72 (s, 1H), 6.35 (s, 1H), 5.98 (s, 0.5H), 5.79 (s, 0.5H), 3.88-3.80 (m, 3H), 3.75-3.60 (m, 1H), 3.30-3.20 (m, 5H), 3.15-2.85 (m, 2H), 2.41-1.91 (m, 10H), 1.90-1.64 (m, 5H), 1.59 (d, J=12.4 Hz, 2H), 1.55-1.40 (m, 1H), 1.35-1.15 (m, 3H), MS (ESI, m/e) [M+1]+830.9.


Example C31: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(dimethylamino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with N,N-dimethyl-2-(pyrrolidin-2-yl)aniline and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 11.60 (s, 1H), 8.42 (s, 2H), 7.93 (s, 1H), 7.73-7.63 (m, 1H), 7.62-7.51 (m, 1H), 7.51-7.41 (m, 2H), 7.39-7.29 (m, 1H), 7.12-7.01 (m, 1H), 6.96-6.81 (m, 1H), 6.79-6.66 (m, 1H), 6.38-6.27 (m, 1H), 6.02-5.77 (m, 1H), 3.92-3.77 (m, 2H), 3.27-3.13 (m, 6H), 2.67-3.55 (m, 7H), 2.32-2.22 (m, 3H), 2.13-1.95 (m, 4H), 1.91-1.79 (m, 2H), 1.67-1.52 (m, 4H), 1.33-1.24 (m, 6H), MS (ESI) m/e [M+1]+802.8.


Example C36: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(difluoromethoxy)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(difluoromethoxy)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N—((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s, 1H), 11.68 (s, 1H), 8.60-8.45 (m, 2H), 8.05-7.95 (nm, 1H ), 7.85-7.70 (m, 2H ), 7.60-7.37 (m, 3H ), 7.30-6.90 (m, 5H ), 6.72 (s, 1H ), 6.37 (s, 1H ), 6.01 (s, 0.5H), 5.81 (s, 0.5H ), 4.20-4.00 (m, 1H ), 3.98-3.71 (m, 2H ), 3.35-3.20 (m, 5H ), 2.65-2.55 (m, 2H ), 2.40-2.00 (m, 6H ), 1.95-1.80 (m, 2H ), 1.75-1.65 (m, 2H ), 1.65-1.55 (m, 2H ), 1.45-1.35 (m, 1H ), 1.35-1.20 (m, 3H ). MS (ESI, m/e) [M+1]+842.8.


Example C37: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(trifluoromethoxy)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(trifluoromethoxy)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.35 (s, 1H), 11.63 (s, 1H), 8.46 (s, 2H), 7.96 (s, 1H), 7.75-7.63 (m, 2H), 7.50-7.47 (m. 2H), 7.36-7.15 (m, 4H), 7.10 (d, J=7.2 Hz, 1H), 6.96 (s, 1H), 6.72 (d, J=7.2 Hz, 1H), 6.35 (s, 1H), 6.00-5.78 (m, 1H), 4.07 (s, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.29-3.22 (m, 4H), 3.17-3.08 (m, 1H), 2.62-2.53 (m, 2H), 2.36-2.28 (m, 1H), 2.25-2.10 (m, 3H), 1.93-1.80 (m, 2H), 1.78-1.65 (m, 3H), 1.62-1.58 (m, 2H), 1.50-1.37 (m, 2H), 1.33-1.27 (m, 2H), MS (ESI, m/e) [M+1]+861.1.


Example C39: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-propoxy phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-propoxyphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.59 (s, 1H), 8.50-8.35 (m, 2H), 7.95-7.90 (m, 1H), 7.75-7.65 (m. 1H), 7.57-7.41 (m, 3H), 7.37-7.30 (m, 1H), 7.12-7.05 (m, 1H), 6.95-6.85 (m, 3H), 6.75-6.70 (m, 1H), 6.38-6.30 (m, 1H), 5.98-5.80 (m, 1H), 5.78-5.75 (m, 1H), 5.76 (s, 1H), 4.10 (q, J=5.2 Hz, 2H), 4.00-3.90 (m, 2H), 3.88-3.75 (m, 2H), 3.30-3.25 (m, 5H), 3.20-3.15 (m, 3H), 2.40-2.25 (m, 3H), 2.20-1.90 (m, 3H), 1.88-1.80 (m, 2H), 1.76-1.66 (m, 2H), 1.65-1.55 (m, 2H), 1.36-1.13 (m, 3H), 0.95 (t, J=7.3 Hz, 3H), MS (ESI, m/e) [M+1]+835.2.


Example C40: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-methoxyethoxy)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(2-methoxyethoxy)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.59 (s, 1H), 8.50-8.33 (m, 2H), 7.94 (s, 1H), 7.68 (d, J=8.6 Hz, 1H), 7.60-7.44 (m, 3H), 7.40-7.38 (m, 1H), 7.15-7.05 (m, 2H), 7.00-6.85 (m, 3H), 6.70 (s, 1H), 6.33 (s, 1H), 5.97-5.85 (m, 1H), 4.30-4.10 (m, 2H), 3.90-3.80 (m, 2H), 3.75-3.65 (m, 2H), 3.27-3.15 (m, 9H), 2.40-2.10 (m, 7H), 1.90-1.80 (m, 2H), 1.70-1.50 (m, 4H), 1.45-1.35 (m, 1H), 1.32-1.14 (m, 3H), MS (ESI, m/e) [M+1]+851.2.


Example C41: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isopropoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-isopropoxyphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ12.28 (s, 1H), 11.74 (s, 1H), 8.66-8.52 (m, 2H), 8.02 (s, 1H), 7.82 (d, J=9.1 Hz, 1H), 7.71-7.46 (m, 4H), 7.40-7.30 (m, 1H), 7.25-7.06 (m, 3H), 7.05-6.95 (m, 1H), 6.71 (s, 1H), 6.40 (s, 1H), 6.01 (s, 0.5H), 5.93 (s, 0.5H), 5.05-4.90 (m, 1H), 4.76-4.57 (m, 1H), 3.85 (d, J=10.6 Hz, 2H), 3.31-3.15 (m, 5H), 2.40-2.20 (m, 4H), 2.18-2.05 (m, 4H), 2.00-1.85 (m, 2H), 1.70-1.55 (m, 3H), 1.35-1.15 (m, 10H), MS (ESI) m/e [M+1]+834.8.


Example C42: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phen y sulfonyl)-2′3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropoxyphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H-NMR (400 MHz, d6-DMSO) δ ppm: 12.28 (s, 1H), 11.71 (s, 1H), 8.60-8.52 (m, 2H), 8.00 (s, 1H), 7.92-7.77 (m, 2H), 7.50-7.48 (m, 3H), 7.43-7.32 (m, 2H), 7.16 (d, J=7.4 Hz, 1H), 7.06 (d, J=7.4 Hz, 1H), 7.05-7.02 (m, 1H), 6.74 (s, 1H), 6.39 (s, 1H), 5.95-5.90 (m, 1H), 4.88-4.75 (m, 1H), 3.88-3.73 (m, 3H), 3.52 (s, 1H), 3.29-3.20 (m, 5H), 2.43-2.23 (m, 5H), 2.15-1.95 (m, 5H), 1.89-1.75 (m, 1H), 1.59 (d, J=11.9 Hz, 3H), 1.24-1.15 (m, 3H), 0.79-0.65 (m, 3H), MS (ESI, m/e) [M+1]+832.8.


Example C45: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chloro-6-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-chloro-6-cyclopropylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s, 1H), 11.70 (s, 1H), 8.59-8.53 (m, 2H), 7.99 (s, 1H), 7.80 (d, J=8.8 Hz, 1H), 7.60-7.39 (m, 3H), 7.23-6.95 (m, 4H), 6.72-6.61 (m, 2H), 6.38 (s, 1H), 6.03-5.79 (m, 1H), 4.52-4.47 (m, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.28-3.22 (m, 4H), 3.12-3.03 (m, 2H), 2.20-2.10 (m, 2H), 2.01-1.97 (m, 3H), 1.90-1.73 (m, 4H), 1.65-1.50 (m, 2H), 1.50-1.40 (m, 1H), 1.30-1.20 (m, 6H), 0.98-0.79 (m, 3H), MS (ESI, m/e) [M+1]+850.8.


Example C46: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,6-dimethylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2,6-dimethylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.27 (s, 1H), 11.69 (s, 1H), 8.65-8.48 (m, 2H), 7.98 (s, 1H), 7.78 (d, J=8.4 Hz, 1H), 7.51 (s, 2H), 7.44 (d, J=8.4 Hz, 1H), 7.20-7.05 (m, 2H), 7.03-6.79 (m, 3H), 6.72 (d, J=8.0 Hz, 1H), 6.38 (s, 1H), 6.00-5.72 (m, 1H), 4.15-3.75 (m, 4H), 3.30-3.17 (m, 4H), 3.15-2.98 (m, 1H), 2.45-2.25 (m, 8H), 2.18-2.05 (m, 3H), 1.99-1.53 (m, 8H), 1.51-1.35 (m, 1H), 1.28-1.18 (m, 4H), MS (ESI, m/e) [M+1]+805.2.


Example C47: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chloro-3-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-chloro-3-fluorophenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H), 8.60-8.45 (m, 2H), 8.05-7.95 (m, 1H), 7.80-7.70 (m, 1H), 7.62-7.44 (m, 4H), 7.35-7.20 (m, 1H), 7.18-7.10 (m, 2H), 7.09-6.92 (m, 2H), 6.70 (d, J=8.1 Hz, 1H), 6.37 (s, 1H), 6.01 (s, 0.5H), 5.80 (s, 0.5H), 4.2-4.05 (m, 1H), 3.84 (d, J=8.2 Hz, 2H), 3.30-3.20 (m, 4H), 3.18-2.90 (m, 2H), 2.40-2.05 (m, 4H), 2.00-1.80 (m, 2H), 1.78-1.65 (m, 2H), 1.59 (d, J=12.6 Hz, 3H), 1.50-1.40 (m, 1H), 1.36-1.13 (m, 4H), MS (EST) m/e [M+1]+828.7.


Example C48: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,3-dichlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2,3-dichlorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.71 (s, 1H), 8.7-8.5 (m, 2H), 8.05-7.95 (m, 1H), 7.85-7.75 (m, 1H), 7.70-7.65 (m, 1H), 7.60-7.40 (m, 4H), 7.38-7.22 (m, 1H), 7.20-7.00 (m, 2H), 6.70 (d, J=9.7 Hz, 1H), 6.40 (s, 1H), 6.01-5.84 (m, 1H), 4.25-4.00 (m, 2H), 3.84 (d, J=10.5 Hz, 2H), 3.30-3.19 (m, 4H), 2.42-1.99 (m, 5H), 1.95-1.86 (m, 3H), 1.79-1.52 (m, 5H), 1.50-1.35 (m, 1H), 1.30-1.15 (m, 3H), MS (ESI, m/e) [M+1]+845.1.


Example C51: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-chloro-2-cyclopropylphenyl)pyrrolidine and methyl 3-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.70 (s, 1H), 8.65-8.45 (m, 2H), 7.99 (s, 1H), 7.79 (d, J=8.7 Hz, 1H), 7.60-7.40 (m, 4H), 7.38-7.25 (m, 1H), 7.20-7.00 (m, 3H), 6.72 (s, 1H), 6.38 (s, 1H), 5.98 (s, 0.5H), 5.90-5.75 (m, 0.5H), 4.60-4.45 (m, 1H), 3.84 (dd, J=11.1, 2.8 Hz, 2H), 3.76-3.56 (m, 2H), 3.30-3.20 (m, 5H), 2.65-2.55 (m, 1H), 2.44-1.98 (m, 6H), 1.95-1.65 (m, 4H), 1.59 (d, J=12.4 Hz, 2H), 1.31-1.15 (m, 3H), 1.12-1.05 (m, 2H), 0.70-0.60 (m, 1H), 0.55-0.45 (m, 1H), MS (ESI, m/e) [M+1]+850.8.


Example C52: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-3-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropyl-3-fluorophenyl)pyrrolidine and methyl 3-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (DMSO-d6) δ 12.22 (s, 1H), 11.59 (s, 1H), 8.52-8.32 (m, 2H), 7.94 (s, 1H), 7.69 (s, 1H), 7.53-7.28 (m, 4H), 7.18-7.02 (m, 2H), 6.92-6.67 (m, 3H), 6.33 (s, 1H), 6.00-5.71 (m, 1H), 4.36 (s, 1H), 3.93-3.73 (m, 2H), 3.30-2.85 (m, 7H) 2.30-2.13 (m, 3H), 2.05-1.79 (m, 4H), 1.77-1.53 (m, 5H), 1.49-1.37 (m, 2H), 1.02-0.91 (m, 2H), 0.89-0.81 (m, 2H), 0.77-0.67 (m, 1H), 0.62-0.48 (m, 11H), MS (ESI) m/e [M+1]+834.8.


Example C53: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-4-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon 1-2′3′4′ 5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropyl-4-fluorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-do) δ 12.22 (s, 1H), 11.65 (s, 1H), 8.60-8.40 (m, 2H), 7.97 (d, J=2.2 Hz, 1H), 7.75 (d, J=8.3 Hz, 1H), 7.65-7.55 (m, 1H), 7.50-7.40 (m, 3H), 7.12 (d, J=8.3 Hz, 1H), 7.05-6.95 (m, 1H), 6.96-6.80 (m, 1H), 6.80-6.65 (m, 2H), 6.38-6.32 (m, 1H), 6.00 (s, 0.5H), 5.87 (s, 0.5H), 4.40-4.05 (m, 1H), 3.84 (dd, J=11.4, 3.0 Hz, 2H), 3.30-3.15 (m, 5H), 2.40-3.15 (m, 5H), 2.05-1.95 (m, 3H), 1.90-1.80 (m, 2H), 1.78-1.65 (m, 2H), 1.59 (d, J=11.3 Hz, 2H), 1.53-1.33 (m, 2H), 1.30-1.15 (m, 2H), 0.95-0.85 (m, 2H), 0.75-0.65 (m, 1H), 0.63-0.52 (m, 11H), MS (ESI, m/e) [M+1]+834.8


Example C54: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropyl-5-fluorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s, 1H), 11.67 (s, 1H), 8.60-8.45 (m, 2H), 7.98 (s, 1H), 7.77 (d, J=8.4 Hz, 1H), 7.59-7.41 (m, 3H), 7.39-7.21 (m, 1H), 7.18-6.77 (m, 4H), 6.73 (s, 1H), 6.37 (s, 1H), 6.01 (s, 0.5H), 5.85 (s, 0.5H), 4.40-4.20 (m, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.30-3.15 (m, 5H), 2.40-2.15 (m, 3H), 2.06-1.82 (m, 4H), 1.80-1.65 (m, 2H), 1.59 (d, J=12.1 Hz, 3H), 1.50-1.35 (m, 1H), 1.33-1.14 (m, 5H), 0.95-0.79 (m, 2H), 0.70-0.60 (m, 1H), 0.55-0.45 (m, 1H), MS (ESI, m/e) [M+1]+834.8.


Example C55: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-6-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropyl-6-fluorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (s, 1H), 11.68 (s, 1H), 8.60-8.45 (m, 2H), 7.98 (s, 1H), 7.85-7.70 (m, 1H), 7.55-7.30 (m, 3H), 7.20-6.50 (m, 6H), 6.37 (s, 1H), 6.10-5.79 (m, 1H), 4.50-4.20 (m, 1H), 3.84 (dd, J=11.1. 2.7 Hz, 2H), 3.74-3.42 (m, 2H), 3.30-3.20 (m, 5H), 2.40-1.65 (m, 10H), 1.59 (d, J=12.3 Hz, 2H), 1.35-1.10 (m, 3H), 1.05-0.65 (m, 4H), 0.60-0.45 (m. 1H), MS (ESI) m/e [M+1]+834.8.


Example C57: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-cyclopropylthiophen-2-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-cyclopropylthiophen-2-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (s, 0.5H), 11.67 (s, 11H), 9.55 (s, 0.5H), 8.51 (s, 2H), 7.99 (s, 1H), 7.77 (s, 1H), 7.50-7.46 (m, 3H), 7.21-6.96 (m, 3H), 6.75 (s, 1H), 6.50 (s, 1H), 6.37 (s, 1H), 6.03 (s, 0.5H), 5.94 (s, 0.5H), 4.41-4.28 (m, 1H), 3.91-3.72 (m, 2H), 3.49-3.41 (m, 1H), 3.29-3.18 (m, 6H), 3.08-2.91 (m, 2H), 2.31-2.19 (m, 4H), 1.89-1.71 (m, 3H), 1.69-1.59 (m, 3H), 1.32-1.15 (m, 3H), 0.95-0.78 (m, 3H), 0.54 (s, 2H), MS (ESI, m/e) [M+1]+822.7.


Example C60: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-cyclohexylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-cyclohexylpyrrolidone and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 8.96 (s, 1H), 8.42 (s, 1H), 8.37 (s, 1H), 7.96 (s, 1H), 7.69 (d, J=8.8 Hz, 11H), 7.47 (d, J=7.2 Hz, 1H), 7.45 (s, 1H), 7.39 (s, 1H), 7.13 (d, J=7.2 Hz, 1H), 6.88 (d, J=8.8 Hz, 1H), 6.76 (s, 1H), 6.34 (s, 1H), 6.00 (s, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.48-3.39 (m, 2H), 3.30-3.16 (m, 6H), 2.44-2.28 (m, 2H), 2.22-2.09 (m, 1H), 2.02-1.93 (m, 1H), 1.88-1.78 (m, 3H), 1.76-1.66 (m, 3H), 1.66-1.53 (m, 4H), 1.31-1.13 (m, 6H), 1.13-0.91 (m, 3H), MS (ESI, m/e) [M+1]+783.2.


Example C62: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(benzo[b]thiophen-7-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(benzo[b]thiophen-7-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MH z, DMSO-d6) δ 12.20 (s, 11H), 11.69 (s, 1H), 8.64-8.33 (m, 2H), 7.97 (s, 1H), 7.77 (s, 1H), 7.72-7.58 (m, 2H), 7.59-7.45 (m, 2H), 7.45-7.40 (m, 2H), 7.30-7.14 (m, 2H), 7.18-7.03 (m, 2H), 6.68 (d, J=10.1 Hz, 1H), 6.36 (s, 1H), 6.03-5.78 (m, 1H), 4.20-4.07 (m, 1H), 3.88-3.80 (m, 2H), 3.30-3.17 (m, 4H), 3.09-2.88 (m, 4H), 2.28-2.09 (m, 3H), 2.05-1.94 (m, 3H), 1.90-1.73 (m, 3H), 1.69-1.54 (m, 3H), 1.49-1.39 (m, 2H), MS (ESI) m/e [M+1]+832.7.


Example C63: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(phenylethynyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(phenylethynyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.06 (s, 1H), 11.69 (s, 1H), 8.56-8.53 (m, 2H), 8.01 (d, J=2.2 Hz, 1H), 7.78 (d, J=8.8 Hz, 1H), 7.56-7.32 (m, 8H), 7.22 (d, J=8.1 Hz, 1H), 7.07 (d, J=8.8 Hz, 1H), 6.80 (d, J=3.8 Hz, 1H), 6.38 (s, 1H), 6.07 (s, 1H), 3.90-3.80 (m, 2H), 3.35-3.23 (m, 5H), 3.05-2.95 (m, 1H), 2.41-2.23 (m, 2H), 2.24-1.95 (m, 5H), 1.90-1.75 (m, 2H), 1.65-1.55 (m, 2H), 1.35-1.25 (m, 6H), MS (ESI, m/e) [M+1]+800.8.


Example C66: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(piperidin-4-yl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(N-Boc-piperidin-4-yl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was synthesized with tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. Then after deprotection with TFA, the desired compound was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H ), 8.38-8.36 (m, 1H ), 8.35-8.30 (m, 1H), 7.92-7.88 (m, 1H ), 7.68-7.60 (m, 1H), 7.59-7.49 (m, 1H ), 7.49-7.38 (m, 2H), 7.35-7.25 (m, 1H ), 7.21-6.96 (m, 4H), 6.85-6.75 (m, 1H ), 6.72-6.68 (m, 1H), 6.29 (s, 1H ), 5.98 (s, 0.5H), 5.80 (s, 0.5H ), 4.10-4.00 (m, 1H), 3.85-3.72 (m, 2H ), 3.29-3.17 (m, 5H), 3.15-2.90 (m, 6H ), 2.80-2.65 (m, 2H ), 2.30-2.10 (m, 4H ), 2.05-1.80 (m, 2H ), 1.79-1.46 (m, 9H ), 1.40-1.30 (m, 2H ), 1.25-1.10 (m, 2H ). MS (ESI, m/e) [M+1]+859.8.


Example C67: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-phenoxyphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-phenoxyphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) 12.20 (s, 1H), 11.71 (s, 1H), 8.60-8.40 (m, 2H), 8.30-8.10 (m, 1H), 7.98 (s, 1H), 7.78 (d, J=7.6 Hz, 1H), 7.60-7.45 (m, 2H), 7.47-7.35 (m, 2H), 7.35-7.18 (m, 4H), 7.10-6.85 (m, 6H), 6.57 (s, 1H), 6.39 (s, 1H), 4.95-4.75 (m, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.30-3.20 (m, 5H), 2.40-2.25 (m, 2H), 2.20-2.00 (m, 3H), 1.95-1.77 (m, 2H), 1.76-1.52 (m, 4H), 1.50-1.30 (m, 2H), 1.28-1.05 (m, 4H), MS (ESI, m/e) [M+1]+868.8.


Example C69: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-methoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropyl-5-methoxyphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (s, 1H), 11.62 (s, 1H), 8.57-8.35 (m, 1H), 7.95 (s, 1H), 7.79-7.67 (m, 1H), 7.53-7.34 (m, 3H), 7.18-7.05 (m, 2H), 7.03-6.81 (m, 2H), 6.75 (s, 1H), 6.66-6.53 (m, 1H), 6.34 (s, 1H), 6.05-5.76 (m, 1H), 4.36-4.20 (m, 1H), 3.87-3.80 (m, 2H), 3.77-3.57 (m, 4H), 3.31-3.18 (m, 6H), 2.25-2.15 (m, 2H), 1.95-1.81 (m, 3H), 1.76-1.65 (m, 2H), 1.65-1.54 (m, 3H), 1.30-1.22 (m, 5H), 0.89-0.74 (m, 4H), 0.67-0.41 (m, 2H), MS (ESI, m/e) [M+1]+857.8.


Example C81: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-2,5-dihydro-1H-pyrrol-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-2,5-dihydro-1H-pyrrole and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d5) δ ppm: 12.22 (s, 1H), 11.69 (s, 1H), 8.57-8.48 (m, 2H), 7.99 (s, 1H), 7.79 (s, 1H), 7.59-7.40 (m, 3H), 7.13-7.05 (m, 4H), 6.99-6.90 (m, 1H), 6.73-6.65 (m, 1H), 6.38 (s, 1H), 6.02 (s, 1H), 5.85-5.63 (m, 2H), 5.29 (s, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.61-3.51 (m, 1H), 3.31-3.11 (m, 5H), 2.99-2.91 (m, 2H), 2.21-2.08 (m, 3H), 1.96-1.76 (m, 2H), 1.59 (d, J=12.1 Hz, 3H), 1.29-1.17 (m, 3H), 0.88 (s, 3H), 0.75-0.60 (m, 2H), MS (ESI, m/e) [M+1]+814.8.


Example C86: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)isoindolin-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-(2-cyclopropylphenyl)isoindoline and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI, m/e) [M+1]+865.3.


Example C87: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4-hydroxy-2-phenylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 5-phenylpyrrolidin-3-ol and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (s, 1H), 11.64 (s, 1H), 8.47-8.42 (m, 2H), 7.96 (s, 1H), 7.73-7.72 (m, 1H), 7.65-7.62 (m, 1H), 7.47-7.20 (m, 7H), 7.11-7.10 (m, 1H), 6.98-6.94 (m, 1H), 6.71 (s, 1H), 6.35 (s, 1H), 5.76 (s, 0.5H), 5.31 (s, 0.5H), 4.75-4.73 (m, 1H), 4.23-4.21 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.22-3.09 (m, 4H), 3.00-2.95 (m, 2H), 2.33-1.85 (m, 8H), 1.61 (d, J=12.0 Hz, 2H), 1.47-1.23 (m, 4H) MS (ESI, m/e) [M+1]+792.8.


Example C88a and Example C88b: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4S or 4R)-2-(2-cyclopropylphenyl)-4-methoxypyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide/3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((4R or 4S)-2-(2-cyclopropylphenyl)-4-methoxypyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compounds were synthesized with 2-(2-cyclopropylphenyl)-4-methoxypyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. After purification with prep-HPLC, faster peak C88a was obtained, 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (br, 1H), 11.67 (s, 1H), 8.59-8.48 (m, 2H), 7.97 (s, 1H), 7.81-7.73 (m, 1H), 7.59-7.41 (m, 4H), 7.23-6.86 (m, 5H), 6.72 (s, 1H), 6.36 (s, 1H), 5.99 (s, 0.5H), 5.84 (s, 0.5H), 4.34-4.19 (m, 1H), 3.85 (d, J=8.8 Hz, 2H), 3.25-3.11 (m, 10H), 2.68-2.60 (m, 1H), 2.29-2.11 (m, 3H), 2.09-1.95 (m, 4H), 1.92-1.69 (m, 3H), 1.61 (d, J=12.4 Hz, 2H), 1.55-1.33 (m, 2H), 0.95-0.84 (m, 2H), 0.68-0.45 (m, 2H), MS (ESI, m/e) [M+1]+846.8: slower peak C88b, 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (br, 1H), 11.65 (s, 1H), 8.59-8.41 (m, 2H), 7.96 (s, 1H), 7.80-7.69 (m, 1H), 7.57-7.40 (m, 4H), 7.20-6.92 (m, 5H), 6.72 (s, 1H), 6.35 (s, 1H), 6.00 (s, 0.5H), 5.84 (s, 0.5H), 4.55-4.41 (m, 1H), 3.95-3.87 (m, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.47-3.35 (m, 1H), 3.25-3.16 (m, 8H), 2.67-2.51 (m, 2H), 2.29-2.11 (m, 4H), 2.09-1.95 (m, 3H), 1.92-1.69 (m, 2H), 1.61 (d, J=12.4 Hz, 2H), 1.55-1.33 (m, 2H), 0.95-0.84 (m, 2H), 0.68-0.45 (m, 2H), MS (ESI, m/e) [M+1]+846.8.


Example C89: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-fluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-4-fluoropyrro lidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s, 1H), 11.70 (s, 1H), 8.65-8.50 (m, 2H), 8.05-7.95 (m, 1H), 7.80 (d, J=8.7 Hz, 1H), 7.67-7.38 (m, 4H), 7.19-7.02 (m, 3H), 7.02-6.95 (m, 1H), 6.95-6.85 (m, 1H), 6.71 (d, J=4.4 Hz, 1H), 6.38 (s, 1H), 6.01 (s, 0.5H), 5.81 (s, 0.5H), 5.26 (s, 0.5H), 5.12 (s, 0.5H), 4.39-4.22 (m, 1H), 3.84 (dd, J=11.1, 2.7 Hz, 2H), 3.30-3.15 (m, 5H), 2.80-2.60 (m, 2H), 2.37-1.79 (m, 8H), 1.70-1.50 (m, 4H), 1.50-1.35 (m, 1H), 1.30-1.15 (m, 3H), 0.95-0.80 (m, 2H), 0.70-0.60 (m, 1H), 0.55-0.45 (m, 1H), MS (ESI) m/e [M+1]+834.8.


Example C90: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, CDCl3) δ 10.28 (s, 1H), 9.42 (s, 1H), 8.94-8.88 (m, 1H), 8.56-8.50 (m, 1H), 8.20-8.15 (m, 2H), 8.02 (d, J=8.4 Hz, 1H), 7.68 (s, 1H), 7.65-7.53 (m, 11H), 7.47 (s, 1H), 7.20-7.10 (m, 2H), 7.08-7.04 (m, 1H), 6.98 (d, J=7.2 Hz, 1H), 6.92 (d, J=8.4 Hz, 1H), 6.61 (s, 1H), 6.55 (s, 1H), 5.92 (s, 0.5H), 5.83 (s, 0.5H), 4.75-4.55 (m, 1H), 4.02 (d, J=11.4 Hz, 2H), 3.55-3.35 (m, 3H), 3.30-3.20 (m, 2H), 2.80-2.55 (m, 2H), 2.22-1.80 (m, 8H), 1.75-1.55 (m, 4H), 1.50-1.35 (m, 2H), 1.00-0.80 (m, 2H), 0.70-0.62 (m, 1H), 0.60-0.50 (m, 1H), MS (ESI) m/e [M+1]+852.8.


Example C99: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-phenylazetidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-phenylazetidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.82 (s, 1H), 8.92 (s, 1H), 8.61-8.45 (m, 1H), 8.19-8.13 (m, 1H), 8.10-7.94 (m, 2H), 7.77-7.30 (m, 7H), 7.15-6.82 (m, 3H), 6.62-6.47 (m, 2H), 5.86-5.54 (m, 1H), 4.08-3.96 (m, 2H), 3.49 (s, 1H), 3.45-3.38 (m, 2H), 3.29-3.23 (m, 2H), 2.54-2.42 (m, 1H), 2.33-2.22 (m, 1H), 2.14-1.82 (m, 5H), 1.78-1.60 (m, 4H), 1.51-1.36 (m, 3H), 1.33-1.16 (m, 2H), MS (EST) m/e [M+1]+763.2.


Example C118: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylbenzyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylbenzyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example Cl2. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.73 (s, 1H), 8.59-8.55 (m, 2H), 8.03 (s, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.58-7.52 (m, 3H), 7.22-7.13 (m, 5H), 6.96 (d, J=6.2 Hz, 1H), 6.76 (t, J=11.4 Hz, 1H), 6.41 (s, 1H), 6.04 (s, 1H), 3.85 (d, J=8.7 Hz, 2H), 3.64 (s, 1H), 3.30-3.21 (m, 5H), 3.06-2.95 (m, 3H), 2.43 (s, 2H), 2.24 (s, 1H), 2.00 (dd, J=14.2, 6.8 Hz, 3H), 1.92-1.82 (m, 3H), 1.70 (s, 1H), 1.60 (d, J=12.3 Hz, 2H), 1.45 (s, 1H), 0.92-0.84 (m, 4H), 0.63 (s, 2H), MS (ESI, m/e) [M+1]+830.8.


Example C125: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(o-tolyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(o-tolyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.72 (s, 1H), 8.65-8.51 (m, 2H), 8.00 (d, J=2.2 Hz, 1H), 7.81 (dd, J=8.0 Hz, 2.2 Hz, 1H), 7.64-7.60 (m, 1H), 7.56-7.51 (m, 2H), 7.48 (d, J=8.0 Hz, 1H), 7.28-7.25 (m, 3H), 7.20-7.07 (m, 2H), 6.73 (d, J=8.0 Hz, 1H), 6.43-6.34 (m, 1H), 5.97-5.86 (m, 1H), 4.88-4.73 (m, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.30-3.21 (m, 6H), 2.54 (s, 2H), 2.35 (s, 3H), 2.30 (s, 2H), 2.33-2.23 (m, 2H), 2.15-2.05 (m, 1H), 1.92-1.78 (m, 2H), 1.63-1.55 (m, 2H), 1.30-1.21 (m, 5H). MS (ESI, m/e) [M+1]+791.2.


Example C126: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized starting from 2-(2-ethylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (br, 1H), 11.67 (s, 1H), 8.51 (s, 2H), 7.98 (s, 1H), 7.87-7.60 (m, 2H), 7.55-7.42 (m, 3H), 7.31-6.94 (m, 5H), 6.74 (s, 1H), 6.36 (s, 1H), 5.97-5.81 (m, 1H), 3.36 (s, 1H), 6.03-5.77 (m, 11H), 3.94-3.78 (m, 2H), 3.30-3.15 (m, 6H), 2.72-2.60 (m, 2H), 2.45-1.78 (m, 8H), 1.70-1.47 (m, 4H), 1.32-1.04 (m, 6H), MS (ESI) m/e [M+1]+763.2. MS (ESI) m/e [M+1]+805.2


Example C127: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-vinylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-vinylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) 5 ppm: 12.21 (s, 1H), 11.66 (s, 1H), 8.49 (s, 2H), 7.97 (s, 1H), 7.76 (s, 1H), 7.61-7.34 (m, 5H), 7.27-6.86 (m, 5H), 6.71 (s, 1H), 6.36 (s, 1H), 5.97-5.81 (m, 1H), 5.64 (br, 1H), 5.29 (s, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.28-3.22 (m, 3H), 3.08-2.82 (m, 1H), 2.29-2.07 (m, 6H), 1.88-1.79 (m, 2H), 1.70 (s, 1H), 1.60-1.45 (m, 3H), 1.39 (s, 1H), 1.30-1.01 (m, 4H), MS (ESI, m/e) [M+1]+803.2.


Example C128: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chloro-4-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-chloro-4-fluorophenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.68 (s, 1H), 8.52 (s, 2H), 7.99 (s, 1H), 7.79 (s, 1H), 7.68-7.61 (m, 11H), 7.59-7.41 (m, 3H), 7.31 (s, 1H), 7.23-6.99 (m, 3H), 6.72 (s, 1H), 6.37 (s, 1H), 6.00-5.85 (m, 1H), 4.11 (s, 1H), 3.84 (d, J=11.3 Hz, 2H), 3.30-3.22 (m, 5H), 2.99-2.90 (m, 3H), 2.19 (s, 3H), 1.88-1.82 (m, 2H), 1.70 (s, 2H), 1.59 (d, J=12.6 Hz, 3H), 1.25-1.18 (m, 4H), MS (ESI, m/e) [M+1]+829.1


Example C129: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-bromo-6-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-bromo-6-chlorophenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (s, 1H), 11.71 (s, 1H), 8.54 (s, 2H), 8.00 (s, 1H), 7.80 (s, 1H), 7.68-7.23 (m, 5H), 7.25-6.98 (m, 3H), 6.75-6.63 (m, 1H), 6.38 (s, 1H), 6.01-5.67 (m, 1H), 4.51 (s, 1H), 3.84 (d, J=7.8 Hz, 2H), 3.28-3.05 (m, 5H), 2.68-2.55 (s, 2H), 2.38-2.27 (m, 1H), 2.23-2.02 (m, 3H), 2.01-1.73 (m, 5H), 1.65-1.58 (m, 2H), 1.59-1.33 (m, 1H), 1.31-1.12 (m, 3H), MS (ESI, m/e) [M+1]+889.0, 891.0.


Example C131: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-cyclopentylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-cyclopentylpyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.59 (s, 1H), 9.06 (s, 1H), 8.43-8.29 (m, 2H), 7.95 (s, 1H), 7.69 (d, J=8.9 Hz, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.45 (s, 1H), 7.38 (s, 1H), 7.13 (d, J=8.0 Hz, 1H), 6.87 (d, J=8.9 Hz, 1H), 6.77 (s, 1H), 6.33 (s, 1H), 6.00 (s, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.65-3.55 (m, 1H), 3.30-3.15 (m, 6H), 2.48-2.40 (m, 1H), 2.41-2.32 (m, 1H), 2.08-1.95 (m, 3H), 1.95-1.78 (m, 4H), 1.78-1.70 (m, 3H), 1.69-1.65 (m, 4H), 1.55-1.40 (m, 3H), 1.30-1.15 (m, 6H), MS (ESI, m/e) [M+1]+768.8.


Example C132: 3-((I H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-butylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-butylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s, 1H), 11.65 (s, 1H), 8.48 (s, 2H), 7.96 (s, 1H), 7.74 (s, 1H), 7.62-7.39 (m, 4H), 7.27 (s, 1H), 7.17-6.94 (m, 3H), 6.72 (s, 1H), 6.35 (s, 1H), 6.06-5.77 (m, 1H), 3.90-3.78 (m, 2H), 3.27-2.94 (m, 6H), 2.72-2.58 (m, 3H), 2.29-2.09 (m, 3H), 2.02-1.94 (m, 2H), 1.93-1.80 (m, 2H), 1.77-1.66 (m, 2H), 1.64-1.52 (m, 2H), 1.52-1.39 (m, 2H), 1.35-1.18 (m, 8H), 0.92-0.75 (m, 4H), MS (ESI) m/e [M+1]+832.9.


Example C133: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(5-bromo-2-isopropoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(5-bromo-2-isopropoxyphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 8.95-8.80 (m, 1H ), 8.55-8.45 (m, 1H), 8.20-8.10 (m, 2H ), 8.05-7.95 (m, 1H), 7.75-7.60 (m, 2H), 7.50-7.40 (m, 1H ), 7.23-7.05 (m, 2H ), 6.95-6.80 (m, 1H ), 6.71-6.59 (m, 2H), 6.55-6.45 (m, 1H ), 5.97 (s, 0.5H), 5.83 (s, 0.5H ), 4.55-4.41 (m, 1H ), 4.16-3.94 (m, 3H), 3.42 (m, 2H), 3.30-3.15 (m, 3H ), 2.67-2.46 (m, 3H), 2.32-2.13 (m, 4H ), 2.10-1.94 (m, 3H ), 1.55-1.40 (m, 4H ), 1.31-1.24 (m, 9H ). MS (ESI, m/e) [M+1]+912.7 and 914.7.


Example C134: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(m-tolyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(m-tolyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)ph enyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.66 (s, 1H), 8.65-8.40 (m, 2H), 8.05-7.95 (m, 1H), 7.80-7.65 (m, 1H), 7.57-7.25 (m, 5H), 7.25-6.90 (m, 5H), 6.73 (s, 1H), 6.35 (s, 1H), 5.98 (s, 0.5H), 5.90 (s, 0.5H), 4.67-4.45 (m, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.65-3.65 (m, 1H), 3.30-3.22 (m, 4H), 3.20-1.85 (m, 3H), 2.35-2.20 (m, 5H), 2.11-1.94 (m, 4H), 1.90-1.80 (m, 1H), 1.65-1.55 (m, 2H), 1.50-1.40 (m, 1H), 1.30-1.15 (m, 3H), MS (ESI, m/e) [M+1]+790.8.


Example C135: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-isopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-isopropylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 11.92 (s, 1H), 11.57 (s, 1H), 8.45-8.30 (m, 2H), 7.92 (s, 1H), 7.70-7.60 (m, 1H), 7.50-7.40 (m, 2H), 7.38-7.25 (m, 2H), 7.24-6.97 (m, 4H), 6.90-6.80 (m, 1H), 6.72 (s, 1H), 6.31 (s, 1H), 5.98 (s, 0.5H), 5.86 (s, 0.5H), 3.83 (d, J=8.0 Hz, 3H), 3.30-3.20 (m, 5H), 2.40-2.00 (m, 6H), 1.95-1.82 (s, 2H), 1.80-1.70 (m, 2H), 1.60 (d, J=12.5 Hz, 3H), 1.50-1.40 (m, 2H), 1.31-1.08 (m, 9H), MS (ESI) m/e [M+1]+818.8.


Example C136: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-methoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-methoxyphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H), 11.68 (s, 1H), 8.61-8.46 (m, 2H), 7.98 (s, 1H), 7.84-7.70 (m, 1H), 7.58-7.43 (m, 3H), 7.39-7.30 (m, 1H), 7.26-6.93 (m, 5H), 6.73 (s, 1H), 6.37 (m, 1H), 4.67-4.54 (m, 1H), 3.90-3.80 (m, 2H), 3.76 (s, 3H), 3.31-3.19 (m, 4H), 3.10-2.87 (m, 3H), 2.43-2.36 (m, 2H), 2.13-1.99 (m, 4H), 1.92-1.81 (m, 2H), 1.67-1.54 (m, 4H), 1.32-1.20 (m, 4H), MS (ESI, m/e) [M+1]+806.8.


Example C137: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-cyanophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-(pyrrolidin-2-yl)benzonitrile and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI, m/e) [M+1]+801.8.


Example C138: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(3-vinylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-vinylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s, 1H), 11.63 (s, 1H), 8.46 (s, 2H), 7.95 (s, 1H), 7.76-7.61 (m, 2H), 7.56-7.32 (m. 6H), 7.16-7.04 (m, 1H), 7.02-6.88 (m, 1H), 6.69-6.63 (m, 2H), 6.34 (s, 1H), 6.0)-5.78 (m, 2H), 5.35-5.20 (m, 2H), 3.90-3.78 (m, 2H), 3.30-3.18 (m, 5H), 2.32-2.15 (m, 4H), 2.05-1.93 (m, 3H), 1.91-1.78 (m, 2H), 1.66-1.54 (m, 414), 1.52-1.38 (m, 1H), 1.35-1.24 (m, 3H), MS (ESI) m/e [M+1]+802.8.


Example C139: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(benzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(benzo[d][1,3]dioxol-4-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H), 11.69 (s, 1H), 8.65-8.45 (m, 214), 7.99 (s, 11H), 7.78 (d, J=8.8 Hz, 1H), 7.55-7.42 (m, 3H), 7.30-7.20 (m, 1H), 7.17 (d, J=8.8 Hz, 1H), 7.06 (d, J=8.8 Hz, 1H), 7.00-6.90 (m, 1H), 6.80-6.70 (m, 1H), 6.38 (s, 1H), 6.04 (s, 1H), 6.01 (s, 0.5H), 5.93 (s, 0.5H), 4.80-4.50 (m, 1H), 3.87-3.80 (m, 2H), 3.70-3.40 (m, 2H), 3.30-3.15 (m, 5H), 2.40-2.00 (m, 10H), 1.90-1.75 (m, 2H), 1.59 (d, J=12.1 Hz, 2H), 1.31-1.10 (m, 3H), MS (ESI, m/e) [M+1]+820.8.


Example C140: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,2-difluorobenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2,2-difluorobenzo[d][1,3]dioxol-4-yl) pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz. DMSO-d6) δ 12.11 (s, 1H), 11.66 (s, 1H), 8.58-8.42 (m, 2H), 8.05-7.95 (m, 1H), 7.80-7.70 (m, 1H), 7.55-7.41 (m, 3H), 7.30-7.16 (m, 2H), 7.15-7.06 (m, 2H), 7.05-6.95 (m, 1H), 6.75-6.65 (m, 1H), 6.36 (s, 1H), 6.01 (s, 0.5H), 5.83 (s, 0.5H), 4.05-3.95 (m, 11H), 3.90-3.75 (m, 2H), 3.27-3.18 (m, 4H), 3.15-2.94 (m, 1H), 2.25-2.05 (m, 4H), 2.02-1.95 (m, 2H), 1.90-1.80 (m, 2H), 1.75-1.65 (m, 2H), 1.60-1.55 (m, 3H), 1.50-1.40 (m, 1H), 1.35-1.15 (m, 3H), MS (ESI, m/e) [M+1]+818.9.


Example C141: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-3-methylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-3-methyl pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s, 1H), 11.66 (s, 1H), 8.65-8.35 (m, 2H), 7.97 (s, 1H), 7.76 (d, J=8.5 Hz, 1H), 7.65-7.35 (m, 4H), 7.37-6.85 (m, 5H), 6.73 (s, 1H), 6.36 (s, 1H), 5.98 (s, 0.5H), 5.85 (s, 0.5H), 4.60-4.20 (m, 1H), 3.84 (d, J=8.4 Hz, 2H), 3.30-3.10 (m, 5H), 2.40-2.05 (m, 5H), 2.04-1.75 (m, 4H), 1.70-1.35 (m, 5H), 1.33-1.12 (m, 3H), 0.95-0.80 (m, 2H), 0.78-0.66 (m, 1H), 0.60-0.25 (m, 4H), MS (ESI) m/e [M+1]+830.8.


Example C142: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-3,3-dimethylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-3,3-dimethyl pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d5) δ 12.24 (s, 1H), 11.67 (s, 1H), 8.65-8.40 (m, 2H), 7.98 (s, 1H), 7.85-7.80 (m, 1H), 7.69-7.20 (m, 5H), 7.15-6.80 (m, 4H), 6.72 (s, 1H), 6.36 (s, 1H), 6.04-5.71 (m, 1H), 4.30-4.10 (m, 11H), 3.84 (d, J=9.3 Hz, 2H), 3.75-3.50 (m, 1H), 3.30-3.20 (m, 4H), 3.10-2.90 (m, 1H), 2.80-2.60 (m, 1H), 2.41-1.79 (m, 8H), 1.35-1.20 (m, 5H), 1.15-1.05 (m, 3H), 1.10-0.65 (m, 5H), 0.60-0.35 (m, 3H), MS (ESI) m/e [M+1]+844.8.


Example C143: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(4-chloro-2-cyclopropylphenyl)pyrrolidine and methyl 3-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s, 1H), 11.68 (s, 1H), 8.64-8.47 (m, 2H), 7.98 (s, 1H), 7.77 (s, 1H), 7.50 (s, 4H), 7.25-7.01 (m, 4H), 6.73 (s, 1H), 6.37 (s, 1H), 6.05-5.95 (m, 0.5H), 5.90-5.85 (m, 0.5H), 4.45-4.25 (m, 1H), 3.89-3.79 (m, 2H), 3.25-3.10 (m, 5H), 3.04-2.16 (m, 5H), 2.06-1.70 (m, 5H), 1.64-1.57 (m, 2H), 1.49-1.38 (m, 2H), 1.34-1.26 (m, 3H), 0.99-0.85 (m, 4H), 0.79-0.54 (m, 1H), MS (ESI) m/e [M+1]+850.8.


Example C144: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(5-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(5-chloro-2-cyclopropylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 10.31 (s, 1H), 9.63 (s, 1H), 8.95-8.85 (m, 1H), 8.54 (t, J=4.9 Hz, 1H), 8.25-8.10 (m, 2H), 8.03 (d, J=8.4 Hz, 1H), 7.72-7.68 (m, 1H), 7.60 (d, J=23.7 Hz, 1H), 7.47 (s, 1H), 7.15-7.06 (m, 1H), 7.05-6.95 (m, 1H), 6.92 (d, J=8.4 Hz, 1H), 6.90-6.80 (m, 1H), 6.70-6.60 (m, 1H), 6.58-6.50 (m, 1H), 5.97 (s, 0.5H), 5.80 (s, 0.5H), 4.35-4.20 (m, 1H), 4.08-3.94 (m, 2H), 3.42 (t, J=11.8 Hz, 2H), 3.25 (t, J=5.9 Hz, 2H), 3.20-3.15 (m, 1H), 2.70-2.45 (m, 2H), 2.40-2.10 (m, 4H), 2.01-1.91 (m, 2H), 1.90-1.80 (m, 2H), 1.77-1.35 (m, 8H), 1.10-0.80 (m, 2H), 0.70-0.60 (m, 1H), 0.55-0.45 (m, 1H), MS (ESI) m/e [M+1]+850.7.


Example C145: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1,1-difluoroethyl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(1,1-difluoroethyl)phenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetra hydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI) m/e [M+1]+840.8.


Example C146: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(2,2,2-trifluoroethyl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(2,2,2-trifluoroethyl)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI) m/e [M+1]+858.8.


Example C152: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopentylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopentylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetra hydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI, m/e) [M+1]+844.8.


Example C161: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2,2-dimethylbenzo[d][1,3]dioxol-4-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2,2-dimethylbenzo[d][1,3]dioxol-4-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 9.39 (s, 1H), 8.91 (s, 1H), 8.59-8.49 (m, 1H), 8.23-8.10 (m, 2H), 8.03 (d, J=8.3 Hz, 1H), 7.68 (s, 1H), 7.46 (s, 1H), 7.08-7.03 (m, 2H), 6.92 (d, J=9.3 Hz, 1H), 6.82-6.70 (m, 1H), 6.67-6.51 (m, 3H), 5.96-5.75 (m, 1H), 4.07-4.0) (m, 2H), 3.49-3.33 (m, 2H), 3.31-3.21 (m, 2H), 2.93-2.81 (m, 2H), 2.43-2.24 (m, 4H), 2.17-1.88 (m, 8H), 1.82-1.68 (m, 3H), 1.68-1.61 (m, 3H), 1.61-1.48 (m, 3H), 1.47-1.39 (m, 3H), MS (ESI) m/e [M+1]+848.8.


Example C162: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-ethynylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-ethynylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.68 (s, 1H), 8.60-8.40 (m, 2H), 7.98 (s, 1H), 7.80-7.60 (m, 2H), 7.55-7.35 (m, 5H), 7.30-7.20 (m, 1H), 7.18-6.96 (m, 2H), 6.72 (s, 1H), 6.37 (s, 1H), 6.05-5.85 (m, 1H), 4.80-4.50 (m, 1H), 4.35-4.15 (m, 1H), 3.89-3.73 (m, 2H), 3.30-3.18 (m, 5H), 2.40-2.25 (m, 3H), 2.20-1.95 (m, 5H), 1.90-1.80 (m, 2H), 1.75-1.65 (m, 1H), 1.59 (d, J=11.7 Hz, 2H), 1.50-1.35 (m, 1H), 1.31-1.16 (m, 3H), MS (ESI) m/e [M+1]+800.8.


Example C163: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-cyano-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)pyrrolidine-3-carbonitrile and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s, 1H), 11.69 (s, 1H), 8.65-8.45 (m, 2H), 8.05-7.95 (m, 1H), 7.79 (d, J=8.9, 1H), 7.55-7.40 (m, 4H), 7.20-6.94 (m, 5H), 6.74-6.68 (m, 1H), 6.02 (s, 0.5H), 5.81 (s, 0.5H), 4.64-4.47 (m, 1H), 3.91-3.78 (m, 2H), 3.29-3.15 (m, 5H), 3.05-2.95 (m, 2H), 2.8-2.74 (m, 1H), 2.26-1.81 (m, 10H), 1.64-1.52 (m, 3H), 1.30-1.15 (m, 3H), 0.99-0.88 (m, 2H), 0.79-0.68 (m, 1H), 0.63-0.50 (m, 1H), MS (ESI) m/e [M+1]+841.8.


Example C164: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-3-ethynylpyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-3-ethynylpyrrolidin and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphen yl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.21 (s, 1H), 11.68 (s, 1H), 8.67-8.40 (m, 2H), 7.98 (s, 1H), 7.84-7.72 (m, 1H), 7.56-7.36 (m, 4H), 7.17-7.08 (m, 4H), 6.94 (s, 1H), 6.71 (s, 1H), 6.37 (s, 1H), 6.06-5.75 (m, 1H), 4.35-4.05 (m, 1H), 3.91-3.76 (m, 2H), 3.30-3.20 (m, 4H), 3.15-3.05 (m, 2H), 2.40-1.95 (m, 8H), 1.90-1.65 (m, 4H), 1.64-1.55 (m, 2H), 1.50-1.35 (m, 2H), 1.30-1.10 (m, 2H), 1.05-0.95 (m, 1H), 0.85-0.80 (m, 1H), MS (ESI) m/e [M+1]+840.8.


Example C165: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-methoxyphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-methoxyphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ 11.54 (s. 1H), 8.38-8.33 (m, 2H), 7.91 (s, 1H), 7.69-7.60 (m, 1H), 7.58-7.38 (m, 3H), 7.30 (d, J=6.1 Hz, 1H), 7.24-7.02 (m, 2H), 6.95-6.78 (m, 3H), 6.73 (s, 1H), 6.30 (s, 1H), 5.98-5.79 (m, 1H), 4.12 (s, 1H), 3.83 (d, J=8.4 Hz, 2H), 3.76 (s, 3H), 3.30-3.21 (m, 4H), 3.15-2.95 (m, 2H), 2.25-2.15 (m, 1H), 2.06 (d, J=18.4, 6.0 Hz, 2H), 2.03-1.97 (m, 3H), 1.95-1.82 (m, 1H), 1.72-1.56 (m, 5H), 1.48-1.45 (m, 11H), 1.30-1.20 (m, 3H), MS (ESI, m/e) [M+1]+806.8.


Example C166: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(benzo[b]thiophen-3-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(benzo[b]thiophen-3-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s, 1H), 11.66 (s, 1H), 8.60-8.40 (m, 2H), 8.10-7.85 (m, 3H), 7.80-7.65 (m, 1H), 7.60-7.25 (m, 6H), 7.18-6.88 (m, 2H), 6.70 (s, 1H), 6.36 (s, 1H), 5.98 (s, 0.5H), 5.86 (s, 0.5H), 4.22 (s, 1H), 3.83 (d, J=8.4 Hz, 2H), 3.30-3.10 (m, 5H), 2.40-2.20 (m, 7H), 2.10-1.85 (m, 3H), 1.65-1.40 (m, 4H), 1.30-1.15 (m, 3H).


Example C167: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-(2-chlorophenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-da) δ ppm: 12.32 (s, 1H), 11.70 (s, 1H), 8.65-8.45 (m, 2H), 8.02 (d, J=2.1 Hz, 1H), 7.80 (d, J=9.0 Hz, 1H), 7.65-7.45 (m, 5H), 7.38 (t, J=7.5 Hz, 1H), 7.32 (t, J=7.5 Hz, 1H), 7.24 (d, J=8.4 Hz, 1H), 7.07 (d, J=9.0 Hz, 1H), 6.80 (s, 1H), 6.39 (s, 1H), 6.04 (s, 1H), 3.90-3.65 (m, 4H), 3.30-3.20 (m, 5H), 2.70-2.55 (m, 1H), 2.45-2.30 (m, 4H), 2.25-2.15 (m, 1H), 2.10-1.91 (m, 2H), 1.90-1.70 (m, 3H), 1.60 (d, J=11.9 Hz, 2H), 1.34-1.15 (m, 3H), MS (ESI) m/e [M+1]+810.8.


Example C168: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(5-cyclopropyl-2-fluorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(5-cyclopropyl-2-fluorophenyl) pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl) oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (DMSO-d6) δ ppm: 12.23 (s, 0.5H), 11.66 (s, 1H), 8.50 (s, 2H), 7.97 (s, 1H), 7.82-7.73 (m, 1H), 7.55-7.39 (m, 3H), 7.34-6.83 (m, 5H), 6.75 (s, 1H), 6.36 (s, 1H), 6.07-5.84 (m, 1H), 4.10-4.00 (m, 1H), 3.94-3.75 (m, 2H), 3.30-3.15 (m, 5H), 2.34-2.00 (m, 6H), 1.86 (s, 3H), 1.75-1.65 (m, 1H), 1.65-1.53 (m, 3H), 1.51-1.40 (m, 1H), 1.35-1.15 (m, 5H), 0.99-0.76 (m, 2H), 0.72-0.44 (m, 2H). MS (ESI) m/e [M+1]+834.8.


Example C169: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl) oxy)-4′-(2-(2-chloro-5-cyclopropylphenyl) pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl) methyl) amino) phenyl) sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(5-cyclopropyl-2-chlorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI) m/e [M+1]+850.7.


Example C170: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-methylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(5-cyclopropyl-2-chlorophenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (DMSO-d6) δ ppm: 12.24 (s, 0.3H), 11.61 (s, 1H), 8.45 (s, 2H), 7.95 (s, 1H), 7.76-7.63 (m, 1H), 7.52-7.32 (m, 4H), 7.11 (d, J=7.9, 1H), 7.06-6.72 (m, 4H), 6.33 (s, 1H), 6.04-5.80 (m, 1H), 4.26 (s, 1H), 3.91-3.78 (m, 2H), 3.25-3.17 (m, 5H), 2.38-2.07 (m, 8H), 2.05-1.81 (m, 4H), 1.72 (s, 1H), 1.65-1.52 (m, 3H), 1.30-1.17 (m, 3H), 0.98-0.79 (m, 2H), 0.70-0.40 (m, 2H), MS (ESI) i/e [M+1]+830.8.


Example C171: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-((2-(dimethylamino)ethyl)(methyl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with N1-(4-cyclopropyl-3-(pyrrolidin-2-yl)phenyl)-N1,N2,N2-trimethylethane-1,2-diamine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example Cl2. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.53 (s, 1H), 8.38 (s, 1H), 8.35-8.31 (m, 1H), 7.91 (s, 1H), 7.64 (d, J=8.8 Hz, 1H), 7.48 (d, J=8.0 Hz, 1H), 7.42 (s, 1H), 7.29 (s, 1H), 7.06-7.00 (m, 2H), 6.82-6.71 (m, 3H), 6.35-6.29 (m, 2H), 5.99 (s, 0.5H), 5.85 (s, 0.5H), 4.26-4.20 (m, 1H), 3.84 (d, J=8.8 Hz, 2H), 3.27-2.98 (m, 8H), 2.85-2.65 (m, 5H), 2.34-2.15 (m, 5H), 2.13-1.92 (m, 8H), 1.83-1.66 (m, 4H), 1.61 (d, J=12.8 Hz, 2H), 1.45-1.35 (m, 4H), 0.85-0.74 (m, 2H), 0.58-0.34 (m, 2H), MS (ESI, m/e) [M+1]+916.8.


Example C172: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropyl-5-((2-(dimethylamino)ethyl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with N1-(4-cyclopropyl-3-(pyrrolidin-2-yl)phenyl)-N2,N2-dimethylethane-1,2-diamine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example Cl2. 1H NMR (DMSO-d6) δ ppm: 12.30 (s, 1H), 11.73 (s, 1H), 10.06-9.35 (m, 2H), 8.67-8.48 (m, 2H), 8.05-7.95 (m, 1H), 7.87-7.76 (m, 1H), 7.60-7.39 (m, 3H), 7.22-7.06 (m, 2H), 6.96-6.71 (m, 3H), 6.57 (d, J=8.4 Hz, 1H), 6.45-6.32 (m, 1H), 5.97 (d, J=26.4 Hz, 1H), 5.18-4.98 (m, 1H), 3.87-3.80 (m, 2H), 3.75-3.63 (m, 1H), 3.49-3.17 (m, 10H). 2.89-2.72 (m, 6H), 2.47-2.27 (m, 4H), 2.17-1.81 (m, 6H), 1.73-1.55 (m, 3H), 1.28-1.18 (m, 2H), 0.90-0.79 (m, 2H), 0.61-0.38 (m, 2H), MS (ESI, m/e) [M+1]+902.8.


Example C173: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(but-1-en-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(but-1-en-1-yl)phenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI, m/e) [M+1]+830.8.


Example C174: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(cyclopropyl(methyl)amino)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with N-cyclopropyl-N-methyl-2-(pyrrolidin-2-yl)aniline and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.48-12.08 (m, 0.5H), 11.68 (s, 1H), 9.84-9.42 (m, 0.5H), 7.99 (s, 1H), 8.81-8.26 (m, 2H), 7.87-6.85 (m, 10H), 6.74-6.53 (m, 1H), 6.38 (s, 1H), 5.93-5.75 (m, 1H), 5.41-5.23 (m, 1H), 5.00-4.61 (m, 1H), 3.90-3.75 (m, 2H), 3.28-2.86 (m, 9H), 2.71-2.60 (m, 3H), 2.38-1.78 (m, 11H), 1.65-1.38 (m, 4H), 0.61-0.26 (m, 2H), MS (ESI, m/e) [M+1]+845.8.


Example C175: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 1H), 8.52-8.18 (m, 2H), 7.98-7.81 (m, 1H), 7.74-6.78 (m, 11H), 6.72 (s, 1H), 6.30 (s, 1H), 6.02-5.73 (m, 1H), 5.55-5.26 (m, 1H), 3.88-3.77 (m, 2H), 3.62-3.39 (m, 7H), 3.28-3.02 (m, 7H), 3.02-2.65 (m, 3H), 2.30-1.30 (m, 12H), 1.07-0.98 (m, 2H), MS (ESI, m/e) [M+1]+871.8.


Example C176: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-acetyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-(4-(2-(pyrrolidin-2-yl)phenyl)-3,6-dihydropyridin-1 (2H)-yl)ethan-1-one and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43-12.02 (m, 0.3H), 11.63 (s, 1H), 9.98-9.26 (m, 0.7H), 8.71-8.22 (m, 2H), 8.22-6.53 (m, 13H), 6.34 (s, 1H), 6.07-5.73 (m, 1H), 5.60-5.41 (m, 1H), 4.12-3.97 (m, 2H), 3.87-3.78 (m, 2H), 3.70-3.42 (m, 7H), 3.28-3.18 (m, 3H), 3.16-2.92 (m, 1H), 2.25-1.24 (m, 16H), 1.08-0.98 (m, 2H), MS (ESI, m/e) [M+1]+899.8.


Example C177: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-cyclopropylthiophen-2-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(4-cyclopropylthiophen-2-yl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.19 (s, 0.5H), 11.67 (s, 1H), 9.65 (s, 0.5H), 8.50 (s, 2H), 7.99 (s, 1H), 7.76 (d, J=7.5 Hz, 1H), 7.49 (s, 3H), 7.20-6.88 (m, 3H), 6.75 (s, 2H), 6.37 (s, 1H), 6.01-5.88 (m, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.30-3.15 (m, 5H), 3.10-2.91 (m, 2H), 2.33-2.10 (m, 6H), 1.95-1.75 (m, 4H), 1.70-1.55 (m, 4H), 1.35-1.21 (m, 3H), 0.91-0.75 (m, 2H), 0.75-0.55 (m, 2H), MS (ESI, m/e) [M+1]+822.7.


Example C178: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(1-cyclopropyl-1H-pyrazol-3-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-cyclopropyl-3-(pyrrolidin-2-yl)-1H-pyrazole and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI, m/e) [M+1]+806.8.


Example C179: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(4-chloro-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-chloro-2-(2-cyclopropylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (DMSO-d6) δ ppm: 12.28 (s, 1H), 11.76 (s, 1H), 8.71-8.57 (m, 2H), 8.10-8.01 (m, 1H), 7.91-7.83 (m, 11H), 7.80-7.49 (m, 5H), 7.25-6.92 (m, 6H), 6.81-6.74 (m, 1H), 6.48-6.41 (m, 1H), 6.11-6.02 (m, 0.5H), 5.90-5.83 (m, 0.5H), 4.71-4.62 (m, 1H), 4.49-4.36 (m, 1H), 3.93-3.86 (m, 2H), 3.35-3.29 (m, 4H), 3.18-3.09 (m, 1H), 3.03-2.94 (m, 1H), 2.69-2.59 (m, 1H), 2.29-2.21 (m, 2H), 2.14-1.73 (m, 6H), 1.68-1.61 (m, 2H), 1.34-1.26 (m, 4H), 0.95-0.87 (m, 2H), 0.73-0.54 (m, 2H), MS (ESI, m/e) [M+1]+850.7.


Example C180: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-methylenepyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfanyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-cyclopropylphenyl)-4-methylenepyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 0.5H)), 11.65 (s, 1H), 9.71-9.48 (m, 0.5H), 8.49 (s, 2H), 7.97 (s, 1H), 7.75 (s, 1H), 7.56-7.34 (m, 4H), 7.12-6.94 (m, 5H), 6.72 (s, 1H), 6.35 (s, 1H), 5.99 (s, 0.5H), 5.86 (s, 0.5H), 4.92 (s, 1H), 4.84 (s, 1H), 4.48-4.39 (m, 1H), 3.83 (s, 2H), 3.69 (d, J=13.8 Hz, 1H), 3.30-3.15 (m, 5H), 2.99-2.78 (m, 2H), 2.18-2.11 (m, 6H), 1.96-1.65 (m, 3H), 1.63-1.55 (m, 2H), 1.26-1.21 (m, 3H), 0.96-0.81 (m, 3H), MS (ESI, m/e) [M+1]+828.8.


Example C181: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-2 (1H)-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-(2-cyclopropylphenyl)octahydrocyclopenta[c]pyrrole and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI, m/e) [M+1]+856.8.


Example C182: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(1-phenylisoindolin-2-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-phenylisoindoline and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. MS (ESI, m/e) [M+1]+824.8.


Example C183: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-((2-cyclopropylphenyl)(methoxy)methyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-((2-cyclopropylphenyl)(methoxy)methyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.72 (s, 1H), 8.56 (s, 2H), 8.03 (s, 1H), 7.81 (s, 1H), 7.54-7.52 (m, 2H), 7.43 (s, 1H), 7.26-7.21 (m, 4H), 7.06 (s, 1H), 6.79 (s, 1H), 6.66 (s, 1H), 6.39 (s, 1H), 6.06 (s, 1H), 5.04 (s, 1H), 4.07 (s, 1H), 3.84 (d, J=9.1 Hz, 3H), 3.67 (s, 1H), 3.51 (s, 3H), 3.25-3.23 (m, 4H), 3.06-2.97 (m, 7H), 2.03-1.97 (m, 3H), 1.88 (s, 2H), 1.60 (d, J=12.8 Hz, 2H), 1.47-1.43 (m, 2H), 0.97 (s, 2H), 0.86-0.84 (m, 4H), MS (ESI, m/e) [M+1]+860.8.


Example C184: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-isopropylbenzyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-isopropylbenzyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d4) δ ppm: 11.63 (s, 1H), 9.70-9.28 (m, 1H), 8.50-8.40 (m, 2H), 7.98 (s, 1H), 7.72 (d, J=8.4, 1H), 7.56-7.45 (m 3H), 7.30-7.10 (m, 6H), 6.92 (s, 1H), 6.82-6.73 (m, 1H), 6.36 (s, 1H), 6.04 (s, 1H), 3.90-3.80 (m, 3H), 3.30-3.20 (m, 7H), 3.08 (s, 1H), 2.85 (s, 1H), 2.41-2.32 (m, 1H), 2.14 (s, 1H), 1.90-1.80 (m, 6H), 1.65-1.56 (m, 3H), 1.32-1.10 (m, 10H), MS (EST) m/e [M+1]+832.8.


Example C185: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-(2-cyclopropylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI) m/e [M+1]+816.8.


Example C186: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(3-(2-isopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-(2-isopropylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. MS (ESI) m/e [M+1]+818.8.


Example C189: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-fluoro-2-methylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-fluoro-2-methylphenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.22 (s, 1H), 11.68 (s, 1H ), 8.70-8.40 (m, 2H ), 8.02-7.95 (m, 1H), 7.85-7.75 (m, 1H), 7.60-7.31 (m, 4H), 7.20-6.90 (m, 3H ), 6.85-6.75 (m, 1H ), 6.71 (s, 1H), 6.37 (s, 1H ), 5.99 (s, 0.5H), 5.80 (s, 0.5H ), 4.05-3.90 (m, 1H), 3.85-3.80 (m, 3H ), 3.35-3.20 (m, 5H), 2.55-2.40 (m, 2H ), 2.25-2.10 (m, 6H), 2.00-1.80 (m, 2H), 1.75-1.65 (m, 3H ), 1.60-1.55 (m, 3H ), 1.31-1.17 (m, 3H ). MS (ESI, m/e) [M+1]+809.2.


Example C190: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(2-methylprop-1-en-1-yl)phenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(2-(2-methylprop-1-en-1-yl)phenyl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.62 (s, 1H), 8.46 (s, 2H), 7.95 (s, 1H), 7.78-7.66 (m, 2H), 7.53-7.36 (m, 4H), 7.15-6.92 (m, 4H), 6.69 (d, J=8.0 Hz, 1H), 6.40-6.28 (m, 2H), 5.94 (s, 0.5H), 5.82 (s, 0.5H), 3.92-3.77 (m, 3H), 3.28-3.22 (m, 5H), 3.18-2.95 (m, 2H), 2.23-1.95 (m, 5H), 1.82 (s, 6H), 1.64-1.45 (m, 7H), 1.31-1.16 (m, 3H), MS (ESI, m/e) [M+1]+831.2.


Example C191: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(benzo[b]thiophen-2-yl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl))methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(benzo[b]thiophen-2-yl)pyrrolidine and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C12. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.19 (s, 1H), 11.67 (s, 1H), 8.58-8.52 (m, 2H), 7.98 (s, 1H), 7.94-7.60 (m, 3H), 7.54-7.40 (m, 3H), 7.28 (s, 3H), 7.18-7.00 (m, 2H), 6.72 (s, 1H), 6.36 (s, 1H), 6.01-5.95 (m, 1H), 4.23 (s, 1H), 3.84 (d, J=8.5 Hz, 2H), 3.28-3.22 (m, 4H), 3.05 (s, 1H), 2.70 (s, 1H), 2.33-2.14 (m, 5H), 2.04-1.95 (m, 1H), 1.86 (s, 2H), 1.79-1.71 (m, 1H), 1.59 (d, J=13.0 Hz, 2H), 1.47 (s, 1H), 1.27-1.23 (s, 4H), MS (ESI, m/e) [M+1]+833.1.


Example C192: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(4-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(4-cyclopropylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 8.43 (m, 2H), 7.94 (s, 1H), 7.68 (m, 1H), 7.48-7.46 (m, 2H), 7.37-7.12 (m, 3H), 7.10-7.04 (m, 3H), 6.92 (m, 1H), 6.74 (s, 1H), 6.33 (s, 1H), 5.97 (s, 0.5H), 5.89 (s, 0.5H), 3.85 (d, J=8.0 Hz, 2H), 3.27-3.23 (m, 6H), 2.27-2.01 (m, 5H), 1.87-1.64 (m, 6H), 1.61 (d, J=12.8 Hz, 2H), 1.45-1.43 (m, 2H), 1.20-1.16 (m, 3H), 0.93-0.86 (m, 2H), 0.68-0.64 (m, 2H), MS (ESI, m/e) [M+1]+817.2.


Example C193: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(1-butylhexahydrocyclopenta[c]pyrrol-2 (1H)-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 1-butyloctahydrocyclopenta[c]pyrrole and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.27 (s, 1H), 11.71 (s, 1H), 10.25-9.75 (m, 1H), 8.66-8.49 (m, 2H), 8.02 (s, 1H), 7.81 (d, J=8.6 Hz, 1H), 7.61-7.46 (m, 3H), 7.21 (d, J=8.6 Hz, 1H), 7.14-7.08 (m, 1H), 6.79-6.70 (m, 1H), 6.40 (s, 1H), 6.09-5.93 (m, 1H), 3.91-3.78 (m, 2H), 3.65-3.51 (m, 2H), 3.30-3.17 (m, 5H), 3.15-3.08 (m, 1H), 2.98-2.95 (m, 1H), 2.77-2.64 (m, 2H), 2.49-2.32 (m, 4H), 1.95-1.87 (m, 2H), 1.70-1.45 (m, 11H), 1.39-1.17 (m, 5H), 0.92-0.80 (m, 3H), MS (ESI) m/e [M+1]+796.8.


Example C194: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-methylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon 1-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 2-(3-chloro-2-methylphenyl)pyrrolidine and methyl 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate following the next procedures similar to those in Example C1. 1H NMR (400 MH z, DMSO-d5) δ ppm: 12.23 (s, 1H), 11.68 (s, 1H), 8.65-8.45 (m, 2H), 7.99 (d, J=4.7 Hz, 1H), 7.85-7.70 (m, 1H), 7.60-7.30 (m, 4H), 7.25-6.85 (m, 4H), 6.75-6.65 (m, 1H), 6.37 (s, 1H), 6.00 (s, 0.5H), 5.76 (s, 0.5H), 4.25-4.05 (m, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.30-3.10 (m, 5H), 2.40-2.01 (m, 8H), 1.90-1.80 (m, 2H), 1.78-1.50 (m, 5H), 1.46-1.11 (m, 5H), MS (ESI) m/e [M+1]+824.8.


Example C195: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with tert-butyl 4-(2-(pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl) amino)phenyl)sulfonyl)-4′-oxo-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide following the procedure similar to those in Example C66. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H), 8.42-8.28 (m, 2H), 7.90 (s, 1H), 7.67-7.58 (m, 1H), 7.57-7.37 (m, 4H), 7.31-7.24 (m, 1H), 7.15-7.00 (m, 3H), 6.98-6.89 (m, 2H), 6.85-6.73 (m, 1H), 6.77-6.66 (m, 1H), 6.29 (s, 1H), 5.84-5.74 (m, 1H), 5.52-5.38 (m, 1H), 3.92-3.78 (m, 4H), 3.32-3.19 (m, 6H), 3.16-3.05 (m, 3H), 2.91-2.79 (m, 2H), 2.04-1.91 (m, 3H), 1.88-1.75 (m, 3H), 1.63-1.54 (m, 3H), 1.51-1.38 (m, 3H), 1.20-1.08 (m, 2H), 0.80-0.70 (m, 2H), MS (ESI, m/e) [M+1]+806.8.


Example D1a and Example D1b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide: (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: methyl 2-fluoro-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzoate



embedded image


The mixture of methyl 4-bromo-2-fluorobenzoate (2.33 g, 10 mmol), 4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-1,3,2-dioxaborolane (2.93 g, 11 mmol), 1,1′-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (731 mg, 1 mmol), K2CO3 (3.45 g, 25 mmol) in a solution of 1,4-dioxane (100 mL) and water (5 mL) was heated to 90° C., and stirred overnight. After cooled to room temperature, the reaction mixture was concentrated in vacuum and purified by chromatography column on silica (eluent: EA/PE=1/5) to give the product (2.7 g, 92.46%) as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.87 (t, J=8.0 Hz, 1H), 7.24 (d, J=8.0 Hz, 1H), 7.16 (d, J=8.0 Hz, 1H), 6.16-6.11 (m, 1H), 4.03 (s, 4H), 3.92 (s, 3H), 2.64-2.62 (m, 2H), 2.50-2.48 (m, 2H), 1.93-1.82 (m, 2H).


Step 2: methyl 2-fluoro-4-(1,4-dioxaspiro 4.5 decan-8-yl)benzoate



embedded image


The mixture of methyl 2-fluoro-4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)benzoate (2.7 g, 9.24 mmol) and Pd/C (0.5 g) in MeOH (100 mL) was stirred overnight under H2 atmosphere (1 atm) at room temperature. The mixture was filtrated, then the filtrate was concentrated in vacuum to afford the tittle product (2.6 g, 95.61%) as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.85 (t, J=8.0, 1H), 7.09 (d, J=8.0 Hz, 1H), 7.03 (d, J=12.0 Hz, 1H), 4.03 (s, 4H), 3.93 (s, 3H), 2.60-2.57 (m, 1H), 1.88-1.86 (m, 4H), 1.79-1.65 (m, 4H).


Step 3: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,4-dioxaspiro[4.5]decan-8-yl)benzoate



embedded image


The mixture of methyl 2-fluoro-4-(1,4-dioxaspiro[4.5]decan-8-yl)benzoate (2.6 g, 8.83 mmol) and 1H-pyrrolo[2,3-b]pyridin-5-ol (1.42 g, 10.60 mmol) and Cs2CO3 in DMF (100 mL) was heated to 100° C., and stirred overnight. After cooled to room temperature, the reaction mixture was concentrated in vacuum and purified by chromatography column on silica (eluent: EA/PE=1/5) to give the product (1.16 g, 32.20%) as a yellow solid. MS (ESI, m/e) [M+1]+409.1


Step 4: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoate



embedded image


The mixture of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(1,4-dioxaspiro[4.5]decan-8-yl)benzoate (1.16 g, 2.85 mmol) and HCl acid (6M, 4 mL) in EA (50 mL) was stirred for 30 mins at room temperature. The reaction was quenched with NaOH (1 M) solution and adjusted to pH ˜8, washed with brine, dried over Na2SO4 and concentrated in vacuum to afford the tittle product (1.03 g) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ ppm: 10.37 (br, 1H), 8.20 (s, 1H), 7.91 (d, J=8.0 Hz, 1H), 7.61 (s, 1H), 7.41 (s, 1H), 7.03 (d, J=8.0 Hz, 1H), 6.75 (s, 1H), 6.48 (s, 1H), 3.88 (s, 3H), 2.96-2.90 (m, 1H), 2.45-2.61 (m, 4H), 2.15-2.05 (m, 2H), 1.86-1.80 (m, 2H), MS (ESI, m/e) [M+1]+365.1


Step 5: (cis- or trans-) methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)benzoate; (trans- or cis-)methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)benzoate



embedded image


The mixture of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoate (437 mg, 1.20 mmol), 2-(2-chlorophenyl)pyrrolidine (262 mg, 1.44 mmol), AcOH (0.2 mL) in MeOH was stirred for 1 hour at room temperature. To the reaction was added NaCNBH3 (276 mg, 4.40 mmol) and stirred for another 1 hour. Then the reaction mixture was concentrated in vacuum and purified by chromatography column on silica: with the eluent of EA/PE=1/5 to give the faster isomer P1 (130 mg, 20.43%) as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 9.29 (br, 1H), 8.19-8.15 (m, 1H), 7.86 (d, J=8.0, 1H), 7.68-7.65 (m, 11H), 7.53-7.49 (m, 1H), 7.36-7.27 (m, 11H), 7.21-7.18 (m, 1H), 6.98-6.93 (m, 3H), 6.71 (s, 1H), 6.47-6.42 (m, 1H), 4.22 (d, J=8.0, 1H), 3.84 (s, 3H), 3.24-3.18 (m, 1H), 2.60-2.53 (m, 211), 2.43-2.38 (m, 2H), 2.19-2.15 (m, 11H), 1.83-1.71 (m, 5H), 1.49-1.43 (m, 4H), 1.36-1.24 (m, 2H), MS (ESI, m/e) [M+1]+530.1; then with the eluent of EA/PE=1/1 to give the slower isomer P2 (70 mg, 11.00%) as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 8.86 (br, 1H), 8.15-8.11 (m, 111), 7.84 (d, J=8.0, 1H), 7.70 (d, J=8.0, 1H), 7.52-7.47 (m, 11H), 7.34-7.25 (m, 2H), 7.21 (t, J=8.0, 1H), 7.11 (t, J=8.0, 1H), 6.95 (d, J=8.0, 1H), 6.66 (s, 1H), 6.46-6.42 (m, 1H), 4.22-4.17 (m, 1H), 3.84 (s, 3H), 3.24-3.15-3.10 (m, 1H), 2.60-2.53 (m, 2H), 2.37-2.29 (m, 2H), 2.21-2.08 (m, 1H), 1.81-1.72 (m, 5H), 1.56-1.50 (m, 2H), 1.32-1.21 (m, 4H), MS (ESI, m/e) [M+1]+530.1.


Step 6: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid



embedded image


The mixture of (cis- or trans-) methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)benzoate (P1) (130 mg, 0.25 mmol) in a solution of MeOH (10 mL)/THF (2 mL)/H2O (1 mL) was added NaOH (100 mg, 2.5 mmol) and stirred overnight. Then the reaction was quenched with HCl acid (6N) and adjusted to pH ˜4, extracted with DCM (20 mL), washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuum to afford a crude product (142 mg, crude). MS (ESI, m/e) [M+1]+516.1.


Step 7: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide (D1a)



embedded image


The mixture of (cis- or trans-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid (142 mg, 0.28 mmol, product of step 6), triethylamine (85 mg, 0.84 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (125 mg, 0.33 mmol) in DCM (20 mL) was stirred for 2 hours. To the resulting reaction were added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (104 mg, 0.33 mmol) and DMAP (3 mg, 0.03 mmol) and stirred overnight. The reaction mixture was concentrated in vacuum and purified by chromatography column on silica (eluent: PE/EA=1/1 to DCM/MeOH=10/1) to afford a crude product, which was purified with Pre-TLC (DCM/MeOH, 25/1) to give the product Example D1a (17.5 mg, 7.71%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (br, 1H), 11.78 (br, 1H), 8.61 (m, 2H), 8.05 (s, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.63 (s, 1H), 7.55 (m, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.45 (d, J=8.0 Hz, 1H), 7.27 (d, J=8.0 Hz, 1H), 7.16 (d, J=8.0 Hz, 1H), 7.00 (t, J=8.0 Hz, 1H), 6.94 (d, J=8.0 Hz, 1H), 6.86 (t, J=8.0 Hz, 1H), 6.51 (s, 1H), 6.44 (s, 1H), 4.10 (d, J=8.0 Hz, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.30-3.23 (m, 5H), 3.16-3.10-3.04 (m, 2H), 2.67-2.55 (m, 1H), 2.42-2.33 (m, 3H), 2.13-1.99 (m, 2H), 1.87-1.82 (m, 2H), 1.67-1.58 (m, 4H), 1.41-1.26 (m, 6H), MS (ESI, m/e) [M+1]+813.2.


Example D1b: (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using the slower isomer P2 in the hydrolysis reaction of step 6 and then proceeded with a condensation reaction following similar procedure of Example D1a gave Example D1b (11 mg, 8.46%). H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (br, 1H), 11.68 (br, 1H), 8.51-8.42 (m, 2H), 7.97 (s, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.68-7.65 (m, 1H), 7.50-7.47 (m, 2H), 7.42 (d, J=8.0 Hz, 1H), 7.34-7.30 (m, 2H), 7.20-7.16 (m, 1H), 7.07-7.01 (m, 1H), 6.98 (d, J=8.0 Hz, 1H), 6.60 (s, 1H), 6.38 (s, 1H), 4.14 (m, 1H), 3.85 (d, J=12.0 Hz, 2H), 3.26-3.22 (m, 5H), 3.13-2.98 (m, 2H), 2.67-2.59 (m, 1H), 2.33-2.18 (m, 4H), 2.03-1.97 (m, 1H), 1.86-1.80 (m, 2H), 1.68-1.57 (m, 8H), 1.45-1.26 (m, 2H), MS (ESI, m/e) [M+1]+813.2.


Example D2a and Example D2b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; and (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(2-cyclopropylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D2a and D2b were obtained correspondingly.


Example D2a: 12.16 (br, 1H), 11.73-11.67 (m, 1H), 8.55 (m, 2H), 8.03-7.97 (m, 1H), 7.81-7.58 (m, 2H), 7.49-7.43 (m, 3H), 7.24-6.92 (m, 3H), 6.87-6.81 (m, 1H), 6.67 (m, 1H), 6.53 (s, 1H), 6.42-6.36 (m, 1H), 5.13 (m, 0.5H), 4.23 (m, 0.5H), 3.85 (d, J=8.0 Hz, 2H), 3.70 (m, 1H), 3.40 (m, 1H), 3.28-3.16 (m, 5H), 2.67 (m, 1H), 2.42-1.87 (m, 8H), 1.67 (m, 2H), 1.61 (d, J=12.0 Hz, 2H), 1.45-1.23 (m, 6H), 0.91-0.85 (m, 2H), 0.69-0.45 (m, 2H), MS (ESI, m/e) [M+1]+819.2
Example D2b: 12.26 (br, 1H), 11.88 (br, 1H), 8.48 (m, 2H), 7.95 (s, 1H), 7.74 (m, 1H), 7.51-7.43 (m, 3H), 7.30 (m, 2H), 7.09-6.94 (m, 4H), 6.59 (s, 1H), 6.36 (s, 1H), 5.14 (m, 0.5H), 4.27 (m, 0.5H), 3.84 (d, J=8.0 Hz, 1H), 3.62 (m, 1H), 3.25-3.13 (m, 4H), 3.10-2.98 (m, 2H), 2.41 (m, 2H), 2.10-1.99 (m, 6H), 1.86 (m, 2H), 1.67-1.61 (m, 4H), 1.60 (d, J=8.0 Hz, 2H), 1.41-1.26 (m, 4H), 0.93 (m, 2H), 0.72-0.59 (m, 2H), MS (ESI, m/e) [M+1]+819.2
Example D2a-S and D2b-S: (cis- or trans-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; and (trans- or cis-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: (cis- or trans-) methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoate; (trans- or cis-) methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoate



embedded image


To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoate (364 mg, 1.00 mmol), (S)-2-(2-cyclopropylphenyl)pyrrolidine (185 mg, 1.00 mmol), AcOH (1 drop) in DCM (20 mL) was added NaBH(OAc)z(424 mg, 2.00 mmol), the solution was stirred at r.t for 16 h. The reaction solution was washed with H2O (20 mL), dried over Na2SO4, concentrated and purified by prep-MPLC to afford two products as cis-/trans-isomer of cyclohexyl, the faster isomer P1 (eluent: 40% (v), EA/PE) as a white solid (250 mg, 41.4%), MS (ESI, m/e) [M+1]+536.2; the slower isomer P2 (eluent: 80% (v), EA/PE) as a white solid (230 mg, 46.7%), MS (ESI, m/e) [M+1]+536.2.


Step 2: (cis- or trans-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl benzoic acid



embedded image


The solution of methyl (cis- or trans-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoate (P1) (250 mg, 0.0.467 mmol) in THF (20 mL) was added NaOH(6M, 6 mL), the mixture was stirred for 3 h at room temperature. Then the pH value of the reaction solution was adjusted to ˜3 with Con. HCl acid and concentrated in vacuum. The residue was washed with DCM/MeOH=10/1 (50 mL), filtered, the filtrate was concentrated to afford the product (200 mg, crude) as a yellow solid. MS (ESI, m/e) [M+1]+522.2.


Step 3: (cis- or trans-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


To a mixture of (cis- or trans-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid (200 mg, 0.384 mmol) in DCM (20 mL) was added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (145 mg, 0.460 mmol), HATU (175 mg, 0.0.460 mmol), DMAP (47 mg, 0.84 mmol) and triethylamine (194 mg, 1.919 mmol), the solution was stirred at room temperature for 18 hours. Then the reaction mixture was washed with H2O (10 mL) and separated. The organic layer was then concentrated and purified by chromatography column on silica (eluent: DCM/MeOH, 20/0 to 20/1) to afford the crude product, which was further purified by pre-TLC (eluent: MeOH/DCM=1/20) to give compound D2a-S(200 mg, 63.7%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 8.53 (s, 2H), 8.10-7.42 (m, 6H), 7.20-6.22 (m, 8H), 3.87-3.81 (m, 2H), 3.30-3.12 (m, 6H), 2.00-1.13 (m, 20H), 0.94-0.77 (m, 3H), 0.67-0.64 (m, 2H), MS (ESI, m/e) [M+1]+819.2.




embedded image


To a mixture of (trans- or cis-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid (200 mg, 0.384 mmol, prepared from intermediate P2 using the same procedure in example D2a-S) in DCM (20 mL) was added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (121 mg, 0.384 mmol), EDCI (148 mg, 0.768 mmol), DMAP (94 mg, 0.768 mmol) and triethylamine (195 mg, 1.92 mmol), the resulted mixture was stirred at room temperature for 40 hours. Then the reaction mixture was washed with H2O (10 mL×3), the organic phase was concentrated and purified by chromatography column on silica (eluent: DCM/MeOH, 20/0 to 20/1) to afford compound D2b-S(80 mg, 25.5%). 1H NMR (400 MHz, CDCl3-d6) δ ppm: 9.53 (s, 1H), 8.90 (s, 1H), 8.53 (s, 1H), 8.24-8.07 (m, 2H), 8.00 (d, J=8.4 Hz, 1H), 7.83-7.38 (m, 3H), 7.21-7.05 (m, 2H), 7.01-6.95 (m, 3H), 6.59-6.39 (m, 2H), 4.51-4.18 (m, 1H), 4.10-3.95 (m, 2H), 3.46-3.36 (t, J=12.0 Hz, 2H), 3.29-3.22 (t, J=6.0 Hz, 2H), 2.63 (m, 1H), 2.32-2.19 (m, 2H), 2.00-1.85 (m, 4H), 1.78-1.63 (m, 6H), 1.48-1.39 (m, 2H), 1.36-1.11 (m, 6H), 0.96-0.77 (m, 3H), 0.73-0.50 (m, 2H), MS (ESI, m/e) [M+1]+819.2.


Example D2a-R and D2b-R: (cis- or trans-) (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide

(trans- or cis-)(R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide




embedded image


Using (R)-2-(2-cyclopropylphenyl)pyrrolidine instead of (S)-2-(2-cyclopropylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D2a-S, compounds D2a-R and D2b-R were obtained correspondingly.


Example D2a-R: 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.59 (br, 1H), 8.42 (s, 1H), 8.35 (t, J=4.0 Hz, 1H), 7.95 (s, 1H), 7.72 (d, J=12.0 Hz, 1H), 7.49-7.46 (m, 3H), 7.36 (s, 1H), 6.87-6.82 (m, 4H), 6.73 (t, J=8.0 Hz, 1H), 6.56 (s, 1H), 6.34-6.31 (m, 1H), 4.26 (d, J=8.0 Hz, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.29-3.17 (m, 6H), 2.54-2.48 (m, 1H), 2.38-2.34 (m, 2H), 2.19-2.14 (m, 1H), 1.96-1.68 (m, 6H), 1.62 (d, J=12.0 Hz, 2H), 1.42-1.21 (m, 8H), 0.89-0.82 (m, 2H), 0.65-0.62 (m, 1H), 0.49-0.45 (m, 1H), MS (ESI, m/e) [M+1]+819.2.


Example D2b-R: 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.53 (br, 1H), 8.37 (s, 1H), 8.32 (t, J=4.0 Hz, 1H), 7.89 (d, J=2.0 Hz, 1H), 7.65 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.42-7.40 (m, 2H), 7.30 (d, J=2.0 Hz, 1H), 7.11 (t, J=4.0 Hz, 1H), 7.05 (t, J=8.0 Hz, 1H), 6.92 (d, J=8.0 Hz, 1H), 6.88 (d, J=8.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.58 (s, 1H), 6.30-6.27 (m, 1H), 4.30 (t, J=8.0 Hz, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.30-3.11 (m, 6H), 2.59-2.53 (m, 1H), 2.33-2.31 (m, 2H), 2.20-2.17 (m, 1H), 1.99-1.93 (m, 1H), 1.86-1.80 (m, 2H), 1.72-1.58 (m, 7H), 1.42-1.21 (m, 6H), 0.90-0.84 (m, 2H), 0.65-0.63 (m, 1H), 0.53-0.50 (m, 1H), MS (ESI, m/e) [M+1]+819.2.


Example D3a and Example D3b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(3-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide, (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(3-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-((tetrahydro-2H-pyran-4-yl)methyl amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(3-cyclopropylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D3a and D3b were obtained correspondingly.


Example D3a: 1H NMR (400 MHz, DMSO-do) δ ppm: 12.20 (br, 1H), 11.66 (br, 1H), 9.62 (br, 0.5H), 8.50-8.45 (m, 2H), 7.98 (s, 1H), 7.76-7.73 (m, 1H), 7.49-7.46 (m, 2H), 7.35-6.51 (m, 7H), 6.36 (s, 1H), 5.76 (s, 1H), 4.49-4.39 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.62-3.45 (m, 1H), 3.29-3.01 (m, 6H), 2.65-2.39 (m, 1H), 2.35-2.15 (m, 1H), 2.01-1.85 (m, 6H), 1.83-1.60 (m, 6H), 1.45-1.27 (m, 5H), 0.97-0.94 (m, 2H), 0.73-0.67 (m, 2H), MS (ESI, m/e) [M+1]V 819.2
Example D3b: 1H NMR (400 MHz, DMSO-d6) δ ppm; 12.18 (br, 1H), 11.68 (br, 1H), 9.73 (br, 0.5H), 8.51 (m, 2H), 7.97 (s, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.50-7.47 (m, 2H), 7.44 (d, J=8.0 Hz, 1H), 7.34-7.29 (m, 3H), 7.10-7.01 (m, 2H), 6.97 (d, J=8.0 Hz, 1H), 6.59 (s, 1H), 6.38 (m, 1H), 4.53-4.48 (m, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.55-3.46 (m, 1H), 3.29-3.01 (m, 6H), 2.36-2.25 (m, 2H), 2.01-1.85 (m, 8H), 1.83-1.66 (m, 2H), 1.60 (d, J=12.0 Hz, 2H), 1.45-1.27 (m, 5H), 0.97-0.94 (m, 2H), 0.73-0.67 (m, 2H), MS (ESI, m/e) [M+1]+819.2
Example D4a and Example D4b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(4-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(4-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(4-cyclopropylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D4a and D4b were obtained correspondingly. Example D4a: MS (ESI, m/e) [M+1]+819.2. Example D4b: 1H NMR (400 MHz, DMSO-d6) δ ppm; 12.18 (br, 0.5H), 11.72 (m, 1H), 9.71 (br, 0.5H), 8.49 (m, 2H), 7.96 (s, 1H), 7.77 (d, J=9.2 Hz, 2H), 7.59-7.42 (m, 4H), 7.12-6.94 (m, 4H), 6.59 (s, 1H), 6.37 (s, 1H), 4.54 (s, 1H), 3.85 (d, J=8.0 Hz, 2H), 3.51 (s, 1H), 3.27-3.23 (m, 4H), 2.33-2.01 (m, 2H), 1.85-1.66 (m, 9H), 1.61 (d, J=12.8 Hz, 2H), 1.45-1.21 (m, 8H), 0.96-0.84 (m, 2H), 0.70-0.66 (m, 2H), MS (ESI, m/e) [M+1]+819.2.


Example D5: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-isopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(2-isopropylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D5 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.63 (s, 1H), 8.47 (s, 2H), 7.94 (s, 1H), 7.73 (s, 1H), 7.56 (s, 1H), 7.52-6.88 (m, 8H), 6.59 (s, 1H), 6.35 (s, 1H), 3.83 (d, J=8.6 Hz, 2H), 3.24-3.16 (m, 5H), 3.09 (s, 1H), 2.33 (s, 2H), 2.15-2.13 (m, 1H), 1.85 (s, 3H), 1.75-1.57 (m, 6H), 1.27-1.13 (m, 13H), MS (ESI, m/e)[M+1]821.2.


Example D6: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-(2-(prop-1-en-2-yl)phenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


Using 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D6 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.62 (s, 1H), 8.60-8.40 (m, 2H), 7.93 (s, 1H), 7.80-7.60 (m, 2H), 7.55-7.30 (m, 4H), 7.30-6.80 (m, 4H), 6.59 (s, 1H), 6.34 (s, 1H), 5.35-5.15 (m, 1H), 4.90-4.50 (m, 1H), 3.84 (d, J=11.0 Hz, 2H), 3.30-3.20 (m, 4H), 3.05-2.85 (m, 2H), 2.40-2.20 (m, 2H), 2.15-1.90 (m, 5H), 1.85-1.50 (m, 8H), 1.45-1.05 (m, 8H), MS (ESI, m/e) [M+1]+818.9.


Example D13-1a and Example D13-1b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(3-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; and (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(3-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(3-chlorophenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D13-1a and D13-1b were obtained correspondingly.


Example D13-1a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.72 (s, 1H), 8.70-8.35 (m, 2H), 8.01 (s, 1H), 7.83-7.70 (m, 1H), 7.64-7.30 (m, 5H), 7.22-7.00 (m, 4H), 6.99-6.84 (m, 1H), 6.53 (s, 1H), 6.44-6.31 (m, 1H), 3.93-3.79 (m, 2H), 3.78-3.63 (m, 1H), 3.16-2.97 (m, 2H), 2.42-2.28 (m, 2H), 2.19-1.94 (m, 2H), 1.94-1.68 (m, 4H), 1.68-1.52 (m, 4H), 1.51-1.33 (m, 3H), 1.33-1.23 (s, 5H), MS (ESI) m/e [M+1]+813.1
Example D13-1b: 1H NMR (400 MHz, CDCl3) δ ppm: 10.27 (s, 0.5H), 8.99 (s, 1H), 8.90 (s, 1H), 8.53 (s, 1H), 8.21-8.11 (m, 2H), 8.02 (d, J=8.1 Hz, 1H), 7.69 (s, 1H), 7.45 (s, 1H), 7.21-7.08 (m, 5H), 6.99-6.87 (m, 2H), 6.56 (s, 1H), 6.48 (s, 1H), 4.11-3.96 (m, 2H), 3.48-3.35 (m, 2H), 3.30-3.19 (m, 2H), 2.31-2.20 (m, 3H), 2.08-1.94 (m, 3H), 1.82-1.72 (m, 4H), 1.48-1.39 (m, 3H), 1.38-1.26 (m, 7H), MS (ESI) m/e [M+1]+813.1
Example D14-la and Example D14-1b (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(4-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide

(trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(4-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide




embedded image


Using 2-(4-chlorophenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and Dib, compounds D14-1a and D14-1b were obtained correspondingly.


Example D14-la: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.74 (s, 1H), 8.70-8.49 (m, 2H), 8.11-7.49 (m, 1H), 7.90-7.78 (m, 1H), 7.69-7.57 (m, 1H), 7.56-7.37 (m, 3H), 7.28-7.01 (m, 4H), 6.96-6.84 (m, 1H), 6.74-6.58 (m, 1H), 6.52 (s, 1H), 6.47-6.37 (s, 1H), 3.89-3.79 (m, 2H), 3.72-3.62 (m, 1H), 3.28-3.17 (m, 3H), 3.11-2.86 (m, 4H), 2.46-2.29 (m, 1H), 2.15-1.92 (m, 3H), 1.92-1.79 (m, 2H), 1.73-1.52 (m, 5H), 1.49-1.28 (m, 7H), MS (ESI) m/e [M+1]+813.1
Example D14-1b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (br, 1H), 11.65 (s, 1H), 8.48 (s, 2H), 7.95 (s, 1H), 7.82-7.23 (m, 8H), 7.09-6.86 (m, 2H), 6.58 (s, 1H), 6.36 (s, 1H), 3.90-3.78 (m, 2H), 3.27-3.17 (m, 4H), 3.09-2.87 (m, 3H), 2.41-2.28 (m, 2H), 2.09-1.92 (m, 3H), 1.91-1.63 (m, 4H), 1.63-1.53 (m, 3H), 1.45-1.36 (m, 2H), 1.34-1.23 (m, 4H), MS (ESI) m/e [M+1]+813.1
Example D63a and Example D63b (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-phenylpyrrolidin-1-yl)cyclohexyl)benzamide

(trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-phenylpyrrolidin-1-yl)cyclohexyl)benzamide




embedded image


Using 2-phenylpyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D63a and D63b were obtained correspondingly. Example D63a: 1H NMR (400 MHz, DMSO-d6) δ ppm; 12.17 (s, 1H), 11.80-11.55 (m, 1H), 8.65-8.35 (m, 2H), 8.05-1.90 (m, 1H), 7.85-7.65 (m, 1H), 7.60-7.30 (m, 5H), 7.25-6.80 (m, 5H), 6.74-6.26 (m, 2H), 4.65-4.50 (m, 1H), 3.84 (dd, J=11.1. 2.8 Hz, 2H), 3.30-3.20 (m, 5H), 2.45-2.25 (m, 3H), 2.18-1.93 (m, 3H), 1.80-1.50 (m, 9H), 1.48-1.10 (m, 5H), MS (ESI) m/e [M+1]+778.8. Example D63b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.64 (s, 1H), 8.60-8.30 (m, 2H), 7.95 (s, 1H), 7.80-7.70 (m, 1H), 7.65-7.10 (m, 8H), 6.98-6.85 (m, 2H), 6.58 (s, 1H), 6.36 (s, 1H), 4.70-4.50 (m, 1H), 3.83 (d, J=8.7 Hz, 2H), 3.30-3.20 (m, 5H), 2.45-2.20 (m, 3H), 2.15-1.92 (m, 5H), 1.90-1.80 (m, 2H), 1.78-1.65 (m, 3H), 1.59 (d, J=12.3 Hz, 2H), 1.48-1.35 (m, 3H), 1.33-1.13 (m, 2H), MS (ESI) m/e [M+1]+778.8.


Example D96: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-(o-tolyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


Using 2-(o-tolyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1 b, compound D96 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.66 (s, 1H), 8.60-8.35 (m, 2H), 8.20-8.05 (m, 1H), 7.95 (s, 1H), 7.85-7.65 (m, 1H), 7.62-7.35 (m, 3H), 7.30-6.80 (m, 5H), 6.60 (s, 1H), 6.35 (s, 1H), 4.80-4.60 (m, 1H), 3.83 (d, J=9.0 Hz, 2H), 3.75-3.55 (m, 1H), 3.30-3.20 (m, 5H), 2.50-2.22 (m, 5H), 2.20-1.95 (m, 2H), 1.90-1.75 (m, 3H), 1.70-1.45 (m, 6H), 1.40-1.12 (m, 6H), MS (ESI) m/e [M+1]+792.9.


Example D97a and Example D97b: (cis- or trans-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-ethylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide

(trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-ethylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide




embedded image


Using 2-(2-ethylphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1a and D1b, compounds D97-a and D97-b were obtained correspondingly. Example D97-a: MS (ESI) m/e [M+1]+806.9. Example D97-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.58 (s, 1H), 8.50-8.27 (m, 2H), 7.91 (d, J=2.0 Hz, 1H), 7.74-7.51 (m, 2H), 7.47-7.31 (m, 3H), 7.27-7.02 (m, 3H), 6.89 (d, J=7.6 Hz, 2H), 6.58 (s, 1H), 6.32 (s, 1H), 4.05-3.90 (m, 1H) 3.87-3.79 (m, 2H), 3.29-3.06 (m, 5H), 2.68-2.60 (m, 2H), 2.37-2.24 (m, 2H), 1.89-1.55 (m, 10H), 1.40-1.20 (m, 8H), 1.13 (t, J=7.5 Hz, 3H), MS (ESI) m/e [M+1]+806.9.


Example D99: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(3-(3-chlorophenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 3-(3-chlorophenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1 b, compound D99 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (s, 1H), 11.68 (s, 1H), 8.60-8.47 (m, 2H), 8.00 (s, 1H), 7.85-7.65 (m, 1H), 7.60-7.43 (m, 4H), 7.41-7.29 (m, 3H), 7.28-7.21 (m, 1H), 7.14-7.01 (m, 1H), 6.83-6.74 (m, 1H), 6.38 (m, 1H), 4.01-3.94 (m, 1H), 3.90-3.79 (m, 2H), 3.75-3.50 (m, 2H), 3.31-3.19 (m, 5H), 3.15-3.08 (m, 1H), 2.16-2.04 (m, 2H), 2.03-1.92 (m, 3H), 1.91-1.73 (m, 5H), 1.67-1.49 (m, 5H), 1.32-1.25 (m, 2H), MS (ESI, m/e) [M+1]+812.7.


Example D100: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-(2-phenoxyphenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


Using 2-(2-phenoxyphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D100 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (s, 1H), 11.71 (s, 1H), 8.65-8.45 (m, 2H), 8.30-8.15 (m, 1H), 7.98 (s, 1H), 7.78 (d, J=7.6 Hz, 1H), 7.57-7.36 (m, 4H), 7.34-7.16 (m, 3H), 7.16-6.78 (m, 6H), 6.57 (s, 1H), 6.39 (s, 1H), 5.00-4.85 (m, 1H), 3.84 (d, J=8.6 Hz, 2H), 3.60-3.45 (m, 1H), 3.30-3.20 (m, 4H), 3.15-3.05 (m, 1H), 2.40-2.25 (m, 2H), 2.20-1.95 (m, 3H), 1.90-1.76 (m, 3H), 1.74-1.51 (m, 5H), 1.50-1.03 (m, 6H), MS (ESI, m/e) [M+1]+871.8.


Example D101: trans- or cis-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylstyryl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(2-cyclopropylstyryl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D101 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 9.49 (s, 1H), 8.60-8.30 (m, 2H), 7.92 (d, J=1.9 Hz, 1H), 7.69 (d, J=8.9 Hz, 1H), 7.60-7.30 (m, 5H), 7.25-7.05 (m, 2H), 7.01 (d, J=8.9 Hz, 1H), 6.95-6.85 (m, 2H), 6.60 (s, 1H), 6.32 (s, 1H), 6.13 (s, 1H), 4.50-4.20 (m, 1H), 3.83 (d, J=8.8 Hz, 2H), 3.30-3.20 (m, 6H), 3.10-2.80 (m, 1H), 2.29-1.71 (m, 10H), 1.68-1.14 (m, 8H), 1.10-0.75 (m, 3H), 0.68-0.45 (m, 2H), MS (ESI, m/e) [M+1]+844.8


Example D102: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-styrylpyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


Using 2-styrylpyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1 b, compound D102 was obtained. MS (ESI, m/e) [M+1]+806.2


Example D103: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-methoxyphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using 2-(2-methoxyphenyl)pyrrolidine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D103 was obtained. 1H NMR (400 MHz, DMSO-dc) δ ppm: 12.08 (s, 1H), 11.71 (s, 1H), 8.02 (s, 1H), 7.87 (s, 1H), 7.72 (s, 1H), 7.52-7.45 (m, 3H), 7.28-7.074 (m, 4H), 6.95-6.89 (m, 1H), 6.70 (s, 2H), 6.40 (s, 1H), 5.98-5.79 (m, 1H), 4.33-4.19 (m, 1H), 3.82 (d, J=8.8 Hz, 2H), 3.22 (t, J=11.3 Hz, 2H), 3.08 (s, 2H), 2.98 (s, 2H), 2.18 (s, 3H), 2.02-1.97 (m, 4H), 1.80-1.71 (m, 4H), 1.56 (d, J=12.6 Hz, 2H), 1.4-7-1.33 (m, 2H), 1.23-1.15 (m, 5H), MS (ESI, m/e) [M+1]+809.2.


Example D104: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(dibenzylamino)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image



1H NMR (DMSO-d6) δ ppm: 12.16 (s, 1H), 11.70 (s, 1H), 8.64-8.48 (m, 2H), 8.07-7.93 (m, 1H), 7.87-7.74 (m, 1H), 7.63-7.40 (m, 2H), 7.44-7.38 (m, 1H), 7.37-7.07 (m, 11H), 7.03-6.94 (m, 1H), 6.71-6.53 (m, 1H), 6.43-6.30 (m, 1H), 3.90-3.80 (m, 2H), 3.66-3.42 (m, 4H), 3.25-3.17 (m, 5H), 2.44-2.30 (m, 1H), 1.99-1.73 (m, 4H), 1.65-1.55 (m, 3H), 1.55-1.40 (m, 3H), 1.33-1.24 (s, 2H), MS (ESI) m/e [M+1]+829.2.


Example D105: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(benzhydrylamino)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image



1H NMR (DMSO-d6) δ ppm: 12.17 (s, 1H), 11.59 (s, 1H), 9.20 (s, 1H), 8.62-8.27 (m, 2H), 7.95 (s, 1H), 7.81-7.57 (m, 3H), 7.52-7.01 (m, 12H), 6.78-6.63 (m, 1H), 6.34 (s, 1H), 5.75 (s, 0.5H), 4.83 (s, 0.5H), 3.92-3.7 (m, 2H), 3.25-3.17 (m, 4H), 3.15-2.90 (m, 2H), 2.07-1.94 (m, 2H), 1.94-1.67 (m, 5H), 1.64-1.53 (m, 3H), 1.41-1.35 (m, 1H), 1.30-1.24 (m, 3H), MS (EST) m/e [M+1]+814.8.


Example D106: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(methyl(1-phenylethyl)amino)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Using (R)—N-methyl-1-phenylethan-1-amine in the reductive amination step, and then following the next similar procedures of Example D1b, compound D106 was obtained. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (s, 1H), 11.66 (s, 1H), 9.17-9.04 (m, 1H), 8.62-8.47 (m, 2H), 7.99 (s, 1H), 7.83-7.71 (m, 1H), 7.63-7.43 (m, 7H), 7.23-7.08 (m, 1H), 7.03-6.93 (m, 1H), 6.83-6.70 (m, 1H), 6.36 (m, 1H), 4.70 (m, 1H), 3.88-3.80 (m, 2H), 3.30-3.17 (m, 6H), 2.64-2.52 (m, 1H), 2.05-1.92 (m, 2H), 1.92-1.69 (m, 5H), 1.66-1.50 (m, 5H), 1.49-1.37 (m, 2H), 1.32-1.24 (m, 3H), MS (ESI, m/e) [M+1]+766.8.


Example D107a and Example D107b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(cis-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide or 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(trans-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methy)amino)phenyl)sulfanyl)benzamide



embedded image


Step 1: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoic acid

To the solution of methyl 2-((1H-pyrrolo[2,3-b] pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoate (8.0 g, 22.0 mmol) in THF (100 mL) and H2O (50 mL) was added NaOH (800 mg). The reaction mixture was stirred at ambient temperature for 20 hours. After removal of THF, the mixture was adjusted to pH ˜4 with 1M HCl acid and then extracted with EA (50 mL×2). The combined organic phase was washed with brine, dried over anhydrous Na2SO4, concentrated in vacuum. The residue was slurried in DCM/MeOH (20 mL/2 mL), filtered, and the filtrate was concentrated to afford 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoic acid (2.2 g). MS (ESI, m/e) [M+1]+351.1.


Step 2: 24 (1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-oxocyclohexyl)benzamide

A mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-oxocyclohexyl)benzoic acid (2.0 g, 5.71 mmol), 3-nitro-4-(4((tetrahydro-2H-pyran-4-yl)methyl)amino)benzene sulfonamide (1.8 g, 5.71 mmol), EDCI (1.64 g, 8.57 mmol), DMAP (1.05 g, 8.57 mmol) and TEA (1.15 g, 16.42 mmol) in DCM (20 mL) was stirred at ambient temperature for 20 hours. The reaction mixture was concentrated in vacuum, then purified by chromatography column on silica (eluent: DCM/MeOH=100/1 to 50/1) to afford 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-oxocyclohexyl)benzamide (1.5 g). MS (ESI) m/e [M+1]+648.1.


Step 3: To a solution of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-oxocyclohexyl)benzamide

(400 mg, 0.7 mmol) and 1-(azetidin-3-yl)-2-(2-cyclopropylphenyl)pyrrolidine (200 mg. 0.9 mmol) in DCM (40 mL) was added NaBH(OAc)3 (600 mg, 3 mmol). The mixture was stirred at room temperature for 14 hours. Then aq. NH4Cl (30 mL) was added to the reaction mixture. The organic phase was washed with saturated aq. NaCl (10 mL), dried over anhydrous Na2SO4, concentrated. The crude product was then purified by pre-TLC to give 20 mg of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(cis-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide (the faster isomer) as example D107a. MS (ESI, m/e) [M+1]+874.0; and 10 mg of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(cis-4-(3-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)azetidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide (the slower isomer) as example D107b. 1H NMR (DMSO-d6) δ ppm: 12.19 (s, 1H), 11.74 (s, 1H), 8.60-8.56 (m, 2H), 8.02 (s, 1H), 7.83 (d, J=8.7 Hz, 1H), 7.61 (s, 1H), 7.54 (s, 1H), 7.48-7.40 (m, 2H), 7.19-7.12 (m, 3H), 6.99-6.85 (m, 2H), 6.57 (s, 1H), 6.42 (s, 1H), 4.01 (s, 3H), 3.88-3.82 (m, 2H), 3.69-3.64 (m, 2H), 3.49 (s, 1H), 3.30-3.25 (m, 4H), 3.16 (s, 1H), 2.99 (s, 2H), 2.41 (s, 1H), 2.24 (s, 1H), 2.03 (s, 1H), 1.85-1.65 (m, 8H), 1.65-1.56 (m, 3H), 1.25-1.23 (m, 2H), 1.20-1.08 (m, 3H), 0.90-0.85 (m, 2H), 0.65 (s, 1H), 0.57 (s, 1H), MS (ESI) m/e [M+1]+873.9.


Example E1: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzamide



embedded image


Step 1: 5-bromo-2-(2-phenylpyrrolidin-1-yl)pyridine



embedded image


A mixture of 2-phenylpyrrolidine (441 mg, 3 mmol), 5-bromo-2-fluoropyridine (633 mg, 3.6 mmol) and N, N-Diisopropylethylamine (2 g, 15 mmol) in DMSO (50 mL) was heated to 120° C. with stirring overnight. Then the reaction was cooled to room temperature, the mixture was washed with water, brine and dried over anhydrous Na2SO4. The organic layers were concentrated and purified by column chromatography with 5%-20% EA/PE to give 5-bromo-2-(2-phenylpyrrolidin-1-yl)pyridine (400 mg, 44.4%) as a colorless oil. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.07 (d, J=2.4 Hz, 1H), 7.54 (dd, J=9.0, 2.4 Hz, 1H), 7.29 (t, J=7.6 Hz, 2H), 7.21 (d, J=7.6 Hz, 1H), 7.17 (t, J=6.2 Hz, 2H), 6.24 (d, J=7.3 Hz, 1H), 5.00 (d, J=7.3 Hz, 1H), 3.83-3.64 (m, 1H), 3.53 (dd, J=17.5, 8.6 Hz, 1H), 2.38 (dd, J=13.1, 5.4 Hz, 1H), 2.01-1.77 (m, 3H), MS (ESI, m/e) [M+1]+303.0, 305.0


Step 2: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoate



embedded image


Under nitrogen atmosphere, a mixture of 5-bromo-2-(2-phenylpyrrolidin-1-yl)pyridine (260 mg, 0.86 mmol), tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (375 mg, 0.86 mmol), Pd(PPh3)-4 (96 mg, 0.086 mmol), and Cs2CO3 (555 mg, 1.72 mmol) in 1,4-dioxane/H2O (50 mL/10 mL) was heated to 90° C. with stirring overnight. Then the reaction was cooled to room temperature, the mixture was washed with water, brine and dried over anhydrous Na2SO4. The organic layers were concentrated and purified by column chromatography with 5%-20% EA/PE to give tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoate product (3M) mg, 65.6%). MS(ESI, m/e) [M+1]+533.1.


Step 3: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoic acid



embedded image


To a solution of tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoate (266 mg, 0.5 mmol) in dichloromethane (25 mL) was added trifluoroacetic acid (5 mL). The reaction was stirred overnight at r.t., then the excess solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoic acid (200 mg, 84%) as a white foam. MS (ESI, m/e) [M+1]+477.1.


Step 4: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzamide



embedded image


To a solution of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-phenylpyrrolidin-1-yl)pyridin-3-yl)benzoic acid (150 mg, 0.32 mmol) in dichloromethane (25 mL) were added o-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (182 mg, 0.48 mmol), triethylamine (1 mL) and 4-Dimethylaminopyridine (40 mg, 0.32 mmol). The mixture was stirred for 0.5 h at r.t. Then 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (199 mg, 0.64 mmol) was added. The reaction was continually stirred overnight at r.t. Afterwards, the mixture was washed with water (15 mL) and the organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was further purified by prep-HPLC to give the product (40 mg, 16.2% ). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (s, 1H), 11.69 (s, 1H), 8.61 (s, 1H), 8.56 (d, J=2.0 Hz, 1H), 8.25 (s, 1H), 8.03 (d, J=2.0 Hz, 1H), 7.82 (d, J=7.3 Hz, 1H), 7.68-7.46 (m, 4H), 7.38 (d, J=8.2 Hz, 1H), 7.27 (t, J=7.3 Hz, 2H), 7.22-7.07 (m, 4H), 6.97 (s, 1H), 6.38 (s, 1H), 6.30 (d, J=8.2 Hz, 1H), 5.05 (d, J=7.1 Hz, 1H), 3.83 (t, J=10.0 Hz, 3H), 3.57 (d, J=9.3 Hz, 1H), 3.31-3.18 (m, 4H), 2.42-2.27 (m, 1H), 1.88-1.78 (m, 4H), 1.60 (d, J=12.2 Hz, 2H), 1.31-1.14 (m, 2H), MS (ESI, m/e) [M+1]+774.1


Example E2 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzamide



embedded image


Step 1: tert-butyl 4-(2-phenylpyrrolidin-1-yl)piperidine-1-carboxylate



embedded image


To a solution of 2-phenylpyrrolidine (1.46 g, 10 mmol) in dichloromethane (100 mL) was added tert-butyl 4-oxopiperidine-1-carboxylate (1.99 g, 10 mmol) at 0° C. The mixture was stirred for 1 h and sodium triacetoxyborohydride (3.8 g, 15 mmol) was added in portions.


Then the mixture was warmed to room temperature and stirred overnight. The mixture was washed with water, brine and dried over anhydrous Na2SO4 Solvent was removed in vacuum to give tert-butyl 4-(2-phenylpyrrolidin-1-yl)piperidine-1-carboxylate (3.30 g, 100%) as a white solid, which was used directly without further purification. MS (ESI, m/e) [M+1]+331.2.


Step 2: 4-(2-phenylpyrrolidin-1-yl)piperidine



embedded image


A mixture of tert-butyl 4-(2-phenylpyrrolidin-1-yl)piperidine-1-carboxylate (3.3 g, 10 mmol) and HCl in 1,4-dioxane (4 N, 25 mL) was stirred for 3 h at room temperature. Solvent was removed under reduced pressure and the residue was basified by sat. aq. NaHCO3 (50 mL) until pH>7. Then the mixture was extracted with dichloromethane (25 mL×3), the combined organic layers were concentrated to give 4-(2-phenylpyrrolidin-1-yl)piperidine (1 g, 43.4%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.37-7.24 (m, 4H), 7.20 (t, J=7.0 Hz, 1H), 5.90 (s, 1H), 3.72 (dd, J=8.2, 6.4 Hz, 1H), 3.26 (d, J=12.4 Hz, 1H), 3.19-3.02 (m, 2H), 2.71-2.48 (m, 4H), 2.15 (dq, J=12.4, 8.1 Hz, 1H), 2.00-1.82 (m, 2H), 1.82-1.56 (m, 5H), MS (ESI, m/e) [M+1]+231.1.


Step 3: tert-butyl 2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yloxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzoate



embedded image


To a degassed mixture of 4-(2-phenylpyrrolidin-1-yl)piperidine (230 mg, 1 mmol), tert-butyl 2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yloxy)-4-bromobenzoate (643 mg, 1.1 mmol), BINAP (125 mg, 0.2 mmol) and t-BuOK (224 mg, 2 mmol) in toluene (50 mL) was added Pd2(dba)3 (92 mg, 0.1 mmol). Nitrogen was bubbled through the mixture for 5 min and then heated to 90° C. with stirring overnight. Then the reaction was cooled to room temperature, the mixture was washed with water, brine and dried over anhydrous Na2SO4. The organic layers were concentrated and purified by column chromatography with 5%-20% EA/PE to give tert-butyl 2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yloxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzoate (400 mg, 57.6%). 1H NMR (400 MHz, DMSO-do) δ ppm: 7.94 (s, 1H), 7.65 (d, J=8.9 Hz, 1H), 7.48-7.39 (m, 1H), 7.33 (d, J=7.3 Hz, 2H), 7.26 (t, J=7.3 Hz, 2H), 7.18 (s, 2H), 6.78 (d, J=8.8 Hz, 1H), 6.50 (s, 2H), 3.88-3.64 (m, 3H), 3.31 (d, J=9.5 Hz, 1H), 3.07 (s, 1H), 2.64 (d, J=11.3 Hz, 2H), 2.17-2.03 (m, 1H), 1.90-1.63 (m, 6H), 1.61-1.26 (m, 4H), 1.17 (s, 9H), 1.06 (s, 9H), 1.03 (s, 9H), MS (ESI, m/e) [M+1]+695.3.


Step 4: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperdin-1-yl)benzoic acid



embedded image


To a solution of tert-butyl 2-(1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridin-5-yloxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzoate (347 mg, 0.5 mmol) in dichloromethane (25 mL) was added trifluoroacetic acid (5 mL). The reaction was stirred overnight at r.t. then the excess solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzoic acid (200 mg, 83%). MS (ESI, m/e) [M+1]+483.1.


Step 5: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzamide



embedded image


To a solution of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-phenylpyrrolidin-1-yl)piperidin-1-yl)benzoic acid (145 mg, 0.3 mmol) in dichloromethane (25 mL) were added o-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (171 mg, 0.45 mmol), triethylamine (1 mL) and 4-dimethylaminopyridine (36 mg, 0.3 mmol). The mixture was stirred for 0.5 h at r.t. Then 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (189 mg, 0.6 mmol) was added. The reaction was continually stirred overnight at r.t. Afterwards, the mixture was washed with water (10 mL) and the organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was further purified by prep-HPLC to give the desired product (50 mg, 21.5%). 1H NMR (400 MHz, DMSO-do) δ ppm: 11.68 (m, 2H), 8.58 (d, J=5.6 Hz, 1H), 8.54 (d, J=2.4 Hz, 1H), 8.02 (d, J=2.4 Hz, 1H), 7.77 (d, J=9.2 Hz, 1H), 7.60-7.40 (m, 5H), 7.33-7.25 (m, 3H), 7.07 (d, J=9.2 Hz, 1H), 6.68 (d, J=7.8 Hz, 1H), 6.37 (d, J=1.5 Hz, 1H), 6.20 (s, 1H), 3.93-3.77 (m, 2H), 3.64 (s, 2H), 3.31-3.20 (m, 6H), 2.59 (s, 3H), 2.28-2.22 (m, 1H), 1.88 (m, 5H), 1.61 (d, J=12.1 Hz, 3H), 1.38 (s, 2H), 1.32-1.16 (m, 3H), MS (ESI, m/e) [M+1]+780.2.


Example E3: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-chlorophenyl)pyrrolidin-1-yl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized starting from 2-(2-chlorophenyl)pyrrolidine and tert-butyl 4-oxopiperidine-1-carboxylate following the next procedures similar to those in Example E2. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (s, 1H), 8.62 (s, 1H), 8.56 (s, 1H), 8.03 (d, J=2.4 Hz, 1H), 7.79 (d, J=9.6 Hz, 1H), 7.63 (s, 1H), 7.51-7.48 (m, 3H), 7.33 (s, 1H), 7.27 (s, 1H), 7.18 (s, 1H), 7.11 (d, J=8.6 Hz, 1H), 6.67 (d, J=7.8 Hz, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 4.15-4.11 (m, 1H), 3.84-3.75 (m, 2H), 3.65-3.60 (m, 1H), 3.55-3.50 (m, 1H), 3.30-3.25 (m, 2H), 3.25-3.20 (m, 2H), 3.14-3.10 (m, 2H), 2.74-2.57 (m, 3H), 2.20 (br, 11H), 1.89-1.87 (m, 1H), 1.69-1.65 (m, 3H), 1.47-1.41 (m, 3H), 1.29-1.12 (m, 5H), (ESI, m/e) [M+1]+814.1.


Example E4: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(3-chlorophenyl)pyrrolidin-1-yl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized starting from 2-(3-chlorophenyl)pyrrolidine and tert-butyl 4-oxopiperidine-1-carboxylate following the next procedures similar to those in Example E2. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.66 (s, 1H), 11.41 (s, 1H), 8.57 (s, 1H), 8.53 (s, 1H), 8.01 (s, 1H), 7.76 (d, J=8.5 Hz, 1H), 7.49 (d, J=8.4 Hz, 3H), 7.37 (s, 1H), 7.29-7.23 (m, 3H), 7.07 (s, 1H), 6.66 (d, J=8.3 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 3.85 (d, J=8.4 Hz, 3H), 3.61-3.54 (m, 2H), 3.27-3.07 (m, 4H), 3.07 (s, 1H), 2.67-2.55 (m, 3H), 2.12 (br, 1H), 1.88 (br, 1H), 1.81-1.41 (m, 7H), 1.41-1.13 (m, 5H), MS (ESI, m/e) [M+1]+814.1.


Example E12: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)piperidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized starting from 2-(2-cyclopropylphenyl)pyro lidine and tert-butyl 4-oxopiperidine-1-carboxylate following the next procedures similar to those in Example E2. 1H NMR (400 MHz, DMSO-do) δ 11.67 (s, 1H), 11.43 (s, 1H), 8.65-8.45 (m, 2H), 8.02 (s, 1H), 7.5-7.70 (m, 1H), 7.60-7.40 (m, 4H), 7.20-6.98 (m, 3H), 6.95-7.85 (m, 1H), 6.66 (d, J=8.3 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 4.40-4.20 (m, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.76-3.50 (m, 2H), 3.31-3.19 (m, 4H), 2.70-2.60 (m, 2H), 2.30-2.15 (m, 1H), 2.05-1.80 (m, 3H), 1.81-1.57 (m, 5H), 1.50-1.35 (m, 3H), 1.32-1.11 (m, 4H), 0.95-0.80 (m, 3H), 0.70-0.60 (m, 1H), 0.55-0.45 (m, 1H), MS (ESI, m/e) [M+1]+819.9.


Example E13: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)pyridin-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized from 2-bromo-5-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)pyridine following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (s, 1H), 11.75 (s, 1H), 8.63-8.58 (m, 2H), 8.06 (s, 1H), 7.86 (d, J=9.2 Hz, 1H), 7.73 (s, 1H), 7.65-7.59 (m, 3H), 7.55-7.52 (m, 2H), 7.35 (s, 1H), 7.17-6.98 (m, 4H), 6.83 (d, J=7.2 Hz, 1H), 6.65 (d, J=8.8 Hz, 1H), 6.41 (s, 1H), 5.26 (d, J=8.0 Hz, 1H), 3.85 (d, J=11.2 Hz, 2H), 3.81-3.70 (m, 1H), 3.47-3.39 (m, 1H), 3.32-3.22 (m, 4H), 2.45-2.41 (m, 1H), 2.11-1.82 (m, 5H), 1.61 (d, J=8.4 Hz, 2H), 1.30-1.15 (m, 2H), 1.04-0.91 (m, 2H), 0.78-0.66 (m, 2H), MS (ESI, m/e) [M+1]+813.8.


Example F1: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzamide



embedded image


Step 1: 2-bromopyrazolo[1,5-a]pyrimidin-5-ol



embedded image


To a solution of 3-bromo-1H-pyrazol-5-amine (3.2 g, 20.0 mmol) in DMF (60 mL) were added Cs2CO3 (13.0 g, 40.0 mmol) and ethyl-3-ethoxyacrylate (8.6 g, 60.0 mmol), the reaction mixture was stirred at 125° C. for about 2 h. The reaction mixture was cooled to ambient temperature, poured into H2O (200 mL), acidified by IN HCl acid solution, extracted with EA (100 mL×3). The combined organic layers were washed with H2O (100 mL), concentrated and purified by chromatography on silica gel (eluent: DCM/MeOH=10/1) to afford the desired compound as a yellow solid (2.0 g). MS (ESI, m/e) [M+1]+213.9, 214.9.


Step 2: 2-bromo-5-chloropyrazolo[1,5-a]pyrimidine



embedded image


To a mixture of 2-bromopyrazolo[1,5-a]pyrimidin-5-ol (2.0 g, 9.40 mmol) in CH3C(20 mL) was added phosphoryl trichloride (7 mL), the mixture was heated at 95° C. for about 16 h. Cooled to ambient temperature, poured into H2O (100 mL) slowly. The precipitate was collected by filtration and dried under vacuum to give the product as yellow solid (1.8 g). MS (ESI, m/e) [M+1]+231.9, 233.9.


Step 3: 2-bromo-5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidine



embedded image


To a solution of 2-bromo-5-chloropyrazolo[1,5-a]pyrimidine (1.8 g, 7.80 mmol) in DMF (20 mL) were added 2-phenylpyrrolidine (1.26 g, 8.57 mmol) and DIPEA (3.0 g, 23.41 mmol), the reaction was stirred at 120° C. for about 1 h. The reaction mixture was cooled to ambient temperature, poured into H2O (100 mL), extracted with EA (50 mL×2). The combined organic layers were concentrated and purified by chromatography on silica gel (eluent: DCM/EA=10/1) to afford the desired compound as a yellow solid (1.7 g). MS (ESI, m/e) [M+1]+343.0, 345.0.


Step 4: tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzoate



embedded image


To a solution of 2-bromo-5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidine (850 mg. 2.50 mmol) in 1,4-dioxane (30 mL) were added tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.3 g, 3.00 mmol), K2CO3 aqueous solution (1M, 5 mL) and Pd(dppf)Cl2 (180 mg, 0.25 mmol), the reaction was heated at 95° C. under N2 for about 16 h. the mixture was cooled to ambient temperature and concentrated. The residue was portioned between DCM (30 mL) and H2O (10 mL), the organic layer was concentrated and purified by column chromatograph on silica gel (eluent: DCM/MeOH=50/1) to afford the product as a yellow solid (1.3 g). MS (ESI, m/e) [M+1]+573.2.


Step 5: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzoic acid



embedded image


To a solution of tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzoate (700 mg, 1.22 mmol) in DCM (10 mL) was added TFA (2.5 mL), the solution was stirred at ambient temperature for about 4 h. The solution was diluted with DCM (30 mL), washed with H2O (20 mL×2), dried over anhydrous Na2SO4, filtered and concentrated to give the crude product as a yellow solid (500 mg).


Step 5: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzamide



embedded image


A mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(5-(2-phenylpyrrolidin-1-yl)pyrazolo[1,5-a]pyrimidin-2-yl)benzoic acid (250 mg, 0.484 mmol), 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (150 mg, 0.484 mmol), EDCI (196 mg, 0.969 mmol), DMAP (88 mg, 0.727 mmol) and TEA (150 mg, 1.452 mol) in DCM (10 ml) was stirred at ambient temperature for 4 d. The reaction solution was washed with H2O (10 mL), concentrated, purified by column chromatograph on silica gel (100-200 mesh, eluted with DCM: MeOH=20:1) to give a crude product, the crude product was purified by pre-HPLC to give the product (80 mg). 1H NMR (DMSO-d6) δ ppm: 12.35 (s, 1H), 11.79 (s, 1H), 8.69-8.31 (m, 3H), 8.09 (d, J=2.4 Hz, 1H), 7.87 (dd, J=9.2, 2.4 Hz, 1H), 7.77-7.50 (m, 4H), 7.31-7.15 (m, 7H), 6.50-6.43 (m, 2H), 5.15 (s, 1H), 3.89-3.82 (m, 3H), 3.64 (s, 1H), 3.30-3.21 (m, 5H), 2.39-2.33 (m, 1H), 1.93-1.82 (m, 4H), 1.59 (d, J=12.0 Hz, 2H), 1.29-1.18 (m, 2H), MS (ESI, m/e) [M+1]+814.1.


Example F2: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(5-(2-phenylpyrrolidin-1-yl)benzo[b]thiophen-2-yl)benzamide



embedded image



1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 11.73 (s, 11H), 8.70-8.45 (m, 2H), 8.07 (s, 1H), 7.82 (d, J=9.5 Hz, 1H), 7.70-7.50 (m, 5H), 7.50-7.45 (m, 1H), 7.30-7.25 (m, 2H), 7.20-7.15 (m, 3H), 7.10-7.00 (m, 2H), 6.74 (s, 1H), 6.55-6.50 (m, 1H), 6.41 (s, 1H), 4.85-4.75 (m, 1H), 3.90-3.82 (m, 2H), 3.80-3.65 (m, 1H), 3.30-3.10 (m, 3H), 3.05-2.95 (m, 1H), 2.44-2.32 (m, 1H), 2.04-1.74 (m, 4H), 1.70-1.60 (m, 2H), 1.35-1.16 (m, 3H), MS (ESI, m/e) [M+1]+829.1.


Example F9: (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: methyl 4-bromo-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine-5-yl)oxy)benzoate

To a solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate (6.96 g, 20.04 mmol) in tetrahydrofuran (80 mL) was added sodium hydride (960 mg, 24.0 mmol) at 0° C., and the resulted mixture was stirred at room temperature for 0.5 h. Then benzenesulfonyl chloride (4.30 g, 24.3 mmol) was added dropwise. Then stirred at room temperature for 6 h, the mixture was quenched with aq. ammonium chloride. Then after extracted with EA, the organic layer was combined, dried over sodium sulfate and concentrated in vacuum. The residue was purified by chromatography column on silica (PE/EA=10/1 to 3/1) to give the product (3.80 g) as a white solid. MS (ESI, m/e) [M+1]+486.9.


Step 2: methyl 2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate

To a solution of methyl 4-bromo-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine-5-yl)oxy)benzoate (1.00 g, 2.05 mmol), 4,4,4′,4′,5,5,5,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (608 mg, 2.39 mmol) in dioxane (25 mL) was added [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (147 mg, 0.20 mmol) and potassium acetate (600 mg, 6.12 mmol) under N2 atmosphere. After addition, the reaction mixture was heated to 90° C., and stirred for 16 h. After cooled to room temperature, the mixture was filtered, and the filtrate was evaporated. The resulted residue was purified by chromatography column on silica (PE/EA=2/1 to 1/1) to give the product (920 mg) as a yellow gel. MS (ESI, m/e) [M+1]+535.0.


Step 3: methyl 4-hydroxy-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)benzoate

To a solution of methyl 2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (900 mg, 1.68 mmol) in acetic acid (10 mL )/water (10 mL ) was added hydrogen peroxide(30%) (3.0 mL). After addition, the reaction mixture was stirred at room temperature for 16 h. Then aq. sodium bicarbonate was added and adjusted PH to ˜8. After extracted with EA, the organic layer was combined, dried over sodium sulfate and concentrated in vacuum. The resultant residue was purified by chromatography column on silica (PE/EA=5/1 to 1/1 then DCM/MeOH=40/1) to give the product (700 mg) as a white solid. MS (ESI, m/e) [M+1]+424.8.


Step 4: methyl 4-((4-oxocyclohexyl)oxy)-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)benzoate

To a solution of methyl 4-hydroxy-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b] pyridin-5-yl)oxy)benzoate (460 mg, 1.08 mmol), 4-hydroxycyclohexan-1-one (130 mg, 1.1 mmol) and triphenylphosphine (390 mg, 1.49 mmol) in tetrahydrofuran (15 mL) was added diisopropyl azodicarboxylate (440 mg 2.17 mmol) at 0° C. under N2. After stirred at room temperature for 3 h, the reaction mixture was diluted with water and extracted with EA. The organic layer was combined, dried over sodium sulfate and concentrated in vacuum. The resulted residue was purified by chromatography column on silica (PE/EA=2/1) to give 550 mg crude product directly for next step. MS (ESI, m/e) [M+1]+520.8


Step 5: methyl 4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)oxy)-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)benzoate

To a solution of methyl 4-((4-oxocyclohexyl)oxy)-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)benzoate (550 mg, 1.06 mmol) and 2-(2-cyclopropylphenyl)pyrrolidine (195 mg, 1.06 mmol) in DCM (20 mL ) was added acetic acid (0.08 mL) for 30 min. Then it was added sodium triacetoxyborohydride (460 mg, 2.10 mmol) and it was stirred at room temperature for 2 h. The mixture was diluted with water and it was extracted with dichloromethane. The organic layer was combined, dried over sodium sulfate and it was concentrated in vacuum. The residue was purified by chromatography column on silica (PE/EA=5/1 to 1/1 then DCM/MeOH=40/1) to give the faster P1 (200 mg, cis or trans) and slower P2 (240 mg, trans or cis). MS (ESI, m/e) [M+1]+691.8.


Step 6: (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropyl phenyl)pyrrolidin-1-yl)cyclohexyl)oxy)benzoic acid

To a solution of (trans- or cis-)methyl 4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)oxy)-2-((1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)benzoate (240 mg, 0.35 mmol) in MeOH/THF (6 mL/6 mL) was added 3N NaOH solution (5 mL) and stirred at room temperature for 16 h. Then the reaction mixture was adjusted PH to 3-4 with 2N HCl solution. After extracted with DCM, the organic layer was combined, dried over sodium sulfate and concentrated in vacuum to give crude 100 mg white solid without purification for the next step. MS (ESI, m/e) [M+1]+537.9.


The desired compound was synthesized with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide and (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropyl phenyl)pyrrolidin-1-yl)cyclohexyl)oxy)benzoic acid following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.89 (s, 1H), 11.85-11.73 (m, 1H), 9.52-9.37 (m, 1H), 8.67-8.50 (m, 2H), 8.07 (s, 1H), 7.89-7.79 (m, 1H), 7.72-7.63 (m, 1H), 7.62-7.50 (m, 2H), 7.32-7.12 (m, 3H), 7.08-6.96 (m, 1H), 6.86 (s, 1H), 6.53-6.40 (m, 1H), 6.17-6.00 (m, 1H), 5.12-5.02 (m, 1H), 4.54-4.45 (m, 1H), 3.90-3.78 (m, 2H), 3.71-3.59 (m, 1H), 3.30-3.18 (m, 4H), 3.11-2.89 (m, 2H), 2.13-2.03 (m, 1H), 2.00-1.92 (m, 2H), 1.90-1.77 (m, 4H), 1.74-1.55 (m, 4H), 1.55-1.45 (m, 2H), 1.44-1.34 (m, 2H), 1.33-1.16 (m, 4H), 0.88-0.75 (m, 2H), 0.65-0.57 (m, 1H), 0.48-0.40 (m, 1H), MS (ESI, m/e) [M+1]+834.8.


Example F11: (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)(methyl)amino)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide and (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl(methyl)amino)benzoic acid following the procedures similar to those in Example A1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.31-11.16 (m, 1H), 8.69-8.50 (m, 2H), 8.10-7.98 (m, 1H), 7.83-7.70 (m, 1H), 7.61-7.45 (m, 4H), 7.20-7.01 (m, 3H), 6.97-6.87 (m, 1H), 6.63-6.50 (m, 1H), 6.43-6.34 (m, 1H), 5.95 (s, 1H), 4.30-4.21 (m, 1H), 3.91-3.80 (m, 2H), 3.50-3.41 (m, 1H), 3.30-3.21 (m, 5H), 3.11-2.94 (m, 2H), 2.53 (s, 3H), 2.08-1.98 (m, 1H), 1.93-1.85 (m, 1H), 1.66-1.56 (m, 3H), 1.33-1.27 (m, 2H), 1.20-1.15 (m, 3H), 0.95-0.85 (m, 4H), 0.81-0.72 (m, 4H), 0.70-0.60 (m, 2H), 0.58-0.44 (m, 2H), MS (ESI, m/e) [M+1]+848.2.


Example F21: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


Step 1: tert-butyl (S)-2-(2-bromophenyl)pyrrolidine-1-carboxylate

To a solution of (S)-2-(2-bromophenyl)pyrrolidine (70 g, 311 mmol) in DCM (200 mL) were added Boc2O (72.6 g, 333 mmol) and DMAP (cat) at 0° C. After addition, the mixture was stirred at room temperature for 1 hour. Then the mixture solution was washed with saturated aq. NaHCO3 (100 mL×3), brine. The organic phase was dried with anhydrous NaSO4, filtered, and concentrated to obtain pale brown solid (95 g, crude), which was not further purified for next step. MS (ESI, m/e) [M+1]+326.1/328.2.


Step 2: tert-butyl (S)-2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate

Under a N2 atmosphere, a mixture of tert-butyl (S)-2-(2-bromophenyl)pyrrolidine-1-carboxylate (88 g, 270 mmol), cyclopropyl boronic acid (68.9 g, 810 mmol), Pd(dppf)2Cl2 (19.7 g, 27 mmol) and K2CO3 (150 g, 1.08 mol) in 1,4-dioxane (270 mL) and H2O (30 mL) was stirred at 90° C. for 16 hours. After the reaction mixture was cooled to room temperature, the mixture was filtered, and the filtrate was concentrated in vacuum. The residue was purified by chromatography column on silica (eluent: DCM/CH3OH=20/1) to obtain tert-butyl (S)-2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate as pale yellow oil 70 g (yield: 90%). MS (ESI, m/e) [M+1]+288.1.


Step 3: (S)-2-(2-cyclopropylphenyl)pyrrolidine

To a solution of tert-butyl (S)-2-(2-cyclopropylphenyl)pyrrolidine-1-carboxylate (70 g, 244 mmol) in DCM (200 mL) was added HCl solution (200 mL, 4M in dioxane). After addition, the mixture was stirred for overnight at room temperature. After removal of solvent, the residue was diluted with water (200 mL) and EA (100 mL) under stirring, the separated water phase was adjusted to PH˜11 and exacted with DCM (100 mL×2). The combined organic phase was dried with anhydrous NaSO4, filtered, and concentrated to obtain (S)-2-(2-cyclopropylphenyl)pyrrolidine (42 g, crude) as brown oil. MS (ESI, m/e) [M+1]+188.2.


Step 4: tert-butyl (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

To the mixture of (S)-2-(2-cyclopropylphenyl)pyrrolidine (3.74 g, 20 mmol) and tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate(4.78 g, 20 mmol) in DCM (100 mL) was added NaBH(AcO)3 (8.48 g, 40 mmol) at room temperature and stirred for 2 hours. The reaction mixture was quenched with aq. NaHCO3solution (200 mL), and then extracted with DCM (200 mL×2). The organic layer was combined, washed with brine and dried over Na2SO4. After evaporation in vacuum, the crude product (8.21 g) was obtained as a colorless oil without further purification for next step. MS (ESI, m/e) [M+1]+411.0.


Step 5: (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane

To a solution of tert-butyl (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (8.2 g, 20 mmol) in DCM (200 mL) was added TFA (40 mL) at 20° C., and stirred at room temperature overnight. The mixture was concentrated in vacuum and diluted with DCM (200 mL) and aq. NaOH solution (1N, 200 mL) was added under stirring. Then the organic layer was collected and dried over Na2SO4. After evaporation in vacuum, the crude product (6.2 g) was obtained as a brown oil without further purification for next step. 1H NMR (400 MHz, CDCl3) δ ppm: 7.61 (dd, J=8.0 Hz, J=4.0 Hz, 1H), 7.22-7.11 (m, 2H), 7.00-6.96 (m, 1H), 3.94 (t, J=8.0 Hz, 1H), 3.23-3.03 (m, 2H), 2.71-2.60 (m, 4H), 2.42-2.20 (m, 2H), 2.07-1.55 (m, 10H), 1.41-1.37 (m, 3H), 0.95-0.87 (m, 2H), 0.64-0.53 (m, 2H), MS (ESI, m/e) [M+1]+311.0.


Step 6: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (F21-3)

The mixture of methyl 2,4-difluorobenzoate (17.2 g, 0.1 mol), 1H-pyrrolo[2,3-b]pyridin-5-ol (28.1 g, 0.21 mol), K3P04 (36 g, 0.17 mol) in 2-methoxyethyl ether (560 mL) was heated to 120° C., and stirred for overnight. The reaction mixture was cooled to room temperature and then poured into water (3 L) to form precipitation. After filtration, the resulted solid was further purified by recrystallization (eluent: PE/EA=3/1, 500 mL) to give the product (13.2 g) as an off-white solid. MS (ESI, m/e) [M+1]+287.1.


Step 7: methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate (F21-2)

The mixture of (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane (6.2 g, 20 mmol), methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (6.89 g, 24 mmol), Na2CO3 (21.2 g, 200 mmol) in DMF(100 mL) was heated to 105° C., and stirred overnight. After cooling down to room temperature, the reaction mixture was diluted with EA (300 mL), washed with brine (300 mL×2), dried over Na2SO4 and concentrated in vacuum.


The resulted residue was purified by chromatography column on silica (eluent: EA/PE, 1/5 to 1/1) to give the product (6.3 g) as an off-white solid. MS (ESI, m/e) [M+1]+576.9.


Step 8: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (F21-1)

To the solution of methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate (6.3 g, 11.21 mmol) in MeOH(180 mL) and THF(180 mL) was added aq. NaOH solution (3N, 373 mL). After addition, the reaction mixture was heated to 50° C., and stirred for 2 hours. Then the mixture was adjusted to pH-S with HCl acid (6N), and extracted with DCM (50 mL×2). The organic layer was combined, dried over Na2SO4 and then evaporated in vacuum to afford a crude product (6.0 g) as off-white solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.99 (s, 1H), 11.25-11.04 (m, 1H), 8.10-7.94 (m, 2H), 7.76 (d, J=8.0 Hz, 1H), 7.47 (s, 1H), 7.38 (s, 1H), 7.28 (s, 2H), 7.12-7.02 (s, 1H), 6.75 (d, J=8.0 Hz, 1H), 6.36 (s, 2H), 5.02-4.94 (m, 1H), 3.91-3.67 (m, 4H), 3.17-2.96 (m, 4H), 2.33-2.04 (m, 5H), 1.81-1.72 (m, 2H), 1.56-1.37 (m. 4H), 0.91-0.89 (m, 2H), 0.69-0.62 (m, 2H), MS (ESI, m/e) [M+1]+562.9.


Step 9: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide

The mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (3 g, 5.33 mmol), triethylamine (3.2 g, 32 mmol), HATU (2.43 g, 6.40 mmol) in DCM (100 mL) was stirred for 4 hours at room temperature. Then to the resulting reaction mixture was added 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (2.20 g, 6.40 mmol) and DMAP (122 mg, 2 mmol). After stirring overnight, the reaction mixture was washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. The resulted residue was purified by chromatography column on silica (eluent: PE/EA=1/1 (2 L), then DCM/MeOH=100/1 to 40/1), and then the desired compound was obtained (2.0 g, yield: 42.2%) as yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.65 (s, 1H), 11.34 (br, 1H), 8.55-8.47 (m, 2H), 8.00 (s, 1H), 7.75 (d, J=8.0 Hz, 1H), 7.59-7.44 (m, 4H), 7.24-7.09 (m, 2H), 7.00-6.90 (m, 2H), 6.67 (d, J=8.0 Hz, 1H), 6.36 (s, 1H), 6.18 (s, 1H), 4.24 (s, 1H), 3.32-3.25 (m, 3H), 3.05-2.63 (m, 5H), 2.33-2.28 (m, 1H), 2.04-2.01 (m, 2H) 1.73-1.52 (m, 12H), 1.46-1.29 (m, 8H), 1.16-1.13 (m, 5H), 0.91-0.89 (m, 2H), 0.64-0.56 (m, 2H), MS (ESI, m/e) [M+1]+888.8


Example F22: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid following the procedures similar to those in Example F21. 1H NMR (DMSO-d6) δ ppm: 11.65 (s, 1H), 11.23 (br, 1H), 8.63-8.47 (m, 2H), 8.00 (s, 1H), 7.80-7.74 (m, 1H), 7.61-7.38 (m, 5H), 7.30-6.96 (m, 5H), 6.69-6.63 (m, 1H), 6.36 (s, 1H), 6.17 (s, 1H), 3.81-3.72 (m, 4H), 3.57-3.49 (m, 4H), 3.05-2.92 (m, 4H), 2.42-2.32 (m, 2H), 2.09-1.99 (m, 2H), 1.86-1.72 (m, 6H), 1.58-1.47 (m, 3H), 1.46-1.24 (m, 6H), 1.00-0.54 (m, 4H), MS (ESI, m/e) [M+1]+877.8.


Example F23: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (2.0 g, 3.56 mmol), triethylamine (1.08 g, 10.68 mmol), 2-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (1.62 g, 4.27 mmol) in DCM (100 mL) was stirred for 4 hours at room temperature. Then to the resulting reaction mixture was added 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (1.35 g, 4.27 mmol) and DMAP (50 mg, 0.40 mmol). After stirred overnight, the reaction mixture was quenched and washed with NH4Cl, dried over Na2SO4 and concentrated in vacuum. The resulted residue was purified by chromatography column on silica (eluent: PE/EA=1/1, then DCM/MeOH=60/1 to 40/1), and then the desired compound was obtained (1.3 g, yield: 42.5%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.63 (s, 1H), 11.30 (br, 1H), 8.58-8.47 (m, 2H), 7.99 (s, 1H), 7.74 (d, J=8.8 Hz, 1H), 7.55-7.42 (m, 4H), 7.19-7.08 (m, 2H), 7.04-6.90 (m, 2H), 6.66 (d, J=8.8 Hz, 1H), 6.35 (s, 1H), 6.18 (m, 1H), 4.34-4.08 (m, 1H), 3.85 (d, J=8.8 Hz, 2H), 3.31-3.18 (m, 6H), 3.05-2.93 (m, 4H), 2.67-2.51 (m, 1H), 2.35-2.25 (m, 1H), 2.07-2.01 (m, 1H), 1.95-1.68 (m, 6H), 1.62 (d, J=12.8 Hz, 2H), 1.55-1.21 (m, 9H), 0.92-0.85 (m, 2H), 0.65-0.53 (m, 2H), MS (ESI, m/e) [M+1]+859.8.


Example F24: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-ethylphenyl)pyrrolidine, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.45 (s, 1H), 10.06 (s, 1H), 8.62-8.56 (m, 2H), 8.03 (d, J=2.3 Hz, 1H), 7.80-7.76 (m, 2H), 7.51-7.47 (m, 3H), 7.31 (s, 1H), 7.24 (s, 1H), 7.11 (d, J=9.2 Hz, 1H), 6.68 (d, J=9.2 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.64 (s, 1H), 3.87-3.84 (m, 3H), 3.66 (s, 1H), 3.29-3.21 (m, 3H), 3.04 (s, 2H), 2.94 (s, 2H), 2.77-2.75 (m, 1H), 2.67-2.57 (m, 2H), 2.08 (s, 4H), 2.03-1.97 (m, 2H), 1.88 (s, 1H), 1.62-1.60 (m, 2H), 1.43 (s, 3H), 1.35-1.29 (m, 4H), 1.12 (t, J=7.5 Hz, 3H), 0.85 (t, J=6.6 Hz, 1H), MS (ESI, m/e) [M+1]+847.9.


Example F25: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-ethylphenyl)pyrrolidine, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (s, 1H), 10.53 (s, 1H), 8.64 (t, J=6.1 Hz, 1H), 8.56 (d, J=1.8 Hz, 1H), 8.03 (d, J=2.3 Hz, 1H), 7.89 (s, 1H), 7.81 (d, J=7.9 Hz, 1H), 7.52-7.46 (m, 3H), 7.35-7.24 (m, 3H), 6.68 (d, J=9.0 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.61 (d, J=7.5 Hz, 1H), 3.86 (d, J=8.1 Hz, 1H), 3.75-3.62 (m, 6H), 3.52-3.43 (m, 2H), 3.17-2.94 (m, 3H), 2.78-2.75 (m, 1H), 2.65-2.58 (m, 1H), 2.43-2.42 (m, 1H), 2.19-1.95 (m, 7H), 1.84-1.74 (m, 4H), 1.45-1.34 (m, 5H), 1.12 (t, J=7.5 Hz, 3H), MS (ESI, m/e) [M+1]+866.8.


Example F26: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-ethylphenyl)pyrrolidine. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (s, 1H), 10.67 (s, 1H), 8.58-8.55 (m, 2H), 8.03 (d, J=2.2 Hz, 1H), 7.93 (s, 1H), 7.78 (d, J=9.2 Hz, 1H), 7.51-7.46 (m, 3H), 7.30-7.22 (m, 3H), 7.08 (d, J=9.2 Hz, 1H), 6.68 (d, J=8.4 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.60 (d, J=8.0 Hz, 1H), 4.25 (s, 1H), 3.86 (d, J=8.3 Hz, 1H), 3.66 (s, 1H), 3.30-3.26 (m, 2H), 3.08-2.94 (m, 3H), 2.78-2.58 (m, 2H), 2.44-2.42 (m, 1H), 2.20-1.96 (m, 7H), 1.69-1.66 (m, 3H), 1.52-1.45 (m, 2H), 1.33-1.24 (m, 8H), 1.14-1.12 (m, 6H), MS (ESI, me) [M+1]+876.9.


Example F27: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (s, 1H), 10.37 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.03 (d, J=1.8 Hz, 1H), 7.85-7.76 (m. 2H), 7.55-7.45 (m, 3H), 7.28 (s, 2H), 7.14-6.99 (m, 2H), 6.69 (d, J=8.7 Hz, 1H), 6.38 (s. 1H), 6.17 (s, 1H), 4.97 (s, 1H), 3.85 (d, J=8.5 Hz, 3H), 3.67-3.61 (m, 1H), 3.30-3.21 (m, 4H), 3.08-3.01 (m, 2H), 2.98-2.91 (m, 2H), 2.12-2.05 (m, 4H), 1.92-1.87 (m, 1H), 1.66-1.58 (m, 3H), 1.53-1.45 (m, 1H), 1.44-1.36 (m, 4H), 1.30-1.22 (m, 4H), 0.98-0.93 (m, 2H), 0.86-0.80 (m, 3H), 0.69-0.60 (s, 2H), MS (ESI, m/e) [M+1]+859.8.


Example F28: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.04 (s, 1H), 8.62 (s, 1H), 8.55 (s, 1H), 8.02 (s, 1H), 7.80 (d, J=8.8 Hz, 1H), 7.54-7.49 (m, 2H), 7.24-7.21 (m, 2H), 7.05 (s, 1H), 6.68 (d, J=8.0 Hz, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 4.95 (s, 1H), 3.80-3.70 (m, 5H), 3.57-3.47 (m, 2H), 3.15-2.95 (m, 6H), 2.17-2.95 (m, 5H), 1.86-1.72 (m, 4H), 1.50-1.31 (m, 6H), 0.98-0.91 (m, 2H), 0.87-0.79 (m, 2H), 0.70-0.59 (s, 2H), MS (ESI, m/e) [M+1]+877.8.


Example F29: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl methyl)amino)-3-nitrophenyl sulfon y benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine. 1H NMR (DMSO-do) δ ppm: 11.69 (s, 1H), 10.88 (s, 1H), 9.76 (s, 1H), 8.55 (s, 2H), 8.21 (d, J=5.6 Hz, 1H), 8.07-7.95 (m, 2H), 7.78 (d, J=8.4 Hz, 1H), 7.53-7.48 (m, 2H), 7.27 (s, 1H), 7.13-7.05 (m, 2H), 6.98 (s, 1H), 6.68 (d, J=8.4 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 5.01-4.93 (m, 1H), 4.32-4.28 (m, 1H), 3.89-3.81 (m, 1H), 3.72-3.65 (m, 1H), 2.97-2.88 (m, 4H), 2.25-2.08 (m, 5H), 1.78-1.60 (m, 4H), 1.58-1.54 (m, 2H), 1.47-1.38 (m, 5H), 1.36-1.29 (m, 3H), 1.27-1.23 (m, 2H), 1.16-1.12 (m, 2H), 1.10 (s, 3H), 1.01-0.89 (m, 2H), 0.86-0.82 (m, 11H), 0.70-0.58 (m, 2H), MS (ESI, m/e) [M+1]+888.9.


Example F30: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(7-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.5]nonan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate with tert-butyl 7-oxo-2-azaspiro[3.5]nonane-2-carboxylate, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.76 (s, 1H), 11.28 (s, 11H), 8.69-8.55 (m, 2H), 8.08 (s, 1H), 7.96 (s, 1H), 7.89-7.59 (m, 3H), 7.56-7.44 (m, 2H), 7.34-7.23 (m, 1H), 7.23-7.13 (m, 1H), 7.09-6.85 (m, 2H), 6.44 (s, 1H), 6.14-6.06 (m, 1H), 5.55-5.43 (m, 1H), 5.21-4.18 (m, 1H), 3.90-3.81 (m, 2H), 3.47-3.36 (m, 3H), 3.31-3.17 (m, 5H), 3.07-2.94 (m, 2H), 2.12-1.94 (m, 3H), 1.92-1.75 (m, 5H), 1.73-1.66 (m, 2H), 1.65-1.55 (m, 3H), 1.36-1.27 (m, 3H), 0.94-0.79 (m, 3H), 0.78-0.61 (m, 2H), 0.56-0.45 (m, 1H), MS (ESI, m/e) [M+1]+859.8.


Example F31: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(7-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.5]nonan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F30 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine. 1H NMR (DMSO-d6) δ ppm: 11.78 (s, 1H), 11.42-11.09 (m, 0.5H), 9.97-9.53 (m, 0.5H), 8.78-8.42 (m, 2H), 8.14-8.06 (m, 11H), 7.97-7.75 (m, 2H), 7.75-7.62 (m, 1H), 7.62-7.43 (m, 2H), 7.42-7.10 (m, 3H), 7.10-6.84 (m, 1H), 6.45 (s, 1H), 6.20-6.00 (m, 1H), 5.47 (s, 1H), 5.22-4.96 (m, 1H), 3.94-3.75 (m, 2H), 3.70-3.54 (m, 1H), 3.54-3.37 (m, 6H), 3.31-3.13 (m, 4H), 3.08-2.91 (m, 1H), 2.21-1.49 (m, 10H), 1.40-1.15 (m, 6H), 1.00-0.81 (m, 2H), 0.80-0.43 (m, 2H), MS (ESI, m/e) [M+1]+859.8.


Example F32: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(9-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-azaspiro[5.5]undecan-3-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl aminophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate with tert-butyl 9-oxo-3-azaspiro[5.5]undecane-3-carboxylate, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.73 (s, 1H), 11.41 (s, 1H), 10.37 (s, 1H), 8.65-8.60 (m, 1H), 8.58 (d, J=2.2 Hz, 1H), 8.10-8.00 (m, 1H), 7.81 (d, J=9.5 Hz, 111), 7.57 (d, J=2.2 Hz, 1H), 7.54-7.43 (m, 2H), 7.32-7.22 (m, 2H), 7.14 (d, J=9.3 Hz, 1H), 7.10-7.00 (m, 1H), 6.68 (d, J=9.0 Hz, 1H), 6.45-6.32 (m, 1H), 6.13 (s, 1H), 5.15-5.05 (m, 1H), 3.88-3.80 (m, 2H), 3.70-3.60 (m, 1H), 3.31-3.21 (m, 5H), 3.10-3.00 (m, 2H), 2.22-2.00 (m, 4H), 1.90-1.81 (m, 2H), 1.80-1.51 (m, 7H), 1.45-1.35 (m, 4H), 1.05-0.90 (m, 6H), 0.88-0.72 (m, 4H), MS (ESI, m/e)[M+1]+887.8.


Example F33: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(9-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-azaspiro[5.5]undecan-3-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F32 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine. 1H NMR (DMSO-d6) δ ppm: 11.72 (s, 1H), 11.40 (s, 1H), 8.70-8.53 (m, 2H), 8.06 (d, J=2.3 Hz, 111), 7.82 (d, J=9.1 Hz, 111), 7.52 (dd, J=19.0, 15.6 Hz, 3H), 7.29 (s, 2H), 7.14 (d, J=9.1 Hz, 1H), 7.10-7.05 (m, 2H), 6.40 (s, 1H), 6.13 (s, 1H), 5.15-5.10 (m, 1H), 3.85 (d, J=8.3 Hz, 2H), 3.70-3.60 (m, 1H), 3.30-3.20 (m, 4H), 3.10-3.2.95 (m, 5H), 2.15-2.05 (m, 3H), 1.95-1.85 (m, 2H), 1.80-1.50 (m, 7H), 1.45-1.35 (m, 3H), 1.34-1.12 (m, 6H), 1.00-0.90 (m, 4H), 0.80-0.70 (m, 1H), 0.60-0.50 (m, 1H), MS (ESI, m/e) [M+1]+887.8.


Example F34: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl aminophenyl)sulfon y benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate with tert-butyl 6-oxo-2-azaspiro[3.3]heptane-2-carboxylate, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. H NMR (400 MHz, DMSO-d6) δ ppm: 11.74 (s, 1H), 11.35 (br, 1H), 8.64 (t, J=6.0 Hz, 2H), 8.59 (s, 1H), 8.06 (d, J=2.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.69-7.60 (m, 2H), 7.55-7.52 (m, 1H), 7.48 (d, J=8.8 Hz, 1H), 7.33-7.23 (m, 2H), 7.18 (d, J=9.6 Hz, 1H), 7.06 (s, 1H), 6.42 (s, 1H), 6.09 (d, J=8.8 Hz, 1H), 5.49 (s, 1H), 5.02-4.82 (m, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.79-3.56 (m, 6H), 3.31-3.23 (m, 6H), 2.50-2.38 (m, 1H), 2.18-1.72 (M, 7H), 1.62 (d, J=12.8 Hz, 2H), 1.34-1.22 (m, 2H), 1.02-0.88 (m, 2H), 0.70-0.58 (m, 2H), MS (ESI, m/e) [M+1]+832.7.


Example F35: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F34 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine. 1H NMR (40 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 11.23 (br, 1H), 8.60-8.45 (m, 2H), 8.00 (s, 1H), 7.78 (d, J=7.6 Hz, 1H), 7.59-7.43 (m, 4H), 7.15-7.00 (m, 3H), 6.92 (d, J=6.8 Hz, 1H), 6.38 (s, 1H), 6.06 (d, J=8.4 Hz, 1H), 5.54 (s, 1H), 4.05-3.82 (m, 3H), 3.70-3.50 (m, 4H), 3.35-3.21 (m, 4H), 3.15-2.90 (m, 2H), 2.41-1.95 (m, 5H), 1.93-1.70 (m, 5H), 1.63 (d, J=12.4 Hz, 2H), 1.56-1.27 (m, 3H), 0.92-1.81 (m, 2H), 0.67-0.46 (m, 2H), MS (ESI, m/e) [M+1]+832.8.


Example F36: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chloro-2-(dimethylamino)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 2-chloro-N,N-dimethyl-6-(pyrrolidin-2-yl)aniline, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.45 (s, 1H), 11.16 (s, 1H), 8.70-8.60 (m, 1H), 8.58 (s, 1H), 8.15-7.93 (m, 2H), 7.76 (d, J=9.3 Hz, 1H), 7.58-7.37 (m, 3H), 7.35-7.25 (m, 1H), 7.11 (d, J=9.3 Hz, 1H), 6.75-6.65 (m, 1H), 6.40-6.35 (m, 1H), 6.18 (s, 1H), 4.98 (s, 1H), 3.85 (d, J=8.8 Hz, 2H), 3.81-3.58 (m. 3H), 3.30-3.20 (m, 5H), 3.10-2.76 (m, 4H), 2.75-2.56 (m, 6H), 2.45-2.40 (m, 1H), 2.21-2.00 (m, 4H), 1.90-1.75 (m, 2H), 1.65-1.50 (m, 3H), 1.45-1.40 (m, 3H), 1.25-1.10 (m, 3H), MS (ESI, me) [M+1]+896.8.


Example F37: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid following the procedures similar to those in Example F21. 1H NMR (DMSO-d6) δ ppm: 11.81 (s, 1H), 11.28 (br, 1H), 8.68-8.34 (m, 2H), 8.01 (s, 11H), 7.78 (d, J=8.4 Hz, 1H), 7.66-7.40 (m, 4H), 7.33-6.87 (m, 4H), 6.67 (d, J=8.8 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 3.86-3.57 (m, 6H), 3.53-3.37 (m, 3H), 3.28-2.77 (m, 7H), 2.23-1.70 (m, 6H), 1.67-1.17 (m, 8H), 0.99-0.84 (m, 2H), 0.69-0.51 (m, 2H), MS (ESI, m/e) [M+1]+862.8. MS (ESI, m/e) [M+1]+862.8.


Example F38: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl benzamide



embedded image


The desired compound was synthesized with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid following the procedures similar to those in Example F21. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 10.11 (s, 1H), 8.58-8.55 (m, 2H), 8.22 (d, J=7.3 Hz, 1H), 8.03 (d, J=2.2 Hz, 1H), 7.86-7.63 (m, 2H), 7.52-7.46 (m, 2H), 7.28 (s, 2H), 7.10-7.06 (m, 2H), 6.98 (d, J=7.3 Hz, 1H), 6.68 (d, J=9.2 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 4.98 (s, 1H), 3.81-3.77 (m, 3H), 3.69-3.57 (m, 3H), 3.54-3.44 (m, 2H), 3.44-3.36 (m, 1H), 3.18 (s, 4H), 3.05 (s, 1H), 2.95 (s, 2H), 2.15-1.96 (m. 6H), 1.53 (s, 1H), 1.44-1.37 (m, 4H), 1.25 (s, 2H), 1.04-0.93 (m, 2H), 0.85 (t, J=6.6 Hz, 1H), 0.64 (s, 2H), MS (ESI, m/e) [M+1]+862.8.


Example F39a and Example F39b: (S or R) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-8-azaspiro[4.5]decan-8-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide/(R or S) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-8-azaspiro[4.5]decan-8-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example F21 by replacing tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate with tert-butyl 2-oxo-8-azaspiro[4.5]decane-8-carboxylate, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. After separation and purification with prep-HPLC, F39a was obtained as faster peak in HPLC, 1H NMR (DMSO-do) δ ppm: 11.72 (s, 1H), 11.45 (s, 1H), 9.33 (s, 1H), 8.70-8.52 (m, 2H), 8.05 (d, J=2.1 Hz, 1H), 7.81 (d, J=9.2 Hz. 1H), 7.56-7.48 (m, 4H), 7.36-7.24 (m, 2H), 7.14 (d, J=9.2 Hz, 1H), 7.10-6.97 (m, 1H), 6.68 (d, J=8.6 Hz, 1H), 6.40 (s, 1H), 6.13 (s, 1H), 5.12-5.06 (m, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.72 (d, J=6.8 Hz, 2H), 3.33-3.25 (m, 4H), 3.11-3.04 (m, 2H), 2.99-2.91 (m, 2H), 2.85-2.77 (m, 1H), 2.21-2.10 (m, 2H), 2.07-1.95 (m, 4H), 1.94-1.84 (m, 2H), 1.63-1.60 (m, 2H), 1.46-1.39 (m, 3H), 1.33-1.25 (m, 6H), 0.96-0.94 (m, 2H), 0.86-0.84 (m, 2H), 0.76-0.68 (m, 1H), 0.62-0.54 (m, 1H), MS (ESI, m/e) [M+1]+874.8; F39b was obtained as slower peak in HPLC, 1H NMR (DMSO-d6) δ ppm: 11.72 (s, 1H), 11.44 (s, 1H), 9.41 (s, 1H), 8.71-8.55 (m, 2H), 8.06 (d, J=2.2 Hz, 1H), 7.81 (d, J=8.0 Hz, 1H), 7.65-7.45 (m, 4H), 7.37-7.25 (m, 2H), 7.18-7.03 (m, 3H), 6.73 (d, J=8.3 Hz, 1H), 6.40 (s, 1H), 6.18 (s, 1H), 5.10-5.04 (m, 1H), 3.85 (d, J=8.5 Hz, 2H), 3.74-3.72 (m, 2H), 3.30-3.24 (m, 5H), 3.10 (s, 3H), 2.98 (s, 1H), 2.19-2.04 (m, 4H), 1.99-1.88 (m, 5H), 1.63-1.60 (m, 3H), 1.50-1.45 (m, 2H), 1.38-1.27 (m, 5H), 0.95-0.91 (m, 2H), 0.89-0.84 (m, 2H), 0.66 (s, 2H), MS (ESI, m/e) [M+1]+874.8.


Example F40: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


Step 1: 7-azaspiro[3.5]nonan-2-one hydrochloride

A solution of tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (47.8 g, 200 mmol) in HCl/dioxane solution (150 mL, 4 mol/L) and DCM (300 mL) was stirred at room temperature overnight. After removal of solvent by vacuum, 7-azaspiro[3.5]nonan-2-one hydrochloride was obtained as a pale yellow solid.


Step 2: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzoate

2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (2.08 g, 7.3 mmol) and 7-azaspiro[3.5]nonan-2-one hydrochloride (3.83 g, 21.9 mmol) in DMSO (40 mL) was stirred at 110° C. for 2 days. After cooled to room temperature, the reaction mixture was poured into water (200 mL) under stirring. Then the precipitated solid was filtered and the filtered cake was further purified by column chromatography on silica gel (eluent: MeOH/DCM=1/50 to 1/30) to obtain methyl 24 (1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzoate as a yellow oil (470 mg). MS (ESI, m/e) [M+1]+405.9.


Step 3: methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate

To the mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzoate (470 mg, 1.16 mmol), (S)-2-(2-ethylphenyl)pyrrolidine (204 mg, 1.16 mmol) in DCM (20 mL) was added NaBH(OAc)3 (369 mg, 1.74 mmol) and HOAc (I drop) and stirred at room temperature overnight. After removal of solvent, the residue was purified by column chromatography on silica gel (eluent: MeOH/DCM=1/50 to 1/10) to obtain S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate as a yellow solid (440 mg). MS (ESI, m/e) [M+1]+565.0.


Step 4: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid

To the solution of methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate (530 mg, 0.94 mmol) in THF (4 mL) and MeOH (4 mL) was added aq. NaOH solution (4 mL, 6 mol/L) and stirred at 60° C. for 2 h. After removal of THF and MeOH, the mixture was acidified with 6 N HCl acid to pH ˜3 and then was extracted with DCM/i-PrOH=3/1 (60 mL). The organic layer was washed with brine (40 mL), dried over anhydrous Na2SO4, filtered and concentrated to give (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid as a yellow solid (450 mg). MS (ESI, m/e) [M+1]+550.9.


Step 5: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide

To a mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (200 mg, 0.364 mmol) in DCM (20 mL) were added EDCI (105 mg, 0.546 mmol), DMAP (66 mg, 0.546 mmol), (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide (138 mg, 0.436 mmol) and TEA (184 mg, 1.820 mmol), the mixture was stirred at ambient temperature for about 20 hours. The reaction mixture was concentrated and purified by column chromatograph on silica gel (100-200 mesh, eluent: EA/DCM=1/1 to MeOH/DCM=1/15) to give the crude product, which was purified by pre-TLC (eluent: MeOH/DCM=1/15) to give the desired compound as yellow solid. (70 mg, yield: 22.6%). 1H NMR (DMSO-d6) δ ppm: 11.73 (s, 1H), 11.32 (br, 1H), 8.63-8.49 (m, 2H), 8.02 (d, J=2.0 Hz, 1H), 7.92-7.68 (m, 2H), 7.57-7.42 (m, 3H), 7.36-7.16 (m, 3H), 7.14-7.02 (m, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 3.92-3.36 (m, 11H), 3.20-2.84 (m, 6H), 2.80-2.56 (m, 2H), 2.42-1.86 (m, 6H), 1.50-1.28 (m, 6H), 1.12 (t, J=7.6 Hz, 3H), 0.99-0.84 (m, 2H), 0.69-0.51 (m, 2H), MS (ESI, m/e) [M+1]+849.8.


Example F41: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d) δ ppm: 11.73-11.32 (m, 2H), 8.63-8.49 (m, 2H), 8.02 (d, J=2.0 Hz, 1H), 7.92-7.68 (m, 2H), 7.57-7.42 (m, 3H), 7.36-7.16 (m, 3H), 7.14-7.02 (m, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 3.92-3.36 (m, 11H), 3.20-2.84 (m, 6H), 2.80-2.56 (m, 2H), 2.42-1.86 (m, 6H), 1.50-1.28 (m, 6H), 1.12 (t, J=7.6 Hz, 3H), 0.99-0.84 (m, 2H), 0.69-0.51 (m, 2H), MS (ESI, m/e) [M+1]+849.8 MS (ESI, m/e) [M+1]+849.8.


Example F42: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(8-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[4.5]decan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example F21 by replacing tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate with tert-butyl 8-oxo-2-azaspiro[4.5]decane-2-carboxylate, and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.24 (s, 1H), 8.67-8.44 (m, 2H), 8.05 (s, 1H), 7.84-7.65 (m, 1H), 7.61-7.42 (m, 4H), 7.17-6.99 (m, 3H), 6.94-6.85 (m, 1H), 6.41-6.26 (m, 2H), 5.82 (s, 1H), 4.33-4.22 (m, 1H), 3.89-3.81 (m, 2H), 3.30-3.21 (m, 4H), 3.17-2.91 (m, 6H), 2.05-1.95 (m, 2H), 1.92-1.82 (m, 2H), 1.74-1.65 (m, 3H), 1.66-1.59 (m, 5H), 1.19-1.14 (m, 4H), 0.89-0.83 (m, 4H), 0.78-0.72 (m, 3H), 0.52-0.46 (m, 1H), MS (ESI, m/e) [M+1]+873.9.


Example F43: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


Step 1: 2,2-dimethoxy-7-azaspiro[3.5]nonane hydrochloride

To the solution of tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (500 g, 2.09 mol) in MeOH (750 mL) and EA (750 mL) was added conc. HCl acid (350 mL, 4.18 mol) at room temperature and stirred for 4 hours. After concentrated in vacuum, MeOH (750 mL) was added into the residue and then the resulting mixture was concentrated in vacuum (repeated this work-up twice). The brown residue was suspended in EA (1250 mL) and stirred for 1 hour.


The solid precipitation was filtered and dried in vacuum to afford the tittle product as an off-white powder (350 g, yield: 76.0%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 3.03 (s, 6H), 2.96-2.89 (m, 4H), 1.93 (s, 4H), 1.74-1.67 (m, 4H), MS (ESI, m/e) [M+1]+186.0.


Step 2: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2,2-dimethoxy-7-azaspiro[3.5]nonan-7-yl)benzoate

The mixture of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (100 g), 2,2-dimethoxy-7-azaspiro[3.5]nonane hydrochloride (116 g, 1.5 eq.) and DBU (160 g, 3.0 eq.) in NMP (500 mL) was stirred for 16 hours at 85° C. After the reaction was completed, the mixture was cooled to 50±5° C., and citric acid in water (2%, 5 L) was added drop-wise into the system under stirring. After filtered, the cake was collected and dissolved with DCM (1.5 L). The solution of crude product was washed with citric acid in water (2%, 1.5 L), saturated aq. NaHCO3 (1.5 L) and 15% aq. NaCl (1.5 L), and then dried over anhydrous Na2SO4. Silica gel (100 g) was added into the solution of crude product under stirring and then filtered. The filtrate was concentrated to 300 mL. MTBE (500 mL) was poured into the system. After stirred for 2 hours, the cake was collected after filtration and was dried in vacuum to give an off-white solid (192 g, yield: 72.1%). 1H NMR (400 MHz, DMSO-do) δ ppm: 11.63 (s, 1H), 8.00 (d, J=2.4 Hz, 1H), 7.76 (d, J=9.2 Hz, 1H), 7.47 (t, J=3.2 Hz, 1H), 7.42 (d, J=2.4 Hz, 1H), 6.79 (dd, J=2.4 Hz, J=9.2 Hz, 1H), 6.39-6.36 (m, 2H), 3.64 (s, 3H), 3.17-3.12 (m, 4H), 3.01 (s, 6H), 1.86 (s, 4H), 1.54-1.50 (m, 4H), MS (ESI, m/e) [M+1]+451.9.


Step 3: methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzoate

To the solution of methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2,2-dimethoxy-7-azaspiro[3.5]nonan-7-yl)benzoate (176 g, 0.39 mol) in DCM (2 L) was added diluted HCl acid (1M, 1.5 L) and stirred for overnight. After the reaction was completed, the mixture was cooled to 10° C., and was adjusted to pH=8-9 with aqueous NaOH solution (4 M) under stirring. The organic phase was separated and washed with 15% aq. NaCl (0 L), then washed with H2O (1 L). After the organic phase was concentrated to 500 mL, MTBE (1 L) was poured into the solution and then the system was concentrated to 500 mL (repeated this work-up 3 times). The resulting system was stirred for 0.5 hour. After filtration, the cake was collected and then dried in vacuum to obtain the tittle product as a white solid (152 g, yield: 96.23%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.64 (s, 1H), 8.02 (d, J=2.4 Hz, 1H), 7.78 (d, J=9.2 Hz, 1H), 7.47 (t, J=3.2 Hz, 1H), 7.44 (d, J=2.4 Hz, 1H), 6.83 (dd, J=2.4 Hz, J=9.2 Hz, 1H), 6.43 (d, J=2.4 Hz, 1H), 6.38-6.36 (m, 1H), 3.65 (s, 3H), 3.24-3.21 (m, 4H), 2.80 (s, 4H), 1.70-1.67 (m, 4H), MS (ESI, m/e) [M+1]+405.9.


Step 4: (S)-tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate

To a mixture of (S)-tert-butyl 2-(2-bromophenyl)pyrrolidine-1-carboxylate (50 g, 153.3 mmol) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (38.6 g, 229.9 mmol) in dioxane (500 mL) and H2O (50 mL) was added Cs2CO3 (100 g, 305 mmol) and Pd(dppf)Cl2 (6.6 g, 7.5 mmol). The mixture was stirred at 100° C. for 8 hours. TLC showed the reaction was completed. The mixture was concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE/EA (v/v)=100/1 to 10/1) to obtain (S)-tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate (65 g, crude). The crude product was used directly in next step.


Step 5: (S)-tert-butyl 2-(2-isopropylphenyl)pyrrolidine-1-carboxylate

To a solution of(S)-tert-butyl 2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine-1-carboxylate (30 g, 104.39 mmol) in MeOH (500 mL) was added Pd/C (10 g, 10%) and the mixture was stirred at 20° C. under H2 (15 Psi) for 12 hours. TLC showed the reaction was completed. The mixture was filtered and the filtrate was concentrated in vacuum to give (S)-tert-butyl 2-(2-isopropylphenyl)pyrrolidine-1-carboxylate (60 g, crude), which was used in next step without further purification. 1H NMR (400 MHz, CDCl3) δ ppm: 7.39-6.90 (m, 4H), 5.36-5.04 (m, 1H), 3.77-3.52 (m, 2H), 3.20-3.17 (m, 1H), 2.47-2.24 (m, 1H), 1.96-1.65 (m, 3H), 1.54-1.38 (m, 2H), 1.31-1.22 (m, 8H), 1.17 (s, 7H).


Step 6: (S)-2-(2-isopropylphenyl)pyrrolidine hydrochloride

To a solution of tert-butyl 2-(2-isopropylphenyl)pyrrolidine-1-carboxylate (55 g, 190 mmol) in DCM (50 mL) was added HCl in 1,4-dioxane (4 M. 142 mL, 570 mmol) dropwise at room temperature. The mixture was stirred at room temperature for overnight. The mixture was concentrated in vacuum. The resulting residue was slurried with EA (100 mL) and then filtered, dried in vacuum to give (S)-2-(2-isopropylphenyl)pyrrolidine hydrochloride 26 g (yield: 60.4%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.93 (s, 1H), 8.81 (s, 1H), 7.63-7.57 (m, 1H), 7.41-7.34 (m, 2H), 7.32-7.24 (m, 1H), 4.91-4.75 (m, 1H), 3.47-3.35 (m, 1H), 3.31-3.25 (m, 1H), 2.40-2.21 (m, 1H), 2.19-1.86 (m, 3H), 1.25 (d, J=6.7 Hz, 3H), 1.17 (d, J=6.7 Hz, 3H), MS (ESI, m/e) [M+1]+190.0.


Step 7: methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate

A mixture of (S)-2-(2-isopropylphenyl)pyrrolidine hydrochloride (120 g, 0.535 mole) and methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzoate (218 g, 0.509 mole) in DCM (2.2 L) was charged into a reactor. The temperature was controlled blow 30° C., and NaBH(OAc)3 (216 g, 1.018 mole) was added into the reactor in 5-6 portions. Then the reaction mixture was stirred at room temperature and monitored by TLC. After the starting material ketone was consumed completely, the mixture was adjusted to pH=4-5 with diluted HCl acid (0.5 M). The separated organic phase was washed with H2O (600 mL×2) and then washed with aq. NaHCO3 (600 mL×2), saturated aq. NaCl (600 mL). The organic phase was collected, then dried over anhydrous Na2SO4 and concentrated. 256 g off-white solid was obtained as crude product, which was used in next step directly. MS (ESI, m/e) [M+1]+579.0.


Step 8: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid

To a solution of methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoate (105 g, 181.7 mmol) in THF (525 mL) and MeOH (525 mL) was added aq. NaOH (3.5 M). It was stirred at room temperature overnight. After THF and MeOH were removed in vacuum, 3.5 L of water was added into the residue. The resulting mixture was adjusted to pH=5-6 with 3 N HCl acid at room temperature with stirring. The precipitate was filtered and dried in vacuum to give the product as a white solid (102.4 g, yield: 99%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.13 (s, 1H), 11.58 (s, 1H), 7.95 (s, 1H), 7.67 (d, J=8.0 Hz, 1H), 7.56-7.40 (m, 2H), 7.35 (s, 1H), 7.27-7.04 (m, 3H), 6.68 (d, J=8.0 Hz, 1H), 6.32 (s, 2H), 3.62 (s, 1H), 3.32-3.26 (m, 1H), 3.10-3.04 (m, 4H), 2.35-2.30 (m, 1H), 2.9-2.15 (m, 1H), 1.74-1.64 (m, 4H), 1.52-1.37 (m, 6H), 1.28-1.06 (m, 6H), MS (ESI, m/e) [M+1]+564.9.


Step 9: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide

A mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (44 g, 78 mmol), 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (26.8 g, 78 mmol), TEA (15.7 g, 156 mmol), EDCI (19.4 g, 101 mmol) and DMAP (19 g, 156 mmol) in anhydrous DCM (880 mL) was stirred overnight at room temperature. The reaction was monitored by HPLC. After starting material of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid was consumed completely, the reaction mixture was heated to −35° C., and N1,N1-dimethylethane-1,2-diamine (17.2 g, 195 mmol) was added in one portion. The reaction was stirred for another 12 hours. The mixture was washed twice with 10 wt % aq. AcOH solution (300 mL×2) and then washed with saturated aq. NaHCO3 (300 mL×2). The organic layer was collected and concentrated to about 90 mL. 22 g of silica gel was added and stirred for 2 hours. After filtration, 180 mL EA was added into the filtrate at reflux and further stirred for 5 hours. After the mixture was cooled to room temperature, the precipitate was filtered and then the wet cake was washed twice with EA (180 mL). After drying in vacuum at 80-90° C., the desired compound was obtained (48 g, yield: 69.5%). 1H NMR (DMSO-d6) δ ppm: 11.65 (s, 1H), 11.11 (br, 1H), 8.58-8.39 (m, 2H), 8.00 (d, J=2.8 Hz, 1H), 7.74 (d, J=8.8 Hz, 1H), 7.57-7.37 (m, 4H), 7.30-7.10 (m, 3H), 7.00 (d, J=9.2 Hz, 1H), 6.65 (d, J=1.2 Hz, 1H), 6.35 (s, 1H), 6.17 (s, 1H), 4.24 (s, 1H), 3.39-3.20 (m, 5H), 3.04-2.88 (m, 4H), 2.23 (s, 1H), 1.94-1.47 (m, 11H), 1.44-1.26 (m, 7H), 1.19 (d, J=8.0 Hz, 3H), 1.14 (d, J=8.0 Hz, 3H), 1.10 (s, 4H), MS (ESI, m/e) [M+1]+889.9.


Example F44: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


A mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (78 g, 138 mmol), (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonanide (64 g, 138 mmol), TEA (78 mL, 565 mmol), EDCI (32 g, 170 mmol) and DMAP (34.5 g, 283 mmol) in anhydrous DCM (2 L) was stirred overnight at room temperature. The reaction was monitored by HPLC.


After the starting material (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid was consumed completely, the mixture was washed with 10% HOAc (600 mL×2) and then with saturated aq. NaHCO3 (600 mL×2). The organic layers were collected and dried over anhydrous Na2SO4 and then purified by column chromatography on silica gel (eluent: DCM/EA (v/v)=1/l, then 2% MeOH in DCM to 5% MeOH in DCM) to give a crude product (95 g), which was further purified to obtain the desired compound (40 g, yield: 41%). 1H NMR (400 MHz, DMSO-d6): 11.68 ppm: (s, 1H), 11.47 (s, 1H), 8.59-8.55 (m, 2H), 8.03 (s, 1H), 7.80 (d, J=8.4 Hz, 2H), 7.63-7.41 (m, 3H), 7.35-7.28 (m, 3H), 7.10 (d, J=9.2 Hz, 1H), 6.68 (d, J=9.2 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 4.76 (s, 1H), 3.89-3.79 (m, 4H), 3.68-3.59 (m, 3H), 3.52-3.41 (m, 2H), 3.43-3.38 (m, 1H), 3.31-3.21 (m, 2H), 3.17-2.88 (m, 5H), 2.18-2.11 (m, 5H), 1.40-1.31 (m, 7H), 1.24 (d, J=8.0 Hz, 3H), 1.11 (d, J=8.0 Hz, 3H), MS (ESI, m/e) [M+1]+863.9.


Example F45: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (br, 1H), 8.61 (s, 1H), 8.55 (s, 1H), 8.03 (s, 1H), 7.79 (d, J=8.8 Hz, 1H), 7.67 (s, 1H), 7.55-7.46 (m, 3H), 7.41-7.25 (m, 3H), 7.17-7.05 (m, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.85-4.70 (m, 1H), 3.85 (d, J=8.4 Hz, 3H), 3.72-3.60 (m, 1H), 3.27-3.21 (m, 4H), 3.12-2.89 (m, 8H), 2.18-1.99 (m, 4H), 1.95-1.83 (m, 1H), 1.61 (d, J=12.5 Hz, 2H), 1.48-1.39 (m, 3H), 1.38-1.17 (m, 9H), 1.15-0.97 (s, 3H), MS (ESI, m/e) [M+1]+861.9.


Example F46: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.47 (br, 1H), 8.65 (t, J=6.0 Hz, 1H), 8.57 (d, J=1.6 Hz, 1H), 8.04 (d, J=1.6 Hz, 1H), 7.82 (d, J=8.8 Hz, 1H), 7.60 (d, J=7.6 Hz, 1H), 7.52 (d, J=7.6 Hz, 2H), 7.48 (d, J=8.8 Hz, 1H), 7.37 (d, J=4.0 Hz, 2H), 7.31 (dd, J=7.6, 4.0 Hz, 1H), 7.26 (d, J=8.8 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.86-4.73 (m, 1H), 3.89 (dd, J=16.0, 8.0 Hz, 1H), 3.79-3.64 (m, 4H), 3.60-3.47 (m, 2H), 3.33-3.22 (m, 2H), 3.22-3.11 (m, 1H), 3.06 (s, 2H), 2.95 (s, 2H), 2.49-2.40 (m, 2H), 2.22-1.92 (m, 5H), 1.88-1.65 (m, 4H), 1.55-1.30 (m, 5H), 1.25 (d, J=6.4 Hz, 3H), 1.10 (d, J=6.4 Hz, 3H), MS (ESI, m/e) [M+1]+879.9.


Example F47: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.47 (br, 1H), 8.59-8.55 (m, 2H), 8.03 (d, J=1.8 Hz, 1H), 7.80 (d, J=8.1 Hz, 2H), 7.63-7.41 (m, 3H), 7.35-7.28 (m, 3H), 7.10 (d, J=9.2 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 4.76 (s, 1H), 3.89-3.79 (m, 4H), 3.68-3.59 (m, 3H), 3.52-3.41 (m, 2H), 3.43-3.38 (m, 1H), 3.31-3.21 (m, 2H), 3.17-2.88 (m, 5H), 2.18-2.11 (m, 5H), 1.40-1.31 (m, 7H), 1.24 (d, J=6.0 Hz, 3H), 1.11 (d, J=6.0 Hz, 3H), MS (ESI, m/e) [M+1]+863.9.


Example F48: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.65 (s, 1H), 11.24 (br, 1H), 8.53-8.51 (m, 2H), 8.00 (s, 1H), 7.73 (d, J=7.8 Hz, 1H), 7.51-7.48 (m, 4H), 7.23-7.16 (m, 3H), 6.99 (s, 1H), 6.65 (d, J=8.3 Hz, 1H), 6.36 (s, 1H), 6.17 (s, 1H), 3.95 (s, 1H), 3.27-3.24 (m, 4H), 3.01 (s, 2H), 2.93 (s, 2H), 2.24 (s, 1H), 1.83-1.74 (m, 4H), 1.58-1.46 (m, 7H), 1.43-1.33 (m, 6H), 1.27-1.10 (m, 10H), 1.08 (s, 3H), MS (ESI, m/e) [M+1]+889.9.


Example F49: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((R)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (R)-2-(2-isopropylphenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (br, 1H), 8.57 (s, 1H), 8.55 (s, 1H), 8.03 (s, 1H), 7.98 (s, 1H), 7.78 (d, J=8.4 Hz, 1H), 7.55-7.42 (m, 3H), 7.33 (s, 2H), 7.26 (s, 1H), 7.07 (d, J=8.4 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.38 (s. 1H), 6.18 (s, 1H), 4.74 (s, 1H), 4.25 (s, 1H), 3.96-3.51 (m, 2H), 3.28 (s, 3H), 3.14-2.85 (m. 5H), 2.38 (s, 1H), 2.30-1.88 (m, 5H), 1.74-1.60 (m, 3H), 1.54 (d, J=12.6 Hz, 2H), 1.48-1.28 (m, 8H), 1.24 (d, J=5.4 Hz, 3H), 1.16-1.05 (m, 8H), MS (ESI, m/e) [M+1]+889.9.


Example F50: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((R)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (R)-2-(2-isopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 11.44 (br, 1H), 10.87 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.98 (s, 1H), 7.78 (d, J=9.0 Hz, 1H), 7.55-7.42 (m, 3H), 7.33 (s, 2H), 7.27 (s, 1H), 7.07 (d, J=9.0 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 4.73 (s, 1H), 3.97 (s, 1H), 3.82 (s, 1H), 3.67 (s, 1H), 3.26 (s, 3H), 3.14-2.85 (m, 5H), 2.39 (s, 1H), 2.30-1.88 (m, 5H), 1.60-1.30 (m, 12H), 1.24 (d, J=6.0 Hz, 5H), 1.15-1.03 (m, 6H), MS (ESI, m/e) [M+1]+889.9.


Example F51: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclobutylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclobutylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.43 (br, 1H), 8.61-8.53 (m, 2H), 8.02 (s, 1H), 7.78-7.70 (m, 2H), 7.49-7.45 (m, 3H), 7.29 (s, 3H), 7.10-7.06 (m, 1H), 6.70-6.62 (m, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 4.46 (s, 1H), 3.81-3.75 (m, 5H), 3.31-3.21 (m, 4H), 2.99-2.95 (m, 4H), 2.30-1.87 (m, 13H), 1.65-1.58 (m. 2H), 1.47-1.18 (m, 10H), MS (EST) m/e [M+1]+873.8.


Example F52: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isobutylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-isobutylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonanude with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.52 (s, 1H), 9.64 (s, 1H), 8.67-8.26 (m, 2H), 8.02-7.86 (m, 1H), 7.71-7.34 (m, 4H), 7.29-6.92 (m, 4H), 6.88-6.56 (m, 2H), 6.37-6.10 (m, 1H), 5.39-5.23 (m, 1H), 3.89-3.77 (m, 2H), 3.60-3.46 (m, 1H), 3.28-3.21 (m, 4H), 3.15-2.81 (m, 8H), 2.21-1.55 (m, 13H), 1.51-1.40 (m, 4H), 0.893-0.79 (m, 7H), MS (ESI, m/e) [M+1]+875.9.


Example F53: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfon yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(3-cyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonanide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.45 (br, 1H), 8.54 (s, 2H), 8.03 (s, 1H), 7.77 (s, 1H), 7.50 (s, 3H), 7.27 (s, 3H), 7.10 (s, 2H), 6.73-6.65 (m, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 4.28 (s, 1H), 3.90-3.80 (m, 3H), 3.62 (s, 1H), 3.30-3.23 (m, 3H), 3.10-2.91 (m, 6H), 2.10-1.92 (m, 7H), 1.65-1.59 (m, 3H), 1.45-1.25 (m, 8H), 0.99-0.92 (m, 2H), 0.68 (s, 2H), MS (ESI) m/e [M+1]+860.0.


Example F54: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(2-(2-(o-tolyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(o-tolyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.44 (s, 1H), 8.62 (t, J=6.0 Hz, 1H), 8.56 (d, J=2.4 Hz, 1H), 8.03 (d, J=2.4 Hz, 1H), 7.87 (s, 1H), 7.79 (dd, J=9.0, 2.0 Hz, 1H), 7.57-7.45 (m, 3H), 7.30-7.16 (m, 3H), 7.11 (d, J=9.0 Hz, 1H), 6.69 (d, J=9.0 Hz, 1H), 6.38 (dd, J=3.2, 1.8 Hz, 1H), 6.18 (s, 1H), 4.55 (s, 1H), 3.85 (dd, J=11.2. 3.0 Hz, 2H), 3.33-3.22 (m, 4H), 3.14-2.85 (m, 5H), 2.36 (s, 4H), 2.21-1.96 (m, 5H), 1.92-1.83 (m, 1H), 1.61 (d, J=12.8 Hz, 2H), 1.49-1.35 (m, 5H), 1.31-1.17 (m, 2H), MS (ESI, m/e) [M+1]+833.9.


Example F55: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-chlorophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfanyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-chlorophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (br, 1H), 8.65-8.61 (m, 1H), 8.56 (d, J=2.2 Hz, 1H), 8.04 (d, J=2.5 Hz, 2H), 7.80 (d, J=9.1 Hz, 1H), 7.56-7.31 (m, 5H), 7.11 (d, J=9.4 Hz, 1H), 6.69 (d, J=9.0 Hz, 1H), 6.39 (d. J=1.7 Hz, 1H), 6.18 (s, 1H), 5.31 (s, 1H), 4.80 (s, 1H), 3.85 (d, J=8.1 Hz, 2H), 3.69-3.61 (m, 1H), 3.41-3.34 (m, 1H), 3.30-3.21 (m, 1H), 3.14-3.0 (m, 4H), 2.96 (s, 3H), 2.40-2.19 (m, 3H), 1.65-1.60 (m, 3H), 1.54-1.40 (m, 6H), 1.32-1.20 (m, 5H), MS (ESI, m/e) [M+1]+853.8.


Example F56: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-bromophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-bromophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.72 (s, 1H), 11.68 (br, 1H), 8.61 (t, J=5.6 Hz, 1H), 8.56 (d, J=2.0 Hz, 1H), 8.04 (d, J=2.0 Hz, 1H), 7.87-7.74 (m, 1H), 7.59 (s, 1H), 7.53-7.46 (m, 3H), 7.42 (s, 1H), 7.25 (s, 1H), 7.11 (d, J=9.0 Hz, 1H), 6.68 (d, J=7.4 Hz, 1H), 6.44-6.30 (m, 1H), 6.18 (s, 1H), 3.85 (dd, J=11.2, 2.8 Hz, 2H), 3.62-3.12 (m, 8H), 3.12-2.83 (m, 5H), 2.43-2.27 (m, 1H), 2.12-1.76 (m, 5H), 1.61 (d, J=12.0 Hz, 2H), 1.58-1.31 (m, 6H), 1.30-1.19 (m, 2H), MS (ESI, m/e) [M+1]+897.7.


Example F57: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-chlorophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (R)-2-(2-chlorophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (br, 1H), 8.63 (t, J=5.6 Hz, 1H), 8.56 (d, J=1.8 Hz, 1H), 8.04-7.99 (m, 2H), 7.79 (d, J=9.1 Hz, 1H), 7.52-7.43 (m, 5H), 7.12 (d, J=9.3 Hz, 1H), 6.69 (d, J=8.7 Hz, 1H), 6.39 (s, 1H), 6.17 (s, 1H), 4.81 (s, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.63 (s, 1H), 3.29-3.23 (m, 4H), 3.05 (s, 2H), 2.97 (s, 2H), 2.10 (s, 2H), 2.02-1.97 (m, 1H), 1.89 (s, 2H), 1.63-1.60 (m, 3H), 1.43-1.38 (m, 5H), 1.31-1.19 (m, 4H), MS (ESI, m/e) [M+1]+853.7.


Example F58: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chlorophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(3-chlorophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.45 (br, 1H), 8.69-8.49 (m, 2H), 8.11-7.96 (m, 1H), 7.90-7.22 (m, 8H), 7.20-7.03 (m, 1H), 6.76-6.59 (m, 1H), 6.38 (s, 1H), 6.27-6.06 (m, 1H), 4.54-4.11 (m, 1H), 4.00-3.50 (m, 3H), 3.31-3.22 (m, 4H), 3.11-2.82 (m, 5H), 2.30-1.73 (m, 6H), 1.69-1.53 (m, 3H), 1.53-1.18 (m, 8H), MS (ESI, m/e) [M+1]+853.8.


Example F59: (R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chlorophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (R)-2-(3-chlorophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d4) δ ppm: 11.69 (s, 1H), 11.44 (br, 1H), 8.62 (s, 1H), 8.55 (s, 1H), 8.03 (d, J=1.9 Hz, 1H), 7.79 (d, J=9.1 Hz, 1H), 7.51-7.34 (M, 6H), 7.11 (d, J=8.7 Hz, 1H), 6.69 (d, J=8.6 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.38 (s, 1H), 3.85 (d, J=8.5 Hz, 2H), 3.63 (s, 1H), 3.29-3.23 (M, 4H), 3.05 (s, 2H), 2.96 (s, 2H), 2.11 (s, 1H), 2.02-1.97 (m, 1H), 1.91-1.89 (m, 2H), 1.63-1.60 (m, 3H), 1.43 (s, 2H), 1.36 (s, 2H), 1.31-1.23 (m, 6H), MS (ESI, m/e) [M+1]+854.1.


Example F60: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(4-chlorophenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(4-chlorophenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonanude with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 8.61 (t, J=5.9 Hz, 1H), 8.56 (d, J=2.2 Hz, 1H), 8.03 (d, J=2.6 Hz, 1H), 7.79 (dd, J=9.2, 2.1 Hz, 1H), 7.63 (d, J=7.6 Hz, 2H), 7.54-7.43 (m, 5H), 7.10 (d, J=9.4 Hz, 1H), 6.70 (dd, J=9.0, 1.8 Hz, 1H), 6.39 (dd, J=3.2, 1.8 Hz, 1H), 6.18 (d, J=1.7 Hz, 1H), 4.25 (s, 1H), 3.89-3.83 (m, 3H), 3.34-3.19 (m, 6H), 3.13-2.90 (m, 6H), 2.34 (s, 1H), 2.10-2.06 (m, 5H), 1.94-1.82 (m, 1H), 1.65-1.58 (m, 3H), 1.51-1.33 (m, 5H), 1.26-1.19 (m, 2H), MS (ESI, m/e) [M+1]+853.8.


Example F61: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-ethoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-ethoxyphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.45 (s, 1H), 9.97 (s, 1H), 8.58-8.52 (m, 2H), 8.02 (s, 1H), 7.78-7.76 (m, 1H), 7.65-7.23 (m, 5H), 7.05-7.01 (m, 3H), 6.72-6.58 (m, 1H), 6.37 (s, 1H), 6.20 (s, 1H), 4.68 (s, 1H), 4.10 (s, 2H), 3.87-3.83 (m, 3H), 3.30-3.23 (m, 3H), 3.05-3.01 (m, 5H), 2.05-1.98 (m, 9H), 1.67-1.17 (m, 14H), MS (EST) m/e [M+1]+863.8.


Example F62: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-(dimethylamino)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)—N,N-dimethyl-2-(pyrrolidin-2-yl)aniline and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.45 (s, 1H), 10.17 (s, 1H), 8.67-8.59 (m, 1H), 8.59-8.52 (m 1H), 8.08-7.99 (m, 1H), 7.83-7.76 (m, 1H), 7.71 (s, 1H), 7.57-7.45 (m, 3H), 7.44-7.33 (m, 1H), 7.31-7.24 (m, 1H), 7.24-7.16 (m, 1H), 7.16-7.06 (m, 1H), 6.73-6.64 (m, 1H), 6.42-6.31 (m, 1H), 6.21-6.11 (m, 1H), 4.99-4.83 (m, 1H), 3.91-3.80 (m, 2H), 3.80-3.67 (m, 1H), 3.67-3.51 (m, 1H), 3.32-3.22 (m, 4H), 3.20-2.90 (m, 6H), 2.60 (s, 6H), 2.23-1.79 (m, 6H), 1.70-1.57 (m, 2H), 1.57-1.49 (m, 1H), 1.44-1.20 (m, 7H), MS (ESI, m/e) [M+1]+862.9.


Example F63: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-(dimethylamino)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)—N,N-dimethyl-2-(pyrrolidin-2-yl)aniline. 1H NMR (DMSO-d6) δ ppm: 11.60 (s, 1H), 11.37 (s, 1H), 8.66-8.52 (m, 2H), 8.05 (s, 1H), 7.83 (d, J=8.9 Hz, 1H), 7.56-7.52 (m, 3H), 7.36-7.30 (m, 4H), 7.17-7.15 (m, 2H), 7.03-7.00 (m, 1H), 6.94-6.80 (m, 2H), 6.39-6.35 (m, 3H), 5.06 (s, 1H), 4.56 (s, 1H), 3.96-3.81 (m, 3H), 3.71-3.70 (m, 1H), 3.29-3.10 (m, 6H), 2.67 (s, 6H), 2.07-2.04 (m, 3H), 1.99 (s, 2H), 1.86 (s, 3H), 1.66-1.60 (m, 5H), 1.45-1.43 (m, 1H), MS (ESI) m/e [M+1]+890.9.


Example F64: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-(bis(methyl-d3)amino)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)—N,N-bis(methyl-d3)-2-(pyrrolidin-2-yl)aniline. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.43 (s, 1H), 10.14 (s, 1H), 8.56 (s, 2H), 8.04 (s, 1H), 7.81-7.75 (m, 1H), 7.69 (s, 1H), 7.51-7.43 (m, 3H), 7.38 (s, 1H), 7.29-7.16 (m, 2H), 7.11-7.06 (m, 1H), 6.70-6.72 (m, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 4.90 (s, 1H), 4.24 (s, 1H), 3.68-3.64 (m, 2H), 3.30-3.01 (m, 7H), 2.11-2.06 (m, 5H), 1.72-1.65 (m, 2H), 1.61-1.60 (m, 3H), 1.38-1.30 (m, 7H), 1.13-1.05 (m, 5H), MS (ESI) m/e [M+1]+896.9.


Example F65: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(2-(2-(2-(pyrrolidin-1-yl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 1-(2-(pyrrolidin-2-yl)phenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonimidamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (s, 1H), 8.57-8.55 (m, 2H), 8.03 (s, 1H), 7.79 (d, J=8.8 Hz, 1H), 7.67 (s, 1H), 7.50-7.48 (m, 3H), 7.32 (s, 1H), 7.10 (s, 3H), 6.70-6.68 (m, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 4.79 (s, 1H), 3.86-3.84 (m, 2H), 3.71 (s, 1H), 3.53 (s, 1H), 3.30-3.26 (m, 6H), 2.98-2.92 (m, 5H), 2.81 (s, 2H), 2.13 (s, 3H), 2.05-1.77 (m, 8H), 1.63-1.59 (m, 2H), 1.56-1.48 (m, 1H), 1.35-1.26 (m, 7H), MS (ESI) m/e [M+1]+888.8.


Example F66: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine. MS (ESI, m/e) [M+1]+914.8.


Example F67: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperidine. MS (ESI, m/e) [M+1]+916.8.


Example F68: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-methoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-methoxyphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonanude with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (s, 1H), 9.38 (s, 1H), 8.72-8.47 (m, 2H), 8.04 (s, 1H), 7.85-7.71 (m, 1H), 7.57-7.38 (m, 4H), 7.19-6.92 (m, 3H), 6.77-6.62 (m, 1H), 6.38 (s, 1H), 6.19 (s, 1H), 4.73-4.56 (m, 1H), 3.93-3.76 (m, 5H), 3.59-3.40 (m, 2H), 3.29-2.89 (m, 9H), 2.37-1.72 (m, 8H), 1.68-1.55 (m, 2H), 1.53-1.33 (m, 4H), 1.32-1.24 (m, 3H), MS (ESI, m/e) [M+1]+849.9.


Example F69: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-isopropoxyphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-isopropoxyphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (s, 1H), 8.75-8.41 (m, 2H), 8.04 (s, 1H), 7.89-7.72 (m, 1H), 7.72-7.55 (m, 1H), 7.55-7.41 (m, 3H), 7.41-7.28 (m, 1H), 7.20-6.89 (m, 3H), 6.79-6.61 (m, 1H), 6.38 (s, 1H), 6.20 (s, 1H), 4.82-4.58 (m, 2H), 3.99-3.71 (m, 3H), 3.62-3.47 (m, 1H), 3.30-3.22 (m, 3H), 3.20-2.85 (m, 5H), 2.40-1.68 (m, 9H), 1.65-1.38 (m, 7H), 1.37-1.26 (m, 7H), MS (ESI, m/e) [M+1]+877.9.


Example F70: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-(methoxymethyl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-(methoxymethyl)phenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (br, 1H), 8.62-8.55 (m, 2H), 8.02 (s, 1H), 8.87-7.77 (m, 2H), 7.51-7.42 (m, 3H), 7.37 (s, 1H), 7.21 (s, 1H), 7.11 (s, 1H), 6.67 (d, J=7.3 Hz, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 4.55-4.50 (m, 1H), 4.45 (s, 1H), 3.85 (d, J=8.1 Hz, 2H), 3.67 (s, 1H), 3.31-3.22 (m, 10H), 3.02 (s, 2H), 2.94 (s, 2H), 2.10 (s, 1H), 2.02-1.97 (m, 2H), 1.88 (s, 1H), 1.61 (d, J=12.2 Hz, 2H), 1.45 (s, 4H), 1.25-1.23 (n, 7H), MS (ESI, m/e) [M+1]+863.8.


Example F71: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-(hydroxymethyl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (2-(pyrrolidin-2-yl)phenyl)methanol and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.65 (s, 1H), 8.55-8.51 (m, 2H), 8.20 (d, J=6.5 Hz, 2H), 8.00 (s, 1H), 7.73 (d, J=8.9 Hz, 1H), 7.50-7.44 (m, 2H), 7.32-7.27 (m, 2H), 7.03 (d, J=8.8 Hz, 1H), 6.94 (d, J=6.4 Hz, 2H), 6.66 (d, J=7.9 Hz, 1H), 6.36 (s, 1H), 6.18 (s, 1H), 4.64-4.50 (m, 2H), 3.84 (d, J=9.3 Hz, 2H), 3.31-3.23 (m, 8H), 3.01 (s, 2H), 2.92 (s, 2H), 2.02-1.98 (m, 2H), 1.88 (s, 2H), 1.61 (d, J=12.1 Hz, 2H), 1.45 (s, 1H), 1.39-1.36 (m, 4H), 1.23 (s, 6H), MS (ESI, m/e) [M+1]+849.8.


Example F72a and Example F72b: (R or S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; (S or R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound 72a was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (R or S)-2-(3-chloro-2-cyclopropylphenyl)pyrrolidine (faster peak in SFC) and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 11.38 (br, 1H), 8.56-8.52 (m, 2H), 8.01 (s, 1H), 7.74-7.72 (m, 1H), 7.58-7.49 (m, 4H), 7.35-7.04 (m, 3H), 6.65 (m, 1H), 6.36 (s, 1H), 6.17 (s, 1H), 4.12-4.09 (m, 1H), 3.85-3.71 (m, 2H), 3.33-3.21 (m, 4H), 3.21-2.90 (m, 5H), 2.67-2.61 (m, 11H), 2.33-1.08 (m, 19H), 0.85-0.81 (m, 2H), 0.52-0.44 (m, 2H), MS (ESI, m/e) [M+1]+893.8: Compound 72b was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S or R)-2-(3-chloro-2-cyclopropylphenyl)pyrrolidine (slower peak in SFC) and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. MS (ESI, m/e) [M+1]+893.8.


Example F73: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(5-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(5-chloro-2-cyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.63 (s, 1H), 8.56-8.52 (m, 2H), 8.01 (s, 1H), 7.71-7.69 (m, 1H), 7.58-7.49 (m, 4H), 7.35-7.04 (m, 3H), 6.65-6.63 (m, 1H), 6.36 (s, 1H), 6.19 (s, 1H), 4.11-3.86 (m, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.33-2.90 (m, 12H), 2.67-2.61 (m, 1H), 2.33-2.21 (m, 1H), 2.02-1.08 (m, 15H), 0.85-0.81 (m, 2H), 0.64-0.53 (m, 2H), MS (ESI, m/e) [M+1]893.8.


Example F74a and Example F74b: (R or S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-chloro-2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide; (S or R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2 (2-(3-chloro-2-ethylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound 72a was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (R or S)-2-(3-chloro-2-ethylphenyl)pyrrolidine (faster peak in SFC) and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.45 (s, 1H), 10.08 (s, 1H), 8.70-8.55 (m, 2H), 8.04 (s, 1H), 7.85-7.70 (m, 2H), 7.66-7.24 (m, 4H), 7.40-7.20 (m, 1H), 6.69 (d, J=8.7 Hz, 1H), 6.35 (d, J=25.1 Hz, 1H), 6.17 (s, 1H), 5.76 (s, 1H), 4.75-4.60 (m, 1H), 3.90-3.75 (m, 2H), 3.76-3.56 (m, 1H), 3.31-3.21 (m, 2H), 3.19-2.90 (m, 4H), 2.15-1.85 (m, 5H), 1.61 (d, J=12.1 Hz, 2H), 1.56-1.19 (m, 10H), 1.15-1.10 (m, 2H), 0.90-0.79 (m, 3H), MS (ESI, m/e) [M+1]+881.8. Compound 74b was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S or R)-2-(3-chloro-2-ethylphenyl)pyrrolidine (slower peak in SFC) and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. MS (ESI, m/e) [M+1]+881.8.


Example F75: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2,4-dicyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 24 (2,4-dicyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.45 (br, 1H), 8.62-8.56 (m, 2H), 8.03 (s, 1H), 7.78 (s, 1H), 7.56-7.47 (m, 3H), 7.20-7.12 (m, 1H), 6.94 (d, J=8.1 Hz, 1H), 6.76 (s, 1H), 6.69 (d, J=9.2 Hz, 11H), 6.38 (s, 1H), 6.18 (s, 1H), 4.90 (s, 1H), 3.85 (d, J=8.2 Hz, 2H), 3.64 (s, 1H), 3.31-3.23 (m, 4H), 3.08-2.97 (m, 8H), 2.11 (s, 2H), 2.03-1.97 (m, 4H), 1.89 (s, 2H), 1.63-1.59 (m, 3H), 1.45 (s, 2H), 1.38 (s, 2H), 1.24-1.19 (m, 10H), MS (ESI, m/e) [M+1]+899.8.


Example F76: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2,5-dicyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2,5-dicyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 11.44 (br, 1H), 8.67-8.44 (m, 2H), 8.06-7.94 (m, 1H), 7.82-7.67 (m, 1H), 7.58-7.22 (m, 4H), 7.05-6.95 (m, 4H), 6.39-6.33 (m, 1H), 6.24-6.12 (m, 1H), 3.88-3.81 (m, 2H), 3.31-3.21 (m, 5H), 3.10-2.90 (m, 5H), 2.13-1.73 (m, 8H), 1.70-1.17 (m, 13H), 0.94-0.83 (m, 4H), 0.68-0.48 (m, 4H), MS (ESI, m/e) [M+1]+899.9.


Example F77: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(3-(2-chlorophenyl)thiophen-2-yl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(3-(2-chlorophenyl)thiophen-2-yl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 11.44 (s, 1H), 8.63 (s, 1H), 8.57 (s, 1H), 8.05 (s, 1H), 7.81 (d, J=9.0 Hz, 1H), 7.56-7.46 (m, 4H), 7.39 (s, 2H), 7.27 (s, 1H), 7.12 (d, J=9.0 Hz, 1H), 6.88 (s, 1H), 6.70 (d, J=8.6 Hz, 1H), 6.40 (s, 1H), 6.17 (s, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.33-3.25 (m, 4H), 3.10-2.95 (m, 7H), 2.05-1.96 (m, 1H), 1.89 (s, 2H), 1.66-1.58 (m, 5H), 1.51 (s, 3H), 1.42-1.25 (m, 7H), MS (ESI) m/e [M+1]+935.7.


Example F78: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-methylpyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-4-methylpyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.49 (br, 1H), 8.63 (t, J=5.9 Hz, 1H), 8.56 (d, J=2.2 Hz, 1H), 8.04 (d, J=2.5 Hz, 1H), 7.91-7.75 (m, 2H), 7.57-7.42 (m, 3H), 7.35-7.25 (m, 2H), 7.12 (d, J=9.3 Hz, 1H), 7.15-7.18 (m, 1H), 6.69 (d, J=9.0 Hz, 1H), 6.43-6.31 (m, 1H), 6.17 (s, 1H), 5.02 (s, 1H), 3.88-3.71 (m, 3H), 3.29-3.21 (m, 5H), 3.12-2.95 (m, 4H), 2.58-2.54 (m, 2H), 2.11-2.05 (m, 3H), 1.95-1.77 (m, 2H), 1.65-1.60 (m, 4H), 1.55-1.10 (m, 11H), 1.04-0.88 (m, 3H), MS (ESI, m/e) [M+1]+873.9.


Example F79: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(4-cyclopropyl-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 4-cyclopropyl-2-(2-cyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.46 (s, 1H), 8.619-8.52 (m, 2H), 8.039-7.99 (m, 1H), 7.948-7.88 (m, 1H), 7.87-7.73 (m, 1H), 7.62-7.40 (m, 3H), 7.38-7.20 (m, 2H), 7.20-7.91 (m, 2H), 6.74-6.63 (m, 1H), 6.42 (s, 1H), 6.19 (s, 1H), 4.51-4.42 (m, 1H), 3.95-3.77 (m, 3H), 3.54-3.42 (m, 1H), 3.30-3.22 (m, 4H), 3.08-2.86 (m, 5H), 2.22-1.81 (m, 6H), 1.67-1.14 (m, 11H), 1.09-0.79 (m, 3H), 0.73-0.56 (m, 2H), 0.52-0.36 (m, 2H), 0.31-0.12 (m, 2H), MS (ESI, m/e)[M+1]+899.9.


Example F80: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-phenyl-2,5-dihydro-1H-pyrrol-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-4-phenyl-2,5-dihydro-1H-pyrrole and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.42 (s, 1H), 8.62 (s, 1H), 8.56 (s, 1H), 8.05 (s, 1H), 7.80 (d, J=8.6 Hz, 1H), 7.53-7.48 (m, 6H), 7.33-7.29 (m, 3H), 7.12 (s, 3H), 6.99 (s, 1H), 6.70 (d, J=8.6 Hz, 1H), 6.39 (s, 1H), 6.25 (s, 1H), 6.18 (s, 1H), 5.31-5.29 (m, 1H), 4.23 (s, 1H), 3.86-3.84 (m, 3H), 3.26-3.24 (m, 3H), 3.09 (s, 2H), 3.00 (s, 2H), 2.11 (s, 1H), 1.91-1.85 (m, 4H), 1.63-1.59 (m, 2H), 1.45 (s, 4H), 1.24 (s, 4H), 0.89 (s, 3H), 0.73 (s, 1H), 0.58 (s, 1H), MS (ESI) m/e [M+1]+933.8.


Example F81: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptan-5-yl)-7-azaspiro[3.5]nonan-7-yl)-N-4 (3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 6-(2-cyclopropylphenyl)-5-azaspiro[2.4]heptane and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.46 (s, 1H), 8.65-8.50 (m, 2H), 8.02 (s, 1H), 7.95-7.85 (m, 1H), 7.80-7.75 (m, 1H), 7.58-7.38 (m, 3H), 7.30-7.20 (m, 2H), 7.17-6.98 (m, 2H), 6.70-6.60 (m, 1H), 6.36 (s, 1H), 6.15 (s, 1H), 4.15-4.05 (m, 1H), 4.02-3.95 (m, 2H), 3.90-3.75 (m, 2H), 3.30-3.19 (m, 3H), 3.18-3.10 (m, 2H), 3.08-2.90 (m, 2H), 2.50-2.40 (m, 2H), 1.90-1.80 (m, 2H), 1.65-1.55 (m, 2H), 1.50-1.30 (m, 5H), 1.29-1.06 (m, 5H), 1.00-0.90 (m, 2H), 0.80-0.50 (m, 8H), MS (ESI, m/e) [M+1]+885.8.


Example F82: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4,4-dimethylpyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-4,4-dimethylpyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.43 (s, 1H), 8.61 (s, 1H), 8.56 (s, 1H), 8.03 (s, 1H), 7.79 (d, J=8.7 Hz, 2H), 7.60-7.43 (m. 3H), 7.29 (s, 1H), 7.11 (d, J=9.3 Hz, 2H), 6.68 (d, J=8.6 Hz, 1H), 6.38 (s, 1H), 6.16 (s, 1H), 5.13 (s, 1H), 3.89-3.85 (m, 3H), 3.28-3.21 (m, 1H), 2.98-2.93 (m, 5H), 2.26-1.86 (m, 6H), 1.63-1.59 (m, 2H), 1.30-1.26 (m, 16H), 1.14-0.86 (m, 4H), 0.66-0.63 (m, 2H), MS (ESI) m/e [M+1]+887.9.


Example F83: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 11.42 (s, 1H), 8.63 (t, J=2.0 Hz, 1H), 8.57 (d, J=2.0 Hz, 1H), 8.41 (d, J=2.4 Hz, 1H), 7.82 (d, J=8.8 Hz, 1H), 7.55-7.46 (m, 4H), 7.19-7. 11 (m, 3H), 6.97 (d, J=7.6 Hz, 1H), 6.69 (d, J=7.6 Hz, 1H), 6.40-6.39 (m, 1H), 6.15 (s, 1H), 4.24 (t, J=8.4 Hz, 1H), 3.85 (d, J=10.8 Hz, 2H), 3.49-3.44 (m, 1H), 3.32-3.23 (m, 4H), 3.12-2.69 (m, 6H), 2.08-1.89 (m, 3H), 1.66-1.21 (m, 13H), 0.90-0.85 (m, 2H), 0.64-0.50 (m, 2H), MS (ESI, m/e) [M+1]+895.9.


Example F84: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-(trifluoromethyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl))methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-4-(trifluoromethyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.70 (s, 1H), 11.41 (s, 1H), 8.65-8.44 (m, 2H), 8.04 (d, J=2.0 Hz, 1H), 7.79 (d, J=8.8 Hz, 1H), 7.56-7.40 (m, 4H), 7.24-7.04 (m, 3H), 6.93 (d, J=7.3 Hz, 1H), 6.67 (d, J=8.8 Hz, 1H), 6.39 (s, 1H), 6.15 (s, 1H), 4.24 (s, 1H), 3.96 (t, J=7.9 Hz, 1H), 3.28 (t, J=6.0 Hz, 3H), 3.21-3.08 (m, 2H), 3.05-2.89 (m, 5H), 2.72-2.61 (m, 1H), 2.14-2.02 (m, 1H), 1.75-1.43 (m, 9H), 1.41-1.24 (m, 7H), 1.19-1.03 (m, 5H), 0.92-0.80 (m, 3H), 0.70-0.45 (m, 2H), MS (ESI, m/e) [M+1]+955.9.


Example F85: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-(dimethylamino)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 5-(2-cyclopropylphenyl)-N,N-dimethylpyrrolidin-3-amine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d4) δ ppm: 11.56 (s, 1H), 8.41-8.33 (m, 2H), 7.94 (s, 1H), 7.57 (d, J=8.8 Hz, 1H), 7.54-7.48 (m, 2H), 7.46 (s, 1H), 7.27 (s, 1H), 7.17-7.12 (m, 2H), 7.03-6.84 (m, 2H), 6.62 (d, J=8.0 Hz, 1H), 6.31 (s, 1H), 6.21 (s, 1H), 4.03-4.02 (m, 1H), 3.83 (d, J=8.4 Hz, 2H), 3.53-3.34 (m, 2H), 3.33-3.29 (m, 4H), 3.05-2.72 (m, 6H), 2.60 (s, 6H), 2.45-2.42 (m, 11H), 2.01-1.51 (m, 15H), 1.01-0.85 (m, 2H), 0.64-0.51 (m, 2H), MS (ESI, m/e) [M+1]+902.9.


Example F86: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-(2-(dimethylamino)ethoxy)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with 2-((5-(2-cyclopropylphenyl)pyrrolidin-3-yl)oxy)-N,N-dimethylethan-1-amine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 11.46 (s, 1H), 8.89 (s, 1H), 8.56-8.46 (m, 1H), 8.24-8.10 (m, 2H), 7.96-7.85 (m, 1H), 7.71 (s, 1H), 7.50-7.41 (m, 1H), 7.13-6.82 (m, 3H), 6.61-6.43 (m, 2H), 5.92 (s, 1H), 5.43-5.21 (m, 3H), 4.53-4.24 (m, 1H), 4.11-3.72 (m, 4H), 3.50-3.32 (m, 3H), 3.32-3.19 (m, 3H), 3.05-2.72 (m, 7H), 2.26-2.15 (m, 2H), 2.08-1.93 (m, 5H), 1.83-1.42 (m, 14H), 0.92-0.80 (m, 5H), MS (ESI, m/e) [M+1]+947.0.


Example F87: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexan-2-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl aminophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 3-(2-cyclopropylphenyl)-2-azabicyclo[3.1.0]hexane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (s, 1H), 8.72-8.48 (m, 2H), 8.12-7.95 (m, 1H), 7.83-7.70 (m, 1H), 7.62-7.42 (m, 3H), 7.37-7.16 (m, 2H), 7.15-7.08 (m, 1H), 7.06-6.86 (m, 1H), 6.72-6.65 (m, 1H), 6.42-6.35 (m, 1H), 6.22-6.12 (m, 11H), 5.78-5.73 (m, 1H), 3.90-3.78 (m, 2H), 3.44-3.21 (m, 6H), 3.06 (s, 2H), 2.99-2.87 (m, 2H), 2.35-1.99 (m, 3H), 1.99-1.77 (m, 3H), 1.70-1.09 (m, 12H), 1.00-0.76 (m, 4H), 0.73-0.43 (m, 3H), MS (ESI, m/e) [M+1]+871.9.


Example F88: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(1-(2-cyclopropylphenyl)hexahydrocyclopenta[c]pyrrol-2 (1H)-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 1-(2-cyclopropylphenyl)octahydrocyclopenta[c]pyrrole. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 11.40 (br, 1H), 8.68-8.41 (m, 2H), 8.01 (s, 1H), 7.84-7.64 (m, 1H), 7.65-7.21 (m, 5H), 7.21-6.85 (m, 4H), 6.72-6.60 (m, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 4.00-3.89 (m, 1H), 3.89-3.79 (m, 2H), 3.31-3.21 (m, 4H), 3.19-3.09 (m, 1H), 3.06-2.90 (m, 4H), 2.90-2.73 (m, 2H), 2.71-2.56 (m, 1H), 1.96-1.75 (m, 4H), 1.73-1.57 (m, 4H), 1.56-1.24 (m, 10H), 1.01-0.79 (m, 4H), 0.69-0.41 (m, 2H), MS (ESI, m/e) [M+1]+899.9.


Example F89: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-3,3-dimethylpyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)-3,3-dimethylpyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 11.40 (s, 1H), 8.74-8.16 (m, 2H), 7.95 (s, 1H), 7.78-7.31 (m, 5H), 7.28-6.75 (m, 5H), 6.70-6.56 (m, 1H), 6.41-6.04 (m, 2H), 3.98-3.89 (m, 1H), 3.89-3.77 (m, 2H), 3.31-3.18 (m, 5H), 3.11-2.85 (m, 6H), 2.69-2.57 (m, 1H), 2.02-1.95 (m, 1H), 1.95-1.81 (m, 2H), 1.73-1.52 (m, 6H), 1.47-1.35 (m, 5H), 1.08 (s, 3H), 0.92-0.81 (m, 2H), 0.75-0.66 (m, 1H), 0.63-0.39 (m, 4H), MS (ESI, m/e) [M+1]+887.9.


Example F90: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


Step 1: methyl 2-bromo-2-(2-bromophenyl)acetate

To a solution of methyl 2-(2-bromophenyl)acetate (25 g, 109.14 mmol) in CCl4 (250 mL) was added NBS (21.37 g, 120.65 mmol) and BPO (1.32 g. 5.46 mmol). The mixture was stirred at 85° C. for 5 hours. TLC showed reactant was consumed completely. The mixture was poured into H2O (200 mL) and extracted with DCM (200 mL×3), washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. Methyl 2-bromo-2-(2-bromophenyl)acetate (20 g) was obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.79 (dd, J=1.0, 8.0 Hz, 1H), 7.58 (dd, J=1.0, 8.0 Hz, 1H), 7.40-7.34 (m, 1H), 7.21 (dt, J=1.5, 7.7 Hz, 1H), 5.98-5.83 (m, 1H), 3.82 (s, 3H).


Step 2: 3-(2-bromophenyl)piperazin-2-one

To a solution of methyl 2-bromo-2-(2-bromophenyl)acetate (20 g, 64.94 mmol) in MeOH (200 mL) was added DIEA (12.67 g, 98.04 mmol) and ethane-1,2-diamine (7.86 g, 130.72 mmol). The mixture was stirred at 25° C. for 12 hours. TLC showed reactant was consumed completely. The mixture was diluted with H2O (200 mL) and extracted with EA (200 mL×3), washed with brine, dried over Na2SO4, filtered and concentrated to give crude 3-(2-bromophenyl)piperazin-2-one (14 g) as a white solid, which used in next step without further purification.


Step 3: tert-butyl 2-(2-(2-bromophenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

To a solution of 3-(2-bromophenyl)piperazin-2-one (7 g, 27.44 mmol) and tert-butyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (7.22 g, 30.18 mmol) in DCE (150 mL) was added AcOH (3.3 g, 54.88 mmol) and NaBH(OAc)3 (11.63 g, 54.88 mmol). The mixture was stirred at 25° C. for 12 hours. TLC showed reactant was consumed completely. The reaction mixture was extracted with aq. Na2CO3 (150 mL) and EA (150 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. Tert-butyl 2-(2-(2-bromophenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (8 g) was obtained as a white solid.


Step 4: tert-butyl 2-(2-(2-cyclopropylphenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

To a solution of tert-butyl 2-(2-(2-bromophenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (8 g, 16.72 mmol) and cyclopropylboronic acid (2.15 g, 25.08 mmol) in dioxane (100 mL) and H2O (10 mL) was added Cs2CO3 (16.34 g, 50.16 mmol) and Pd(dppf)Cl2 (1.22 g, 1.67 mmol) under N2 atmosphere. The mixture was stirred at 85° C. for 2 hours. LC/MS showed reactant was consumed completely and one main peak with desired MS signal. The reaction mixture was filtered and concentrated. The residue was diluted with H2O (50 mL)/EA (50 mL) and extracted with EA (50 mL×2), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. Tert-butyl 2-(2-(2-cyclopropylphenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (5 g, 68.02% yield) was obtained as a yellow solid. MS (ESI, m/e) [M+1]+440.2.


Step 5: tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methyl-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

To a solution of tert-butyl 2-(2-(2-cyclopropylphenyl)-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (5 g, 11.37 mmol) in THF (50 mL) was added NaH (0.5 g, 12.51 mmol, 60%) at 0° C. The mixture was stirred at 0° C. for 10 minutes. Then Mel (3.23 g, 22.75 mmol) was added at 0° C. The mixture was stirred at 25° C. for 5 hours. LC/MS showed reactant was consumed completely and one main peak with desired MS signal. The reaction mixture was diluted with H2O (50 mL) and extracted with EA (50 mL×3), dried over Na2SO4, filtered and concentrated. The residue was purified by prep-MPLC. Tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methyl-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (4.7 g, 91.09% yield) was obtained as a white solid. MS (ESI, m/e) [M+1]+454.2.


Step 6: tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate

A mixture of tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methyl-3-oxopiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (4.7 g, 10.36 mmol, 1 eq) in BH3·THF (50 mL) was stirred at 70° C. for 12 hours. LC/MS showed reactant was consumed completely and one main peak with desired MS signal. The reaction mixture was quenched by MeOH (50 mL) at 0° C., and stirred at 25° C. for 30 minutes. Then the mixture was concentrated to afford tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (4.5 g). MS (ESI, m/e) [M+1]+440.3.


Step 7: 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane

A mixture of tert-butyl 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane-7-carboxylate (4.5 g, 10.24 mmol) in DCM (25 mL) and TFA (25 mL) was stirred at 25° C. for 1 hr. LC/MS showed reactant was consumed completely and one main peak with desired MS signal. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by prep-HPLC (TFA condition). The desired collection was concentrated and was dilute with H2O (20 mL) and added aq. Na2CO3 to adjust pH to ˜9. The mixture was extracted with EA (20 mL×3), dried over Na2SO4, filtered and concentrated under reduced pressure to remove solvent. 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5] (1.2 g) was obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ ppm: 7.48 (s, 1H), 7.22-7.12 (m, 2H), 7.01 (s, 1H), 6.39 (s, 1H), 3.96 (d, J=7.3 Hz, 1H), 3.04-2.96 (m, 1H), 2.95-2.87 (m, 2H), 2.85-2.65 (m, 5H), 2.30 (s, 3H), 2.27 (s, 2H), 2.12 (s, 1H), 1.99 (s, 1H), 1.90-1.81 (m, 1H), 1.75-1.66 (m, 1H), 1.60-1.43 (m, 4H), 1.38-1.28 (m, 1H), 1.11 (d, J=4.4, 7.2, 11.5 Hz, 1H), 0.99-0.91 (m, 2H), 0.70 (s, 1H), 0.63-0.52 (m, 1H), MS (ESI, m/e) [M+1]+340.3.


Then the desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane. 1H NMR (400 MHz, DMSO-do) δ ppm: 11.71 (s, 1H), 11.45 (s, 1H), 8.58 (s, 1H), 8.54 (s, 1H), 8.02 (s, 1H), 7.80 (d, J=8.4 Hz, 1H), 7.54 (d, J=7.6 Hz, 2H), 7.50 (s, 1H), 7.35 (d, J=8.4 Hz, 3H), 7.26 (d, J=7.6 Hz, 1H), 7.11-7.04 (m, 2H), 7.03-6.88 (m, 5H), 6.36 (s, 1H), 5.15 (s, 1H), 3.84 (d, J=8.3 Hz, 2H), 3.76-3.66 (m, 1H), 3.57-3.49 (m, 1H), 3.29-3.20 (m, 5H), 3.08-2.93 (m, 2H), 2.79 (s, 3H), 2.23-2.16 (m, 1H), 1.91-1.83 (m, 1H), 1.59 (d, J=12.3 Hz, 2H), 1.09-0.96 (m, 3H), 0.87-0.81 (m, 2H), 0.68-0.62 (m, 1H), MS (ESI, m/e) [M+1]+841.9.


Example F91a and Example F91b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S or R)-2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide; 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((R or S)-2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane was separated and purified by SFC to obtain 2 pure isomers (Instrument: Thar SFC350 preparative SFC; Column: Phenomenex-C2, 250×50 mm i.d. 10u; Mobile phase: A for CO2 and B for MeOH(0.1% NH3·H2O); Gradient: B %=50%: Flow rate: 200 g/min; Wavelength: 220 nm; Column temperature: 40° C.; System back pressure: 100 bar): (S or R)-2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane as faster peak in SFC (retention time: 2.7 min) (1.05 g) was obtained as a yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm: 7.49 (s, 1H), 7.14 (d, J=3.1 Hz, 2H), 7.01 (s, 1H), 3.96 (d, J=5.1 Hz, 1H), 3.02 (d, J=6.6 Hz, 1H), 2.96-2.85 (m, 2H), 2.73-2.52 (m, 7H), 2.29 (s, 3H), 2.12 (s, 1H), 2.00 (s, 1H), 1.82 (s, 1H), 1.65 (t, J=9.9 Hz, 1H), 1.48-1.22 (m, 6H), 1.10 (d, J=4.3 Hz, 1H), 0.95 (d, J=8.1 Hz, 2H), 0.69 (s, 1H), 0.64-0.54 (m, 1H), MS (ESI, m/e) [M+1]+340.3. (R or S)-2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane (slower peak in SFC, retention time: 3.4 min) (1.13 g) was obtained as a white solid.


With the isomer of faster peak in SFC as starting material, Example F91a was synthesized following the procedures similar to those in Example F21. To a solution of (S or R)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzoic acid (117.2 mg, 0.198 mmol) in DCM (20 ml) was added HATU (113 mg, 0.297 mmol) and triethylamine (100 mg, 0.99 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture was added 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (136 mg, 0.396 mmol) and DMAP (24 mg, 0.198 mmol). The mixture was stirred at room temperature for overnight. The mixture was washed with saturated aq. NaHCO3, brine, dried over Na2SO4, concentrated and purified by prep-HPLC to give the desired compound (19 mg). 1H NMR (400 MHz, DMSO-&) δ ppm: 11.67 (s, 1H), 10.71 (s 1H), 8.58-8.41 (m, 2H), 8.03 (d, J=2.5 Hz, 1H), 7.77-7.68 (m, 1H), 7.57 (d, J=8.8 Hz, 1H), 7.54-7.38 (m, 3H), 7.30-7.11 (m, 2H), 7.11-6.90 (m, 2H), 6.75-6.60 (m, 11H), 6.42-6.35 (m, 1H), 6.30-6.15 (m, 1H), 4.30 (s, 1H), 4.10-3.85 (m, 1H), 3.35-3.25 (m, 2H), 3.16-2.82 (m, 8H), 2.47 (s, 3H), 2.31-1.99 (m, 2H), 1.82-1.53 (m, 7H), 1.46-1.31 (m, 7H), 1.23-1.12 (m, 5H), 1.10-0.86 (m, 4H), 0.82-0.52 (m, 2H), MS (ESI, m/e) [M+1]+916.9.


With the isomer of slower peak in SFC as starting material, Example F91b was synthesized following the procedures similar to those in Example F21. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.58 (s, 1H), 10.61 (s, 1H), 8.43 (s, 2H), 7.95 (s, 1H), 7.67-7.63 (m, 1H), 7.47-7.42 (m, 4H), 7.13 (s, 2H), 6.96-6.93 (m, 2H), 6.62-6.60 (m, 1H), 6.32 (s, 1H), 6.17 (s, 1H), 4.24 (s, 1H), 3.24 (s, 2H), 2.93-2.90 (m, 9H), 2.33 (s, 2H), 2.19 (s, 2H), 2.03-1.95 (m, 2H), 1.75-1.50 (m, 8H), 1.33-1.25 (m, 8H), 1.09 (s, 5H), 0.89-0.87 (m, 4H), 0.68 (s. 1H), 0.53 (s, 1H), MS (ESI) m/e [M+1]+916.9.


Example F92: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-isopropylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl))methyl)amino)phenyl)sulfonyl )benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F90 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-(2-(2-cyclopropylphenyl)-4-isopropylpiperazin-1-yl)-7-azaspiro[3.5]nonane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.43 (s, 1H), 8.69-8.50 (m, 2H), 8.06-7.97 (m, 1H), 7.84-7.74 (m, 1H), 7.61-7.38 (m, 4H), 7.35-6.94 (m. 4H), 6.75-6.58 (m, 1H), 6.38 (s, 1H), 6.13 (s, 1H), 4.25 (s, 1H), 3.91-3.80 (m, 2H), 3.34-3.09 (m, 8H), 3.10-2.80 (m, 6H), 2.23-1.71 (m, 4H), 1.67-1.45 (m, 3H), 1.44-1.25 (m, 10H), 1.10-0.66 (m, 5H), MS (ESI, m/e) [M+1]+916.9.


Example F93: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-(2′-cyclopropyl-[1,1′-biphenyl]-2-yl)-7-azaspiro[3.5]nonane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.42 (s, 1H), 9.90 (s, 1H), 8.63 (s, 2H), 8.55 (s, 1H), 7.99 (s, 1H), 7.75-7.71 (m, 2H), 7.50 (s, 3H), 7.30-7.25 (m, 3H), 7.09 (s, 1H), 6.67 (d, J=8.7 Hz, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 5.66 (s, 1H), 4.77 (s, 1H), 3.87 (s, 1H), 3.66 (s, 1H), 3.30-3.28 (m, 2H), 3.00-2.98 (m, 7H), 2.05-2.02 (m, 4H), 1.69-1.67 (m, 7H), 1.48-1.32 (m, 2H), 1.24-1.21 (m, 5H), 1.13 (s, 4H), MS (ESI) m/e [M+1]+866.8.


Example F94: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4-(2-(2-(o-tolyl)azepan-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 2-(o-tolyl)azepane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 11.47 (s, 1H), 9.82 (s, 1H), 8.70-8.60 (m, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.79 (d, J=9.0 Hz, 1H), 7.75-6.95 (m, 1H), 7.60-7.40 (m, 3H), 7.35-7.15 (m, 3H), 7.12 (d, J=9.0 Hz, 1H), 6.69 (d, J=8.4 Hz, 1H), 6.39 (s, 1H), 6.18 (s, 1H), 4.45-4.35 (n, 1H), 4.10-3.90 (m, 1H), 3.85 (d, J=10.4 Hz, 2H), 3.60-3.50 (m, 2H), 3.35-3.20 (m, 5H), 3.15-2.85 (m, 4H), 2.35 (s, 3H), 2.25-2.00 (m, 4H), 1.98-1.67 (m, 5H), 1.65-1.55 (m, 2H), 1.51-1.16 (m, 8H), MS (ESI, m/e) [M+1]+861.9.


Example F95: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)azepan-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with 2-(2-cyclopropylphenyl)azepane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.44 (s, 1H), 8.67-8.46 (m, 2H), 8.03 (s, 1H), 7.86-7.71 (m, 1H), 7.65-7.36 (m, 4H), 7.34-7.20 (m, 2H), 7.20-6.88 (m, 3H), 6.74-6.55 (m, 1H), 6.38 (s, 1H), 6.22-6.11 (m, 1H), 4.92-4.73 (m, 1H), 4.15-3.97 (m, 1H), 3.92-3.77 (m, 2H), 3.66-3.45 (m, 1H), 3.30-3.19 (m, 3H), 3.19-2.78 (m, 6H), 2.21-1.66 (m, 10H), 1.63-1.26 (m, I1H), 1.06-0.90 (m, 2H), 0.76-0.45 (m, 2H), MS (EST, m/e) [M+1]+887.9.


Example F96: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrazolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-(2-(2-cyclopropylphenyl)pyrazolidin-1-yl)-7-azaspiro[3.5]nonane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.40 (s, 1H), 8.67-8.52 (m, 2H), 8.05 (d, J=2.3 Hz, 1H), 7.80 (d, J=9.2 Hz, 1H), 7.59-7.44 (m, 3H), 7.35 (d, J=8.0 Hz, 1H), 7.12 (d, J=9.4 Hz, 1H), 6.96 (s, 1H), 6.75-6.70 (m, 3H), 6.39 (s, 1H), 6.18 (s, 1H), 3.86-3.84 (m, 2H), 3.26-3.24 (m, 2H), 3.09 (s, 2H), 3.02 (s, 2H), 2.91 (s, 2H), 2.08 (s, 1H), 1.94-1.79 (m, 5H), 1.59-1.57 (m, 4H), 1.46-1.12 (m, 4H), 1.32-1.19 (m, 7H), 0.93-0.90 (m, 2H), 0.62 (s, 2H), MS (ESI) m/e [M+1]+860.9.


Example F97: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((((1s, 4s) or (1r, 4r))-4-((dimethyl(oxo)-16-sulfaneylidene)amino)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((((1s, 4s) or (1r, 4r))-4-((dimethyl(oxo)-16-sulfaneylidene)amino)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-do) δ ppm: 11.76 (s, 1H), 10.16 (s, 1H), 8.70-8.64 (m, 1H), 8.62-8.60 (m, 1H), 8.15-8.06 (m, 1H), 7.91-7.74 (m, 2H), 7.62-7.49 (m, 3H), 7.41-7.28 (m, 2H), 7.15-7.10 (m, 2H), 6.75 (d, J=9.2 Hz, 1H), 6.48-6.42 (m, 1H), 6.25-6.20 (m, 1H), 5.05-4.95 (m, 1H), 4.05-3.85 (m, 1H), 3.80-3.70 (m, 1H), 3.40-3.20 (m, 4H), 3.18-3.05 (m, 4H), 2.65-2.55 (m, 6H), 2.30-2.0) (m, 4H), 1.94-1.76 (m, 3H), 1.70-1.41 (m, 8H), 1.40-1.25 (m, 2H), 1.24-1.11 (m, 3H), 1.10-0.96 (m, 2H), 0.95-0.85 (m, 2H), 0.75-0.65 (m, 2H), MS (ESI, m/e) [M+1]+948.8.


Example F98. 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-(methyl(3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)(oxo)-16-sulfaneylidene)benzamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (100 mg, 0.194 mmol) in DCM (30 ml) was added EDCI (56 mg, 0.291 mmol) and DMAP (71 mg, 0.582 mmol). The mixture was stirred at room temperature for 0.5 hour. Then to the mixture was added imino(methyl)(3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)-16-sulfanone (138 mg, 0.388 mmol). The mixture was stirred at room temperature for 2 days. The mixture was diluted with DCM (100 ml), washed with saturated aq. NaHCO3, brine, dried over Na2SO4, concentrated and purified by chromatography column on silica gel (eluent: DCM: EA=1:1 then MeOH/DCM=1/10) to give the crude product. The crude product was further purified by prep-MPLC (eluent: MeOH/DCM=1/10) to give the product (9 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.63 (s, 1H), 8.71-8.63 (m, 11H), 8.61-8.54 (m, 1H), 8.08-7.96 (m, 1H), 7.91-7.84 (m, 1H), 7.74-7.65 (m, 1H), 7.51-7.34 (s, 5H), 7.16-6.95 (m, 5H), 6.91-6.83 (m, 1H), 6.45-6.31 (m, 3H), 5.28-5.13 (m, 1H), 3.91-3.79 (m, 2H), 3.79-3.67 (m, 1H), 3.46-3.39 (m, 4H), 3.32-3.20 (m, 4H), 3.11-2.85 (m, 1H), 2.49-2.38 (m, 1H), 2.09-1.82 (m, 5H), 1.65-1.53 (m, 2H), 1.32-1.26 (m, 1H), 1.10-0.91 (m, 2H), 0.85-0.66 (m, 2H), MS (ESI, m/e) [M+1]+810.8.


Example F99: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((-3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.45 (s, 1H), 8.60-8.58 (m, 2H), 8.03 (s, 1H), 7.80 (d, J=8.7 Hz, 1H), 7.59 (s, 1H), 7.50-7.48 (m, 3H), 7.35-7.32 (m, 3H), 7.09 (d, J=8.9 Hz, 1H), 6.68 (d, J=8.4 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.78 (s, 1H), 3.89 (s, 1H), 3.72-3.70 (m, 3H), 3.56 (d, J=7.7 Hz, 2H), 3.27 (s, 1H), 3.17 (s, 1H), 3.05-2.95 (m, 4H), 2.46-2.36 (m, 1H), 2.05-2.03 (m, 5H), 1.71 (s, 2H), 1.54-1.17 (m, 11H), 1.15-0.98 (m, 4H), MS (EST) m/e [M+1]+859.9.


Example F100: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrophenyl )sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (s, 1H), 8.66 (s, 1H), 8.56 (s, 1H), 8.03 (s, 1H), 7.79 (d, J=9.0 Hz, 2H), 7.50-7.48 (m, 3H), 7.28 (s, 2H), 7.06 (s, 2H), 6.68 (d, J=8.4 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 5.69-5.67 (m, 1H), 4.97 (s, 1H), 3.87 (s, 1H), 3.67 (s, 1H), 3.40 (s, 1H), 3.29 (s, 1H), 3.05-2.98 (m, 6H), 2.05-2.01 (m, 6H), 1.76-1.72 (m, 5H), 1.55-1.29 (m, 10H), 0.95 (s, 2H), 0.64 (s, 2H), MS (ESI) m/e [M+1]+941.8.


Example F101a: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((r, 4r)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide: Example F101b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1s, 4s)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound F101a was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (s, 1H), 8.80-8.45 (m, 2H), 8.03 (s, 1H), 7.90-7.65 (m, 2H), 7.64-6.93 (m, 7H), 6.77-6.59 (m, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 5.69 (s, 1H), 4.99 (br, 1H), 3.93 (br, 1H), 3.73-3.36 (m, 3H), 3.30-3.21 (m, 1H), 3.19-2.86 (m, 5H), 2.46-2.35 (m, 1H), 2.23-1.90 (m, 5H), 1.85-1.70 (m, 4H), 1.58-1.32 (m, 9H), 1.23 (s, 6H), 1.17-1.01 (m, 3H), MS (ESI, m/e) [M+1]+943.9; F10 l b was synthesized by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((((1s, 4s)-4-hydroxy-4-(trifluoromethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.68 (s, 1H), 11.42 (s, 1H), 9.90 (s, 1H), 8.63 (s, 2H), 8.55 (s, 1H), 7.99 (s, 1H), 7.75-7.71 (m, 2H), 7.50 (s, 3H), 7.30-7.25 (m, 3H), 7.09 (s, 1H), 6.67 (d, J=8.7 Hz, 1H), 6.37 (s, 1H), 6.17 (s, 1H), 5.66 (s, 1H), 4.77 (s, 1H), 3.87 (s, 1H), 3.66 (s, 1H), 3.30-3.28 (m, 2H), 3.00-2.98 (m, 7H), 2.05-2.02 (m, 4H), 1.69-1.67 (m, 7H), 1.48-1.32 (m, 21H), 1.24-1.21 (m, 5H), 1.13 (s, 4H), MS (ESI) m/e [M+1]+943.8.


Example F102: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-methoxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((((1r, 4r)-4-methoxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.43 (br, 1H), 8.62-8.53 (m, 2H), 8.02 (s, 2H), 7.79 (d, J=9.6 Hz, 1H), 7.49-7.46 (m, 3H), 7.39-7.15 (m, 3H), 7.08 (d, J=9.6 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.40-6.32 (m, 11H), 6.17 (s, 1H), 4.74-4.72 (m, 1H), 3.88-3.55 (m, 2H), 3.30-3.25 (m, 2H), 3.09 (s, 3H), 3.03-2.85 (m, 4H), 2.44-2.30 (m, 1H), 2.25-1.94 (m, 4H), 1.75-1.56 (m, 6H), 1.49-1.30 (m, 9H), 1.26-1.10 (m, 12H), MS (ESI, m/e) [M+1]+903.9.


Example F103: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((S)-4-methylcyclohex-3-en-1-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (S)-4-(((4-methylcyclohex-3-en-1-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (br, 1H), 8.62-8.53 (m, 2H), 8.03 (d, J=2.4 Hz, 1H), 7.99-7.80 (m, 11H), 7.78 (d, J=9.6 Hz, 1H), 7.50-7.46 (m, 3H), 7.39-7.22 (m, 3H), 7.08 (d, J=9.6 Hz, 1H), 6.68 (d, J=8.8 Hz, 1H), 6.40-6.32 (m, 1H), 6.17 (s, 1H), 5.35 (s, 1H), 4.74-4.72 (m, 1H), 3.88-3.55 (m, 2H), 3.30-3.25 (m, 2H), 3.09-2.85 (m, 4H), 2.44-2.30 (m, 1H), 2.20-1.70 (m, 12H), 1.61 (s, 3H), 1.49-1.30 (m, 11H), 1.12 (d, J=6.8 Hz, 1H), MS (ESI, m/e) [M+1]+871.9.


Example F104: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-(prop-1-en-2-yl)phenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-(prop-1-en-2-yl)phenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.70 (s, 1H), 11.44 (s, 1H), 10.37 (br, 1H), 8.60-8.55 (m, 2H), 8.04 (d, J=2.4 Hz, 1H), 7.95-7.91 (m, 1H), 7.80 (dd, J=9.6 Hz, J=2.4 Hz, 1H), 7.52-7.46 (m, 3H), 7.38-7.35 (m, 2H), 7.20 (d, J=6.8 Hz, 1H), 7.10 (d, J=9.2 Hz, 1H), 6.69 (d, J=9.2 Hz, 1H), 6.40-6.32 (m, 1H), 6.17 (s, 1H), 5.31 (s, 1H), 4.80 (s, 1H), 4.44-4.40 (m, 1H), 3.68-3.61 (m, 2H), 3.30-2.95 (m, 7H), 2.17-2.06 (m, 5H), 2.02 (s, 3H), 1.69-1.20 (m, 19H), MS (ESI, m/e) [M+1]+887.9.


Example F105: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-propylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-propylphenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (s, 1H), 10.37 (br, 1H), 8.61-8.55 (m, 2H), 8.03 (d, J=2.4 Hz, 1H), 7.99-7.85 (m, 1H), 7.79 (d, J=9.6 Hz, 1H), 7.52-7.46 (m, 3H), 7.27-7.20 (m, 2H), 7.08 (d, J=9.6 Hz, 1H), 6.69 (d, J=8.8 Hz, 1H), 6.40-6.32 (m, 1H), 6.17 (s, 1H), 4.61-4.57 (m, 1H), 4.25 (s, 1H), 3.88-3.61 (m, 2H), 3.30-2.90 (m, 7H), 2.80-2.50 (m, 2H), 2.44-2.36 (m, 1H), 2.19-1.90 (m, 4H), 1.69-1.23 (m, 17H), 1.17-1.05 (m, 5H), 0.92 (t, J=3.2 Hz, 3H), MS (ESI, m/e) [M+1]+889.9.


Example F106: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


Step 1: tert-butyl (S)-6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptane-2-carboxylate

To the mixture of (S)-2-(2-cyclopropylphenyl)pyrrolidine (18.7 g, 0.1 mol) and tert-butyl 6-oxo-2-azaspiro[3.3]heptane-2-carboxylate (21.12 g, 0.1 mol) in DCM (200 mL) was added NaBH(AcO)3 (42 g, 0.2 mol) at room temperature and stirred for overnight. The mixture was quenched with aq. NaHCO3 (200 mL), extracted with DCM (200 mL), the combined organic layers was washed with brine (200 mL), dried over Na2SO4 and evaporated in vacuum to afford the tittle product (38.2 g) without further purification for next step. MS (ESI, m/e) [M+1]+383.0.


Step 2: (S)-6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptane

To a solution of tert-butyl tert-butyl (S)-6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptane-2-carboxylate (38 g, 0.1 mmol) in DCM (50 mL) was added TFA(100 mL) at 20° C., and stirred at room temperature for overnight. The mixture was concentrated in vacuum and diluted with DCM (200 mL), then was adjusted to pH 8-9 with aq. NaOH (1M). Then the organic layer was washed with brine, dried over Na2SO4 and concentrated in vacuum to afford the crude product (28.2 g) without further purification for next step. MS (ESI, m/e) [M+1]+283.0.


Step 3: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzoate

The mixture of (S)-6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptane (28.3 g, 0.1 mmol), methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate (31.57 g, 0.11 mmol), Na2CO3 (106 g, 1 mol) in DMF(500 mL) was heated to 105° C., and stirred for overnight. After cooled to room temperature, the reaction mixture was diluted with EA (1000 mL), washed with brine (1000 mL×2), dried over Na2SO4 and concentrated in vacuum to afford a residue, which was purified by chromatography column on silica gel (eluent: EA/PE=1/5 to 1/1) to give the product (11.2 g) as an off-white solid. MS (ESI, m/e) [M+1]+548.9.


Step 4: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzoic acid

To the mixture of methyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzoate (11.2 g, 20.42 mmol) in a solution of MeOH (200 mL), THF (200 mL) and aq. NaOH (166 mL, 1 mol) and heated to 50° C. for overnight. The reaction was quenched with HCl acid (6 M) and adjusted to pH 4-5, extracted with DCM (500 mL), washed with brine (200 mL). To the organic layer was added triethylamine to adjust pH at ˜8, then evaporated in vacuum to afford the tittle product(10.5 g) as an off-white solid. MS (ESI, m/e) [M+1]+534.9.


Step 5: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide

The mixture of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzoic acid (1.07 g, 2 mmol), triethylamine (1.20 g, 12 mmol) and 2-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (1.14 g, 3.0 mmol) in DCM(100 mL) was stirred for 2 hours at 50° C. To the mixture was added 4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (1.37 g, 4 mmol) and DMAP (24 mg, 0.2 mmol) and then stirred for overnight at 35° C. The mixture was quenched with aq. NH4Cl (500 mL), extracted with DCM (300 mL), washed with NaHCO3 (300 mL), dried over Na2SO4 and concentrated in vacuum.


The crude residue was then purified by chromatography column on silica gel (eluent: PE/EA=1/1, then DCM/EA=1/1 then DCM/MeOH=50/1 to 40/1) to afford the desired compound (1.02 g). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.71 (s, 1H), 11.12 (br, 1H), 8.55-8.53 (m, 2H), 8.04 (s, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.51-7.47 (m, 4H), 7.15-7.05 (m, 3H), 6.92-6.90 (m, 1H), 6.40 (s, 1H), 6.07 (d, J=8.8 Hz, 1H), 5.52 (s, 1H), 4.25 (s, 1H), 4.04-3.89 (m, 1H), 3.85-3.34 (m, 8H), 3.31-3.23 (m, 2H), 2.41-1.58 (m, 18H), 1.41-1.05 (m, 2H), 0.89-0.87 (m, 2H), 0.64-0.53 (m, 2H), MS (ESI, m/e) [M+1]+859.9.


Example F107: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.70 (s, 1H), 11.24 (br, 1H), 8.55-8.52 (m, 2H), 8.03 (s, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.51-7.47 (m, 4H), 7.15-7.05 (m, 3H), 6.92-6.90 (m, 1H), 6.39-6.37 (m, 1H), 6.07 (d, J=8.8 Hz, 1H), 5.52 (s, 1H), 4.12-4.04 (m, 1H), 3.85-3.29 (m, 15H), 3.31-3.23 (m, 1H), 2.31-1.58 (m, 9H), 0.89-0.87 (m, 2H), 0.64-0.62 (m, 2H), MS (ESI, m/e) [M+1]833.8.


Example F108: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.73 (s, 1H), 11.33 (br, 1H), 8.59-8.55 (m, 2H), 8.06 (d, J=2.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 11H), 7.69-7.52 (m, 4H), 7.35-7.01 (m, 3H), 6.42 (s, 1H), 6.06 (d, J=8.8 Hz, 1H), 5.50 (s, 1H), 5.02-4.92 (m, 1H), 3.85 (d, J=8.4 Hz, 2H), 3.79-3.31 (m, 12H), 3.31-3.23 (m, 2H), 2.50-2.38 (m, 2H), 2.18-1.72 (m, 7H), 1.02-0.88 (m, 2H), 0.70-0.58 (m, 2H), MS (ESI, m/e) [M+1]+833.8.


Example F109: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(6-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.73 (s, 1H), 11.28 (s, 1H), 8.57 (s, 2H), 8.05 (d, J=2.3 Hz, 1H), 7.82 (d, J=8.8 Hz, 1H), 7.63-7.42 (m, 4H), 7.35-7.04 (m, 5H), 6.41 (s, 1H), 6.06 (d, J=8.9 Hz, 1H), 5.50 (s, 1H), 4.24 (s, 1H), 3.65-3.55 (m, 5H), 3.30-3.19 (m, 4H), 3.07-2.90 (m, 2H), 2.08-1.99 (m, 2H), 1.86-1.59 (m, 6H), 1.66-1.52 (m, 2H), 1.35-1.31 (m, 3H), 1.25-1.11 (m, 12H), MS (ESI, m/e) [M+1]+862.1.


Example F110: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 11.23 (s, 1H), 8.55 (s, 2H), 8.03 (d, J=1.5 Hz, 1H), 7.82 (d, J=8.9 Hz, 1H), 7.66-7.40 (m, 4H), 7.33-6.98 (m, 4H), 6.39 (s, 1H), 6.06 (d, J=8.6 Hz, 1H), 5.51 (s, 1H), 3.89-3.73 (m, 3H), 3.73-3.56 (m, 7H), 3.56-3.43 (m, 3H), 3.43-3.20 (m, 4H), 2.19-2.11 (m, 3H), 1.90-1.64 (m, 5H), 1.51 (s, 1H), 1.18-1.11 (m, 6H), MS (ESI, m/e) [M+1]+835.9.


Example F111: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-ethylphenyl)pyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.74 (s, 1H), 11.32 (s, 1H), 8.58 (s, 2H), 8.05 (s, 1H), 7.83 (d, J=8.6 Hz, 1H), 7.67-7.61 (m, 2H), 7.53 (s, 1H), 7.46 (d, J=8.6 Hz, 1H), 7.31 (s, 1H), 7.24 (s, 1H), 7.12 (d, J=9.2 Hz, 2H), 6.41 (s, 1H), 6.06 (d, J=8.6 Hz, 1H), 5.49 (s, 1H), 4.62 (s, 1H), 4.24 (s, 1H), 3.63-3.53 (m, 4H), 3.29 (s, 3H), 2.61 (s, 1H), 2.44-2.40 (m, 1H), 2.07 (s, 2H), 1.97-1.99 (m, 1H), 1.79 (s, 1H), 1.66 (s, 4H), 1.54-1.52 (m, 2H), 1.45 (s, 1H), 1.32-1.29 (m, 3H), 1.23 (s, 6H), 1.09 (s, 3H), MS (ESI, m/e) [M+1]+847.9.


Example F112: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.3]heptan-2-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F106 by replacing (S)-2-(2-cyclopropylphenyl)pyrrolidine with (S)-2-(2-ethylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.73 (s, 1H), 11.34 (s, 1H), 10.19 (s, 1H), 8.59-8.58 (m, 2H), 8.05 (d, J=2.0 Hz, 1H), 7.85 (d, J=8.8 Hz, 1H), 7.77 (s, 1H), 7.60 (s, 1H), 7.53 (s, 1H), 7.46 (d, J=8.6 Hz, 1H), 7.29-7.14 (m, 4H), 6.41 (s, 1H), 6.07 (d, J=8.3 Hz, 1H), 5.49 (s, 1H), 4.61 (s, 1H), 3.80-3.77 (m, 3H), 3.67-3.60 (m, 4H), 3.56-3.53 (m, 1H), 3.52-3.47 (m, 2H), 3.43-3.38 (m, 1H), 3.35 (s, 1H), 3.29 (s, 1H), 3.08 (s, 1H), 2.74 (s, 1H), 2.64-2.57 (m, 1H), 2.41 (s, 1H), 2.08 (s, 1H), 1.99-1.97 (m, 11H), 1.77 (s, 1H), 1.71 (d, J=9.1 Hz, 1H), 1.23 (s, 3H), 1.13-1.10 (m, 3H), MS (ESI, m/e) [M+1]+821.9.


Example F113: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 6-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-2-azaspiro[3.3]heptane and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.78 (s, 1H), 11.41 (br, 1H), 8.64-8.60 (m, 2H), 8.09 (s, 1H), 7.86 (d, J=9.2 Hz, 1H), 7.66 (s, 2H), 7.56 (s, 1H), 7.48 (d, J=8.5 Hz, 1H), 7.18 (d, J=9.2 Hz, 3H), 6.99-6.96 (m, 1H), 6.45 (s, 1H), 6.07 (d, J=8.5 Hz, 1H), 5.46 (s, 1H), 3.87-3.83 (m, 2H), 3.71 (s, 3H), 3.51 (s, 1H), 3.36 (s, 1H), 3.30-3.24 (m, 3H), 3.19 (s, 1H), 3.08 (s, 1H), 2.78 (s, 1H), 2.33 (s, 2H), 2.17 (s, 3H), 2.06-2.04 (m, 2H), 1.90 (s, 2H), 1.71 (s, 1H), 1.64-1.60 (m, 2H), 1.36-1.17 (m, 4H), 0.92 (s, 2H), 0.63 (s, 2H), MS (EST) m/e [M+1]+845.9.


Example F114: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptan-2-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-((1-(2-cyclopropylphenyl)pyrrolidin-2-yl)methyl)-2,6-diazaspiro[3.3]heptane and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 11H), 9.64 (s, 1H), 8.52 (s, 2H), 8.02 (s, 1H), 7.75 (s, 1H), 7.54-7.51 (m, 3H), 7.12-6.97 (m, 3H), 6.89 (s, 1H), 6.80 (s, 1H), 6.38 (s, 1H), 6.16 (d, J=8.2 Hz, 1H), 5.60 (s, 1H), 3.83 (s, 10H), 3.60-3.58 (m, 11H), 3.30-3.22 (m, 4H), 2.78-2.75 (m, 3H), 2.09 (s, 2H), 1.64-1.61 (m, 6H), 1.26-1.24 (m, 4H), 1.01 (s, 1H), 0.80-0.78 (m, 2H), MS (ESI) m/e [M+1]+846.9.


Example F115: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-1 methyl aminophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with (S)-2-((2-(2-cyclopropylphenyl)pyrrolidin-1-yl)methyl)-7-azaspiro[3.5]nonane and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.44 (s, 1H), 8.56-8.52 (m, 2H), 8.05 (s, 1H), 7.79-7.73 (m, 2H), 7.51-7.49 (m, 3H), 7.31-7.04 (m, 2H), 7.12-7.10 (m, 1H), 6.72 (d, J=8.8 Hz, 1H), 6.39 (s, 1H), 6.18 (s, 1H), 4.11-3.86 (m. 1H), 3.85 (d, J=8.4 Hz, 2H), 3.66-3.62 (m, 1H), 3.33-2.90 (m, 9H), 2.20-1.80 (m, 10H), 1.62 (d, J=12.4 Hz, 2H), 1.48-1.25 (m, 10H), 0.85-0.81 (m, 2H), 0.68-0.63 (m, 2H), MS (ESI, m/e) [M+1]+873.9.


Example F116: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-((2-(tetrahydro-2H-pyran-4-yl)ethyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-((2-(tetrahydro-2H-pyran-4-yl)ethyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.70 (s, 1H), 11.47 (s, 1H), 8.60-8.50 (m, 2H), 8.10-8.00 (m, 1H), 7.98-7.85 (m, 11H), 7.84-7.75 (m, 1H), 7.57-7.42 (m, 3H), 7.30-7.20 (m, 2H), 7.10-7.00 (m, 2H), 6.75-6.65 (m, 1H), 6.38 (s, 1H), 6.18 (s, 1H), 5.76 (s, 1H), 4.95 (s, 1H), 3.83 (d, J=7.9 Hz, 2H), 3.75-3.60 (m, 1H), 3.50-3.40 (m, 2H), 3.25-3.15 (m, 2H), 3.10-2.80 (m, 2H), 2.45 (s, 1H), 2.20-1.85 (m, 4H), 1.70-1.51 (m, 5H), 1.51-1.30 (m, 6H), 1.25-1.10 (m, 4H), 1.03-0.89 (m, 3H), 0.89-0.77 (m, 2H), 0.70-0.55 (m, 2H), MS (ESI, m/e) [M+1]+873.9.


Example F117: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((2-morpholinoethyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F40 by replacing (S)-2-(2-ethylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide with 4-((2-morpholinoethyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.73 (s, 1H), 11.62 (s, 1H), 8.85-8.75 (m, 1H), 8.60-8.50 (m, 1H), 8.25-8.05 (m, 1H), 8.01 (d, J=2.4 Hz, 1H), 7.78 (d, J=8.0 Hz, 1H), 7.53-7.40 (m, 3H), 7.30-7.20 (m, 2H), 7.10-7.00 (m, 2H), 6.67 (d, J=7.7 Hz, 1H), 6.36 (s, 1H), 6.19 (s, 1H), 5.05-4.75 (m, 1H), 4.25-4.10 (m, 1H), 3.85-3.75 (m, 1H), 3.70-3.60 (m, 4H), 3.55-3.45 (m, 2H), 3.20-3.15 (m, 2H), 3.14-2.88 (m, 4H), 2.80-2.70 (m, 2H), 2.65-2.50 (m, 4H), 2.45-2.20 (m, 2H), 2.15-1.90 (m, 4H), 1.61-1.29 (m, 4H), 1.25-1.15 (m, 1H), 1.02-0.87 (m, 2H), 0.65-0.55 (m, 2H), MS (ESI, m/e) [M+1]+874.9.


Example F118: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-((2-(3-oxomorpholino)ethyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-((2-(3-oxomorpholino)ethyl)amino)benzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.64 (s, 1H), 11.40 (s, 1H), 8.61 (s, 1H), 8.51 (s, 1H), 8.00 (s, 1H), 7.77 (s, 1H), 7.48 (s, 4H), 7.10-6.99 (m, 4H), 6.66 (d, J=8.4 Hz, 1H), 6.36 (s, 1H), 6.17 (s, 1H), 3.99 (s, 2H), 3.77 (s, 2H), 3.58 (s, 4H), 3.41 (s, 2H), 3.02 (s, 2H), 2.94 (s, 2H), 2.11-1.94 (m, 3H), 1.78 (s, 3H), 1.55 (s, 1H), 1.42-1.37 (m, 6H), 1.24 (s, 2H), 0.91 (s, 3H), 0.63-0.59 (m, 2H), MS (ESI) m/e [M+1]+888.8.


Example F119: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((3-oxabicyclo[3.1.0]hexan-6-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.43 (s, 1H), 10.39 (s, 1H), 8.61 (s, 1H), 8.55 (s, 1H), 8.03 (s, 1H), 7.79 (d, J=8.5 Hz, 2H), 7.49-7.46 (m, 3H), 7.26 (s, 2H), 7.06 (s, 2H), 6.68 (d, J=8.5 Hz, 1H), 6.37 (s, 1H), 6.18 (s, 1H), 4.96 (s, 1H), 3.88-3.84 (m, 1H), 3.73-3.70 (m, 3H), 3.57-3.53 (m, 2H), 3.03-2.98 (m, 5H), 2.05-2.00 (m, 6H), 1.71 (s, 2H), 1.39-1.35 (m, 8H), 0.97-0.93 (m, 3H), 0.64 (s, 2H), MS (ESI) m/e [M+1]+857.9.


Example F120: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((2,6-dimethyltetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((2,6-dimethyltetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.69 (s, 1H), 11.44 (s, 1H), 8.62 (s, 1H), 8.55 (s, 1H), 8.03 (s, 1H), 7.79 (s, 2H), 7.50-7.48 (m, 3H), 7.27 (s, 2H), 7.07 (s, 2H), 6.68 (d, J=8.3 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.97 (s, 1H), 3.71-3.68 (m, 3H), 3.27 (s, 2H), 2.99-2.98 (m, 5H), 2.04-2.01 (m, 7H), 1.67-1.65 (m, 2H), 1.57-1.21 (m, 9H), 1.08-1.04 (m, 6H), 0.95 (s, 2H), 0.84-0.82 (m, 2H), 0.64 (s, 2H), MS (ESI) m/e [M+1]+887.9.


Example F121: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((2,2,6,6-tetramethyltetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1 r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 3-nitro-4-(((2,2,6,6-tetramethyltetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide. 1H NMR (DMSO-de) δ ppm: 11.69 (s, 1H), 11.45 (s, 1H), 8.58-8.56 (m, 2H), 8.03 (s, 1H), 7.81-7.78 (m, 2H), 7.49-7.46 (m, 3H), 7.27 (s, 2H), 7.16-6.98 (m, 2H), 6.68 (d, J=8.3 Hz, 1H), 6.38 (s, 1H), 6.17 (s, 1H), 4.96 (s, 1H), 3.77-3.75 (m, 2H), 3.28 (s, 2H), 3.00-2.98 (m, 5H), 2.33-1.94 (m, 7H), 1.62-1.60 (m, 2H), 1.42-1.40 (m, 6H), 1.19-1.15 (m, 14H), 1.04-0.91 (m, 4H), 0.64 (s, 2H), MS (ESI) m/e [M+1]+915.9.


Example F122: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-6-azaspiro[3.4]octan-6-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-6-azaspiro[3.4]octane. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.18 (s, 1H), 8.54 (s, 2H), 8.04 (s, 1H), 7.78 (s, 1H), 7.49 (s, 4H), 7.07 (s, 3H), 6.90 (s, 1H), 6.38 (s, 1H), 6.24 (s, 1H), 5.73 (s, 1H), 5.32 (s, 1H), 4.23 (s, 1H), 3.27-3.23 (m, 1H), 3.11-2.97 (m, 6H), 2.20 (s, 1H), 2.02-2.00 (m, 3H), 1.78-1.54 (m, 7H), 1.32-1.30 (m, 3H), 1.11-1.09 (m, 5H), 0.86-0.84 (m, 3H), 0.63 (s, 1H), 0.49 (s, 1H), MS (ESI) m/e [M+1]873.9.


Example F123: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.4]octan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 6-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[3.4]octane. 1H NMR (DMSO-dr) δ ppm: 11.76 (s, 1H), 11.32 (s, 1H), 9.46 (s, 1H), 8.61 (s, 2H), 8.09 (s, 1H), 7.87 (d, J=8.8 Hz, 1H), 7.68 (s, 1H), 7.56-7.48 (m, 3H), 7.30 (s, 2H), 7.21-7.05 (m, 2H), 6.44 (s, 1H), 6.15-6.07 (m, 1H), 5.48-5.43 (m, 1H), 5.03 (s, 1H), 3.63 (s, 2H), 3.58-3.54 (m, 1H), 3.47 (s, 2H), 3.31 (s, 3H), 2.54 (s, 1H), 1.92-1.88 (m, 6H), 1.67 (s, 3H), 1.56-1.53 (m, 2H), 1.38-1.22 (m, 8H), 1.15-1.10 (m, 4H), 0.96-0.92 (m, 3H), 0.64 (s, 2H), MS (ESI) m/e [M+1]+873.9.


Example F124a and Example F124b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((7R or 7S)-7-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[4.4]nonan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-((7S or 7R)-7-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[4.4]nonan-2-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example F21 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 7-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2-azaspiro[4.4]nonane. F124a was obtained as faster peak by separation and purification of crude product with prep-HPLC. 1H NMR (DMSO-d6) δ ppm: 11.63 (s, 1H), 11.20 (s, OH), 8.46 (s, 2H), 8.00 (s, 1H), 7.64-7.37 (m, 4H), 7.28-6.94 (m, 4H), 6.89-6.84 (m, 1H), 6.66 (s, 1H), 6.34 (s, 1H), 6.22 (s, 1H), 5.73 (s, 1H), 5.32 (s, 1H), 4.24 (s, 1H), 4.08 (s, 1H), 3.25 (s, 2H), 3.16 (s, 1H), 3.04 (s, 1H), 2.95-2.90 (m, 2H), 2.86-2.81 (m, 1H), 2.22 (s, 1H), 2.02-1.95 (m, 3H), 1.73-1.65 (m, 5H), 1.56-1.52 (m, 2H), 1.45 (s, 2H), 1.34-1.28 (m, 3H), 1.24 (s, 5H), 1.13-1.05 (m, 4H), 0.85 (s, 3H), 0.63 (s, 1H), 0.44 (s, 1H), MS (ESI) m/e [M+1]+887.8; F124b was obtained as slower peak by separation and purification of crude product with prep-HPLC. MS (ESI) m/e [M+1]+887.8


Example F125: 2-((1H-pyrrolo[2,3-b]pyridin-5-v)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


Step 1: methyl tert-butyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)benzoate

To a mixture of (S)-2-(2-cyclopropylphenyl)-1-(7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[3.5]non-6-en-2-yl)pyrrolidine (200 mg, 0.461 mmol) and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-bromobenzoate (160 mg, 0.461 mmol) in 1,4-dioxane (20 ml) and H2O (2 ml) was added Pd(dppf)Cl2 (67.4 mg, 0.0922 mmol) and Cs2CO3 (450 mg, 1.383 mmol). The mixture was stirred at 100° C. for overnight under nitrogen protection. The mixture was cooled to room temperature and diluted with DCM (100 ml), then washed with brine, dried over Na2SO4, concentrated and purified by chromatography column on silica gel (eluent: PE:EA=2/1 to 1/1) to give the product 60 mg. MS (ESI, m/e) [M+1]+616.0.


Step 2: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)benzoic acid

To a solution of tert-butyl (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)benzoate (60 mg, 0.0974 mmol) in DCM (10 ml) was added TFA (5 ml). The mixture was stirred at room temperature for overnight. The mixture was concentrated in vacuum to give the crude product, which was used directly for next step. MS (ESI, m/e) [M+1]+559.9.


Step 3: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide

To a solution of (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)spiro[3.5]non-6-en-7-yl)benzoic acid (54.5 mg, 0.0974 mmol) in DCM (20 ml) was added HATU (55.6 mg, 0.146 mmol) and triethylamine (49 mg, 0.487 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture was added 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (66.9 mg, 0.195 mmol) and DMAP (11.9 mg, 0.0974 mmol). The mixture was stirred at room temperature for overnight. The mixture was washed with saturated aq. NaHCO3, brine, dried over Na2SO4, concentrated and purified by prep-TLC (eluent: DCM/MeOH=20/1) to give the desired compound (18.5 mg). 1H NMR (400 MHz, DMSO-do) δ ppm: 12.19 (s, 1H), 11.60 (s, 1H), 8.64-8.20 (m, 2H), 7.95 (s, 1H), 7.79-7.17 (m, 7H), 7.17-6.78 (m, 4H), 6.73 (s, 1H), 6.34 (s, 1H), 6.03-5.83 (m, 1H), 4.23 (s, 1H), 4.03-3.77 (m, 1H), 3.77-3.49 (m, 1H), 3.28-3.06 (m, 3H), 2.28-1.85 (m, 9H), 1.75-1.42 (m, 10H), 1.39-1.29 (m, 3H), 1.16-1.04 (m, 5H), 1.01-0.85 (m, 2H), 0.71-0.54 (m, 2H), MS (ESI, m/e) [M+1]+884.9.


Example F126: (S)-2-((6-amino-5-chloropyridin-3-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F21 by replacing (methyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-fluorobenzoate with methyl 2-((6-amino-5-chloropyridin-3-yl)oxy)-4-fluorobenzoate and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((2,2-dimethyltetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-do) δ ppm: 11.36 (s, 1H), 9.50 (s, 1H), 8.82-8.32 (m, 2H), 7.96-7.63 (m, 2H), 7.63-7.40 (m, 2H), 7.40-6.80 (m, 5H), 6.77-6.54 (m, 1H), 6.33-5.86 (m, 3H), 4.13-3.74 (m, 3H), 3.30-3.21 (m, 3H), 3.21-2.85 (m, 6H), 2.21-1.68 (m, 7H), 1.68-1.53 (m, 3H), 1.53-1.33 (m, 5H), 1.33-1.17 (m, 4H), 0.95-0.80 (m, 2H), 0.69-0.51 (m, 2H), MS (ESI, m/e) [M+1]+869.8.


Example F127: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(((2,2-dimethyltetrahydro-2H-ran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((2,2-dimethyltetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.62 (s, 1H), 8.48 (s, 2H), 7.98 (d, J=2.5 Hz, 1H), 7.71 (d, J=9.0 Hz, 1H), 7.55-7.53 (m, 2H), 7.46 (t, J=2.5 Hz, 1H), 7.41 (s, 1H), 7.13 (s, 2H), 7.03-6.86 (m, 3H), 6.65 (d, J=9.0 Hz, 1H), 6.34 (s, 1H), 6.19 (s, 1H), 3.64-3.51 (m, 3H), 3.23-3.21 (m, 3H), 3.13 (s, 11H), 3.01 (s, 2H), 2.93 (s, 2H), 2.26 (s, 1H), 2.09-2.01 (m, 3H), 1.84 (s, 4H), 1.59-1.56 (m, 3H), 1.39-1.38 (m, 6H), 1.14-1.12 (m, 7H), 0.93-0.86 (m, 2H), 0.67-0.60 (m, 1H), 0.55 (s, 1H), MS (ESI) m/e [M+1]+887.9.


Example F128: (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-(3-methyl-3-((tetrahydro-2H-pyran-4-yl)methyl)ureido)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(3-methyl-3-((tetrahydro-2H-pyran-4-yl)methyl)ureido)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 11.54 (s, 1H), 9.53 (s, 1H), 8.33 (d, J=1.9 Hz, 1H), 8.18 (d, J=7.2 Hz, 1H), 7.96-7.93 (m, 2H), 7.88-7.86 (m, 1H), 7.55-7.53 (m, 2H), 7.42-7.40 (m, 1H), 7.33-7.31 (m, 1H), 7.16-7.14 (m, 2H), 6.95-6.94 (m, 1H), 6.88 (d, J=7.2 Hz, 1H), 6.62-6.60 (m, 1H), 6.32-6.29 (m, 1H), 6.19 (d, J=2.0 Hz, 1H), 3.85-3.84 (m, 2H), 3.26-3.24 (m, 5H), 3.12 (s, 4H), 3.02 (s, 3H), 2.97 (s, 2H), 2.89 (s, 2H), 2.28 (s, 1H), 2.05 (s, 1H), 1.85 (s, 3H), 1.55-1.53 (m, 3H), 1.42-1.40 (m, 5H), 1.22-1.20 (m, 4H), 0.89-0.88 (m, 2H), 0.66-0.60 (m, 1H), 0.55 (s, 1H), MS (ESI) m/e [M+1]+916.9.


Example F129: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-((S)-2-phenylpyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-phenylpyrrolidine. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (s, 1H), 10.58 (br, 1H), 8.61-8.55 (m, 2H), 8.04 (d, J=2.8 Hz, 1H), 7.79 (d, J=8.8 Hz, 1H), 7.65-7.55 (m, 2H), 7.52-7.47 (m, 3H), 7.45-7.38 (m, 3H), 7.08 (d, J=9.2 Hz, 1H), 6.69 (d, J=9.2 Hz, 11H), 6.40-6.32 (m, 1H), 6.17 (s, 1H), 4.47-4.30 (m, 1H), 4.25 (s, 1H), 3.84-3.66 (m, 2H), 3.25-2.95 (m, 6H), 2.44-2.36 (m, 1H), 2.20-1.89 (m, 5H), 1.75-1.10 (m, 19H), MS (ESI, m/e) [M+1]+847.8.


Example F130: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-(2-(2-cyclopropylphenyl)-4-ethylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F23 by replacing (S)-2-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonane with 2-(2-(2-cyclopropylphenyl)-4-ethylpiperazin-1-yl)-7-azaspiro[3.5]nonane. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 11H), 10.51 (s, 1H), 8.35-8.60 (m, 2H), 7.96 (s, 1H), 7.69 (d, J=8.2 Hz, 1H), 7.62-7.28 (m, 4H), 7.28-7.06 (m, 2H), 7.06-6.85 (m, 2H), 6.75-6.56 (m, 1H), 6.33 (s, 1H), 6.17 (s, 1H), 4.09-3.91 (m, 1H), 3.89-3.78 (m, 2H), 3.32-3.21 (m, 5H), 3.08-2.82 (m, 7H), 2.27-2.14 (m, 1H), 2.06-1.68 (m, 3H), 1.65-1.52 (m, 3H), 1.47-1.15 (m, 10H), 1.12-0.82 (m, 6H), 0.77-0.46 (m, 2H), MS (ESI, m/e) [M+1]+902.9.


Example F131a and Example F131b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((cis or trans)-4-hydroxytetrahydrofuran-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((trans or cis)-4-hydroxytetrahydrofuran-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example F43 by replacing (S)-2-(2-isopropylphenyl)pyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine and replacing 4-((((1 r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-hydroxytetrahydrofuran-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. After separation and purification with prep-HPLC, the faster isomers was obtained as Example F131a. 1H NMR (DMSO-d6) δ ppm: 11.68 (s, 1H), 11.50 (s, 1H), 8.75-8.40 (m, 2H), 8.10-7.97 (m, 1H), 7.86-7.36 (m, 5H), 7.33-6.91 (m, 4H), 6.74-6.68 (m, 1H), 6.41 (s, 1H), 6.25 (s, 1H), 5.06-4.96 (m, 11H), 4.46-4.26 (m, 2H), 3.97-3.87 (m, 11H), 3.70-3.55 (m, 2H), 3.12-2.96 (m, 5H), 2.40-2.32 (m, 2H), 2.13-1.55 (m, 16H), 1.01-0.96 (m, 2H), 0.73-0.63 (m, 2H), MS (ESI, m/e) [M+1]+861.9; the slower isomers was obtained as Example F131b, 1H NMR (DMSO-d6) δ ppm: 11.67 (s, 1H), 11.43 (s, 1H), 8.80-8.40 (m, 2H), 8.04 (s, 1H), 7.90-7.70 (m, 1H), 7.65-7.38 (m, 4H), 7.33-6.92 (m, 5H), 6.80-6.65 (m, 1H), 6.40 (s, 1H), 6.25 (s, 1H), 5.15-5.05 (m, 1H), 4.45-4.35 (m, 1H), 4.25-4.12 (m, 1H), 3.78-3.68 (m, 2H), 3.66-3.53 (m, 3H), 3.15-2.93 (m, 5H), 2.40-2.25 (m, 2H), 2.15-1.99 (m, 3H), 1.70-1.57 (m, 3H), 1.52-1.39 (m, 6H), 1.03-0.94 (m, 2H), 0.75-0.55 (m, 2H), MS (ESI, m/e) [M+1]+861.9.


Example F132a and Example F132b: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((S or R)-2-(2-isopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2-((R or S)-2-(2-isopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide



embedded image


2-(2-(2-isopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane was separated and purified by SFC to obtain 2 pure isomers (Instrument: Waters SFC80Q preparative SFC; Column: Lux Cellulose-2, 250×30 mm i.d., 10 um; Mobile phase: A for CO2 and B for MeOH(0.1% NH3H2O): Gradient: B %=60%; Flow rate: 80 g/min; Column temperature: 40° C.: System back pressure: 100 bar): (S or R)-2-(2-(2-isopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane as faster peak in SFC (0.4 g, retention time: 2.2 min). 1H NMR (400 MHz, CDCl3) δ ppm: 7.53-7.44 (m, 1H), 7.26-7.21 (m, 2H), 7.16-7.09 (m, 1H), 3.71-3.59 (m, 1H), 3.45-3.31 (m, 1H), 2.98 (d, J=8.4 Hz, 1H), 2.93-2.74 (m, 6H), 2.64 (d, J=10.8 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 1H), 2.26 (s, 1H), 2.19-2.10 (m, 1H), 1.87-1.77 (m, 1H), 1.76-1.68 (m, 1H), 1.63-1.47 (m, 4H), 1.40-1.30 (m, 1H), 1.23 (d, J=6.8 Hz, 3H), 1.20 (d, J=6.8 Hz, 3H), 1.17-1.09 (m, 1H), MS (ESI, m/e) [M+1]+342.4. (R or S)-2-(2-(2-isopropylphenyl)-4-methylpiperazin-1-yl)-7-azaspiro[3.5]nonane (slower peak in SFC, retention time: 3.9 min) (340 mg) was obtained as a white solid.


With the isomer of faster peak in SFC as starting material. Example F132a was synthesized following the procedures similar to those in Example F91. 1H NMR (400 MHz. DMSO-d6) δ ppm: 11.59 (s, 1H), 8.49-8.40 (m, 2H), 7.95 (s, 1H), 7.68-7.65 (m, 1H), 7.52 (d, J=8.4 Hz, 1H), 7.46-7.10 (m, 7H), 6.95-6.87 (m, 1H), 6.63 (d, J=8.4 Hz, 1H), 6.32 (s, 1H), 6.17 (s, 1H), 4.24 (s, 1H), 3.67-3.55 (m, 1H), 3.26-3.24 (m, 3H), 3.01-2.82 (m, 9H), 2.25-2.19 (m, 1H), 2.05-1.97 (m, 2H), 1.71-1.50 (m, 8H), 1.33-1.01 (m, 20H), MS (ESI, m/e) [M+1]+919.0.


With the isomer of slower peak in SFC as starting material, Example F1321b was synthesized following the procedures similar to those in Example F91. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 10.55 (s, 1H), 8.51 (d, J=2.5 Hz, 2H), 8.00 (d, J=2.5 Hz, 1H), 7.74 (d, J=9.2 Hz, 1H), 7.52-7.40 (m, 4H), 7.29-7.21 (m, 2H), 7.19-7.14 (m, 1H), 7.02 (d, J=9.2 Hz, 1H), 6.64 (d, J=8.6 Hz, 1H), 6.36 (s, 1H), 6.15 (s, 1H), 4.25 (s, 1H), 3.72 (s, 1H), 3.30-3.16 (m, 4H), 3.09-2.72 (m, 10H), 2.65-2.60 (m, 3H), 2.35-2.30 (m, 2H), 1.69-1.52 (m, 8H), 1.38-1.14 (m, 16H), MS (ESI, m/e)[M+1]+919.0.


Example F133: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzamide



embedded image


Step 1: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2,2-dimethoxy-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide

The mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2,2-dimethoxy-7-azaspiro[3.5]nonan-7-yl)benzoic acid (437 mg, 1.0 mmol), triethylamine (303 mg, 3.0 mmol), EDCI (229 mg, 1.2 mmol), DMAP(366 mg, 3.0 mmol) and 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (343 mg, 1.0 mmol) in DCM (50 mL) was heated to reflux and stirred for overnight. The mixture was cooled to r.t, and then washed with brine, dried over Na2SO4 and concentrated in vacuo, then purified by chromatography column on silica (eluent: PE/EA=1/1 to DCM/EA=1/1) to give the target product (424 mg, 55.58%). MS (ESI, m/e) [M+1]+762.8.


Step 2: 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4-(2-oxo-7-azaspiro[3.5]nonan-7-yl)benzamide

To the mixture of 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(2,2-dimethoxy-7-azaspiro[3.5]nonan-7-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)benzamide (100 mg, 0.13 mmol) in DCM (5 mL) was added HCl solution (4M in 1,4-dioxane, 1 mL) and stirred for 30 mins. The reaction was quenched with aq. NaHCO3 (30 mL), extracted with DCM (30 mL), concentrated in vacuum and purified by pre-TLC (eluent: DCM/MeOH=20/1) to afford the desired compound (42 mg, 45.12%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.71 (s, 1H), 11.46 (s, 1H), 8.62-8.53 (m, 2H), 8.08 (d, J=2.4 Hz, 1H), 7.82 (d, J=7.6 Hz, 1H), 7.57-7.51 (m, 3H), 7.11 (d, J=8.8 Hz, 1H), 6.79 (d, J=8.8 Hz, 1H), 6.41-6.38 (m, 1H), 6.24 (s, 1H), 4.25 (s, 1H), 3.30-3.25 (m, 2H), 3.21-3.12 (m, 4H), 2.78 (s, 4H), 1.75-1.52 (m, 10H), 1.41-1.10 (m, 6H), MS (ESI, m/e) [M+1]+716.8.


Example G1: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The mixture of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (51 mg, 0.1 mmol), triethylamine (30 mg, 0.3 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (59 mg, 0.15 mmol) in DCM (10 mL) was stirred for 2 h. To the resulting reaction were added 4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrobenzenesulfonamide (50 mg, 0.15 mmol) and DMAP (1 mg, 0.01 mmol) and stirred for overnight. The mixture was purified by chromatography column on silica (eluent: PE/EA=1/1 to DCM/MeOH=20/1) to afford a crude, which was purified with Pre-HPLC to give the product (25 mg). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (br, 1H), 11.64 (br, 1H), 8.30 (br, 1H), 8.01 (m, 2H), 7.57 (d, J=4.0 Hz, 1H), 7.56-7.46 (m, 3H), 7.54 (m, 2H), 7.33-7.18 (m, 3H), 7.02 (d, J=4.0 Hz, 1H), 6.90 (s, 4H), 6.36 (m, 3H), 4.98 (d, J=8.0 Hz, 1H), 4.36 (d, J=24.0 Hz, 2H), 3.79-3.72 (m, 3H), 3.61-3.56 (m, 2H), 3.39-3.32 (m, 1H), 2.41 (m, 1H), 1.99-1.81 (m, 5H), MS (ESI, m/e) [M+1]+826.0.


Example G1C: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedure similar to those in Example C3. MS (ESI, m/e) [M+1]+836.2.


Example G2: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((4-(((1-methylpiperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G2 was synthesized with 4-(((1-methylpiperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 9.32 (br, 1H), 8.49-8.33 (m, 2H), 7.99-7.95 (m, 1H), 7.73-7.65 (m, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.47 (d, J=8.0 Hz, 1H), 7.45-7.41 (m, 1H), 7.41-7.36 (m, 1H), 7.32 (d, J=8.4 Hz, 2H), 7.29-7.16 (m, 3H), 7.06-6.99 (m, 1H), 6.96-6.84 (m, 2H), 6.40-6.28 (m, 3H), 4.97 (d, J=8.5 Hz, 1H), 3.80-3.70 (m, 1H), 3.40-3.34 (m, 2H), 3.31-3.27 (m, 4H), 2.87-2.74 (m, 1H), 2.74-2.61 (m, 3H), 2.05-1.96 (m, 1H), 1.96-1.74 (m, 6H), 1.44-1.32 (m, 2H), MS (ESI, m/e) [M+1]+820.1.


Example G2C: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-methylpiperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((1-methylpiperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedure similar to those in Example C3. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 8.8.42-8.27 (m, 2H), 7.91 (s, 11H), 7.66-7.57 (m, 1H), 7.58-7.44 (m, 2H), 7.41-7.38 (m, 1H), 7.11-7.02 (m, 2H), 7.00-6.95 (m, 1H), 6.93-6.85 (m, 1H), 6.83-6.77 (m, 1H), 6.75-6.70 (m, 1H), 6.30 (s, 1H), 6.01-5.77 (m, 1H), 4.38-4.20 (m, 1H), 3.27-3.07 (m, 4H), 2.90-2.73 (m, 2H), 2.62-2.50 (m, 2H), 2.26-2.15 (m, 4H), 2.07-1.90 (m, 3H), 1.76-1.63 (m, 4H), 1.20-1.13 (m, 4H), 0.97-0.84 (m, 3H), 0.82-0.44 (m, 4H), MS (ESI, m/e) [M+1]+829.9.


Example G3: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((1-(tetrahydro-2H-pyran-4-yl)azetidin-3-yl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G3 was synthesized with 3-nitro-4-((1-(tetrahydro-2H-pyran-4-yl)azetidin-3-yl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 8.48-8.43 (m, 1H), 8.39-8.30 (m, 1H), 7.98-7.94 (m, 1H), 7.81-7.72 (m, 1H), 7.50-7.42 (m, 2H), 7.42-7.37 (m, 1H), 7.33 (d, J=8.4 Hz, 2H), 7.29-7.15 (m, 3H), 7.04-6.98 (m, 1H), 6.94-6.89 (m, 1H), 6.82-6.68 (m, 1H), 6.35 (d, J=8.4 Hz, 2H), 6.33-6.29 (m, 1H), 5.00-4.94 (m, 1H), 4.53-4.24 (m, 1H), 3.94-3.83 (m, 2H), 3.79-3.71 (m, 1H), 3.42-3.36 (m, 1H), 3.31-3.17 (m, 5H), 2.46-2.36 (m, 2H), 2.04-1.67 (m, 6H), 1.33-1.25 (m, 2H), MS (ESI, m/e) [M+1]+848.1.


Example G4: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((1-(oxetan-3-yl)piperidin-4-yl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G4 was synthesized with 3-nitro-4-((1-(oxetan-3-yl)piperidin-4-yl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G1. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (s, 1H), 11.69 (s, 1H), 10.90-10.05 (m, 1H), 8.63-8.48 (m, 1H), 8.27-8.12 (m, 1H), 8.04 (d, J=1.8 Hz, 1H), 7.90 (d, J=8.1 Hz, 1H), 7.59 (d, J=1.8 Hz, 1H), 7.55-7.43 (m, 3H), 7.38-7.26 (m, 3H), 7.26-7.14 (m, 3H), 7.00 (d, J=7.4 Hz, 1H), 6.90 (s, 1H), 6.44-6.28 (m, 3H), 4.97 (d, J=8.0 Hz, 1H), 4.854.66 (m, 3H), 4.454.26 (m, 1H), 3.93-3.88 (m, 1H), 3.55-3.32 (m, 3H), 3.04-2.82 (m, 2H), 2.44-2.35 (m, 1H), 2.28-2.09 (m, 2H), 2.09-1.94 (m, 2H), 1.94-1.68 (m, 2H), 1.23-1.02 (m, 2H), MS (ESI, m/e) [M+1]+848.1.


Example G5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((4-(((3-hydroxyoxetan-3-yl))methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Synthesis of TBS-G5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide




embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (54 mg, 0.106 mmol) in DCM (50 mL) was added HATU (60 mg, 0.159 mmol) and triethylamine (53.5 mg. 0.53 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture were added 4-(((3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methyl)amino)-3-nitrobenzenesulfonamide (88.5 mg, 0.212 mmol). The mixture was stirred at room temperature overnight. The mixture was washed with brine, dried over Na2SO4, concentrated. The residue was purified by chromatography column on silica (eluent: EA/PE=1/1 to MeOH/DCM=1/10) to give the crude product. The crude product was further purified by prep-TLC (MeOH/DCM=1/20) to afford product (36 mg, 37.3%) as a yellow solid. MS (ESI, m/e) [M+1]+909.1.




embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((3-((tert-butyldimethylsilyl)oxy)oxetan-3-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide(TBS-G5) in DCM (50 ml) was added TBAF (100.6 mg, 0.385 mmol). The mixture was stirred at r.t. for 2 h. The mixture was washed with brine (50 ml×2), dried over Na2SO4, concentrated. The residue was purified by prep-HPLC to give the desired product in Example G5. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.69 (s, 1H), 8.57 (s, 2H), 8.06 (s, 1H), 7.85 (d, J=8.7 Hz, 1H), 7.60 (s, 1H), 7.57-7.42 (m, 3H), 7.39-7.28 (m, 3H), 7.28-7.14 (m, 3H), 7.01 (d, J=7.1 Hz, 1H), 6.91 (s, 1H), 4.98 (d, J=7.7 Hz, 1H), 4.48 (d, J=6.2 Hz, 2H), 4.44 (d, J=6.2 Hz, 2H), 3.81-3.65 (m, 3H), 3.48-3.39 (m, 1H), 2.45-2.33 (m, 2H), 2.05-1.94 (m, 2H), 1.94-1.76 (m, 2H), 1.26-1.24 (m, 2H) MS (ESI, m/e) [M+1]+795.1.


Example G6: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxycyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized from 4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G5 to get TBS-G6, then proceeded with a deprotection step to afford the product. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.36 (s, 1H), 11.73 (s, 1H), 8.38 (d, J=2.2 Hz, 1H), 8.13-8.01 (m, 2H), 7.62 (d, J=2.2 Hz, 1H), 7.57-7.49 (m, 2H), 7.49-7.39 (m, 2H), 7.37-7.28 (m, 3H), 7.28-7.15 (m, 2H), 7.04-6.97 (m, 1H), 6.89 (s, 1H), 6.44-6.38 (m, 1H), 6.35 (d, J=8.7 Hz, 2H), 4.97 (d, J=7.8 Hz, 1H), 4.01-3.93 (m, 4H), 3.78-3.69 (m, 2H), 3.42-3.28 (m, 2H), 2.06-1.95 (m, 2H), 1.91-1.82 (m, 3H), 1.82-1.72 (m, 2H), 1.18-0.97 (m, 4H), MS (ESI, m/e) [M+1]+822.1.


Example G7: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(7-oxa-2-azaspiro[3.5]nonan-2-yl)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-nitro-4-(7-oxa-2-azaspiro[3.5]nonan-2-yl)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-chlorophenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G1, and afforded the product. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.74 (s, 1H), 8.28-8.25 (m, 1H), 8.09-8.05 (m, 1H), 7.81-7.77 (m, 1H), 7.66-7.62 (m, 1H), 7.56-7.50 (m, 2H), 7.49-7.44 (m, 1H), 7.36-7.16 (m, 5H), 7.0) (d, J=7.3 Hz, 1H), 6.88 (s, 1H), 6.74 (d, J=8.4 Hz., 2H), 6.43-6.40 (m, 1H), 6.35 (d, J=8.4 Hz, 2H), 4.97 (d, J=7.9 Hz, 1H), 3.81-3.70 (m, 5H), 3.55-3.40 (m, 4H), 2.04-1.95 (m, 2H), 1.90-1.79 (m, 2H), 1.74-1.65 (m, 4H), MS (ESI, m/e) [M+1]+819.1.


Example G8: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (60 mg, 0.115 mmol) in DCM (50 ml) were added HATU (52.6 mg, 0.138 mmol) and triethylamine (34.8 mg, 0.345 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture was added (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide (43.8 mg, 0.138 mmol). The mixture was stirred at room temperature overnight. The mixture was washed with brine, dried over Na2SO4, concentrated. The residue was purified by prep-HPLC to give the product (2 mg, 1.9%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.28 (s, 1H), 11.71 (s, 1H), 9.43 (br, 1H), 8.63-8.47 (m, 2H), 8.00 (s, 1H), 7.82 (d, J=9.1 Hz, 1H), 7.65-7.58 (m, 1H), 7.56-7.45 (m, 3H), 7.35-7.21 (m, 2H), 7.21-7.02 (m, 3H), 6.74 (d, J=6.2 Hz, 1H), 6.39 (s, 1H), 6.00-5.93 (m, 1H), 529-5.07 (m, 1H), 3.80-3.62 (m, 8H), 3.40-3.28 (m, 4H), 2.26-1.96 (m, 6H), 1.91-1.70 (m, 2H), 1.64-1.41 (m, 2H), 1.00-0.90 (m, 2H), 0.77-0.69 (m, 1H), 0.64-0.56 (m, 1H), MS (EST, m/e) [M+1]+819.1.


Example G8-S: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.35 (br, 1H), δ 11.64 (s, 1H), 8.61-8.35 (m, 2H), 7.97 (s, 1H), 7.84-7.68 (m, 1H), 7.66-7.36 (m, 4H), 7.33-6.80 (m, 5H), 6.74 (s, 1H), 6.35 (s, 11H), 6.03-5.77 (m, 1H), 5.43-4.93 (m, 0.5H), 4.56-4.05 (m, 0.5H), 3.83-3.71 (m, 3H) 3.69-3.56 (m, 2H), 3.51-3.40 (m, 2H), 3.32-3.26 (m, 2H), 3.21-2.89 (m, 1H), 2.45-1.27 (m, 13H), 0.98-0.82 (m, 2H), 0.76-0.46 (m, 2H), MS (ESI, m/e) [M+1]+818.8.


Two enantiomers G8-a (faster isomer) and G8-b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 3.3 min to give G8-a. The slower enantiomer was eluted at retention time of 4.7 min to give G8-b.















Column
CHIRAL ART Cellulose-SB








Column size
2cm × 25 cm, 5 um



Injection
0.8 mL



Mobile phase
MTBE:MeOH (0.2% MSA) = 70:30



Flow rate
20 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
12 mg/mL in MeOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC









Example G8-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.40 (br, 1H), 11.63 (s, 1H), 8.65-8.24 (m, 2H), 7.96 (s, 1H), 7.83-7.34 (m, 5H), 7.34-7.17 (m, 1H), 7.17-6.81 (m, 4H), 6.73 (s, 1H), 6.34 (s, 1H), 5.82 (s, 1H), 5.37-5.09 (m, 0.5H), 4.50-4.16 (m, 0.5H), 3.86-3.69 (m, 3H), 3.69-3.54 (m, 2H), 3.54-3.40 (m, 2H), 3.31-3.10 (m, 2H), 3.08-2.82 (m, 1H), 2.50-1.81 (m, 10H), 1.81-1.35 (m, 3H), 1.02-0.79 (m, 2H), 0.76-0.42 (m, 2H), MS (ESI, m/e) [M+1]+818.8. Example G8-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.56-11.98 (m, 0.3H), 11.61 (s, 1H), 10.19-9.41 (m, 0.4H), 8.67-8.20 (m, 2H), 8.13-7.51 (m, 2H), 7.95 (s, 1H), 7.51-7.33 (m, 3H), 7.35-6.80 (m, 5H), 6.74 (s, 1H), 6.33 (s, 1H), 5.99 (s, 1H), 5.30-4.82 (m, 0.5H), 4.42-4.06 (m, 0.5H), 3.87-3.71 (m, 3H), 3.71-3.54 (m, 2H), 3.54-3.39 (m, 2H), 3.31-2.90 (m, 3H), 2.72-2.50 (m, 2H), 2.41-1.60 (m, 9H), 1.56-1.23 (m, 2H), 1.04-0.77 (m, 2H), 0.77-0.42 (m, 2H), MS (ESI, me) [M+1]+818.8.


Example G9: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-da) δ ppm: 12.24 (br, 0.3H), 11.62 (s, 1H), 9.86-9.16 (m, 1H), 8.45 (s, 2H), 7.95 (s, 1H), 7.84-7.34 (m, 4H), 7.34-7.184 (m, 1H), 7.15-6.81 (m, 4H), 6.79-6.64 (m, 1H), 6.74 (s, 1H), 6.34 (s, 1H), 6.34 (s, 1H), 5.99-5.81 (m, 1H), 4.424.12 (m, 1H), 3.85-3.70 (m, 3H), 3.70-3.53 (m, 2H), 3.53-3.34 (m, 6H), 3.21-2.81 (m, 2H), 2.35-1.84 (m, 6H), 1.84-1.25 (m, 4H), 1.03-0.77 (m, 2H), 0.77-0.40 (m, 2H), MS (ESI, m/e) [M+1]+819.2.


Example G9-a and Example G9-b: (R or S)—N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide , (S or R)—N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was synthesized with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. Then two enantiomers G9-a (faster isomer) and G9-b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 1.8 min to give G9-a. The slower enantiomer was eluted at retention time of 2.1 min to give G9-b.













Column
CHIRAL ART Cellulose-SB







Column size
2 cm × 25 cm, 5 um


Injection
0.5 mL


Mobile phase
MTBE: [MeOH:DCM = 1:1 (0.1% MSA)] = 50:50


Flow rate
20 mL/min


Wave length
UV 220 nm


Temperature
25° C.


Sample solution
32 mg/ml in EtOH:DCM = 3:1


Prep-HPLC equipment
Prep-Gilson-HPLC









Example G9-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (s, 1H), 11.64 (s, 1H), 8.53-8.41 (m, 2H), 7.97 (s, 1H), 7.83-7.66 (m, 1H), 7.60-7.37 (m, 3H), 7.32-7.18 (m, 1H), 7.16-7.02 (m, 3H), 7.01-6.83 (m, 1H), 6.73 (s, 1H), 6.35 (s, 1H), 5.82 (s, 1H), 5.37-5.15 (m, 1H), 4.36-4.22 (m, 1H), 3.82-3.74 (m, 3H), 3.67-3.56 (m, 3H), 3.50-3.37 (m, 3H), 3.24-3.06 (m, 1H), 3.04-2.88 (m, 1H), 2.29-2.12 (m, 3H), 2.10-1.83 (m, 3H), 1.80-1.62 (m, 1H), 1.32-1.18 (m, 2H), 1.02-0.79 (m, 4H), 0.79-0.64 (m, 2H), 0.61-0.47 (m, 1H), MS (ESI, m/e) [M+1]+818.8. Example G9-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.25 (s, 1H), 11.61 (s, 1H), 8.51-8.37 (m, 2H), 7.95 (s, 1H), 7.83-7.66 (m, 1H), 7.60-7.37 (m, 3H), 7.32-7.18 (m, 1H), 7.16-7.02 (m, 3H), 7.01-6.83 (m, 1H), 6.74 (s, 1H), 6.33 (s, 1H), 5.99 (s, 1H), 5.38-5.03 (m, 1H), 4.36-4.22 (m, 1H), 3.82-3.74 (m, 3H), 3.67-3.56 (m, 3H), 3.50-3.37 (m, 3H), 3.24-3.06 (m, 1H), 3.04-2.91 (m, 1H), 2.29-2.14 (m, 3H), 2.10-1.96 (m, 2H), 1.82-1.64 (m, 2H), 1.23-1.04 (m, 3H), 1.00-0.82 (m, 3H), 0.79-0.64 (m, 2H), 0.61-0.47 (m, 1H), MS (ESI, m/e) [M+1]+818.8.


Example G10a and Example G10b: (cis- or trans-) 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxy-4-methylcyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide; and (trans- or cis-) 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxy-4-methylcyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide;




embedded image


Step 1: 4-(hydroxymethyl)-1-methylcyclohexan-1-ol



embedded image


To a solution of 4-(hydroxymethyl)cyclohexan-1-one (1 g, 7.93 mmol) in THF (100 ml) was added CH3MgBr (1 M in THF solution) (39.6 ml, 39.6 mmol) at 0° C. for 5 mins. The mixture was stirred at r.t. for 3 hours. Then the reaction mixture was poured into saturated aq. NH4Cl (200 ml), extracted with ethyl acetate (200 mL×2). The combined organic phase was sequentially washed with brine, dried over Na2SO4 and concentrated. The resulted residue was purified by chromatography column on silica (eluent: MeOH/DCM=1/40) to give the product (650 mg, 56.8%) as a yellow oil. MS (ESI, m/e) [M−17]+127.1.


Step 2: (cis- or trans-) 4-((4-hydroxy-4-methylcyclohexyl)methoxy)-3-nitrobenzenesulfonanide; (trans- or cis-) 4-((4-hydroxy-4-methylcyclohexyl)methoxy)-3-nitrobenzene sulfonamide



embedded image


To a solution 4-(hydroxymethyl)-1-methylcyclohexan-1-ol (575 mg, 3.99 mmol) in THF (50 mL) was added NaH (957.6 mg, 23.94 mmol). The mixture was stirred at room temperature for 0.5 hour. Then to the mixture was added 4-fluoro-3-nitrobenzenesulfonamide (616.5 mg, 2.8 mmol). The reaction mixture was stirred at room temperature for 5 days and then was poured into saturated aq. NH4Cl (200 ml). After extracted with EA (200 mL×3), the combined organic phase was washed with brine, dried over Na2SO4, concentrated. The resulted residue was purified by prep-HPLC to give isomer (faster peak) P1 (100 mg) as a yellow solid. 1H NMR (400 MHz, DMSO-do) δ ppm: 8.28 (d, J=2.2 Hz, 1H), 8.03 (dd, J=9.0, 2.2 Hz, 1H), 7.56 (d, J=9.0 Hz, 1H), 7.50 (s, 2H), 4.36-4.15 (m, 1H), 4.12 (d, J=5.8 Hz, 3H), 1.82-1.64 (m, 3H), 1.60-1.50 (m, 2H), 1.43-1.30 (m, 2H), 1.30-1.15 (m, 2H), 1.10 (s, 3H); and other isomer (slower peak) P2 (250 mg) as a yellow solid, 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.27 (d, J=2.2 Hz, 1H), 8.03 (dd, J=9.0, 2.2 Hz, 1H), 7.57 (d, J=9.0 Hz, 1H), 7.50 (s, 2H), 4.07 (d, J=6.6 Hz, 2H), 3.92 (s, 1H), 1.76-1.63 (m, 1H), 1.62-1.50 (m, 4H), 1.49-11.35 (m, 2H), 1.34-1.21 (m, 2H), 1.10 (s, 3H).


Step 3: the reaction of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid with P1 following the procedures similar to those in Example G8 the desired compound G10a was afforded, and with P2 following the procedures similar to those in Example G8 the desired compound G10b was afforded.


Compound of Example G10a 1H NMR (400 MHz, DMSO-4) δ ppm: 12.43 (s, 1H), 11.61 (s, 1H), 8.29-8.06 (m, 1H), 7.94 (s, 1H), 7.89-7.73 (m, 1H), 7.72-7.58 (m, 1H), 7.52-7.41 (m, 2H), 7.40-7.23 (m, 2H), 7.17-7.02 (m, 2H), 7.00-6.84 (m, 1H), 6.79-6.61 (m, 1H), 6.34 (s, 1H), 5.98-5.85 (m, 1H), 5.382-5.195 (m, 1H), 4.26 (s, 1H), 3.99 (s, 2H), 3.77-3.57 (m, 1H), 3.54-3.34 (m, 2H), 3.06-2.88 (m, 1H), 2.32-1.81 (m, 7H), 1.79-1.63 (m, 4H), 1.60-1.48 (m, 2H), 1.42-1.29 (m, 3H), 1.24-1.13 (m, 4H), 1.10 (s, 3H), 1.00-0.85 (m, 2H), 0.77-0.55 (m, 2H).


Compound of Example G10b 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43 (br, 1H), 11.62 (s, 1H), 8.18 (s, 1H), 7.94 (s, 1H), 7.90-7.76 (m, 1H), 7.71-7.33 (m, 4H), 7.33-6.83 (m, 5H), 6.75 (s, 1H), 6.34 (s, 1H), 5.98 (s, 1H), 5.84 (s, 1H), 5.514.98 (m, 1H), 4.46-4.15 (m, 0.3H), 4.09-3.83 (m, 3H), 3.80-3.58 (m, 0.7H), 3.57-3.33 (m, 4H), 2.39-1.79 (m, 7H), 1.77-1.45 (m, 6H), 1.45-1.34 (m, 3H), 1.33-1.17 (in, 3H), 1.09 (s, 3H), 1.02-0.79 (m, 2H), 0.78-0.43 (m, 2H), MS (ESI, m/e) [M+1]+846.2.


Example G10b-S: (trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxy-4-methylcyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


With the slower isomer (slower peak) P2 and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8, G10b-S was synthesized. MS (ESI, m/e) [M+1]+846.2.


Two enantiomers G10b-a (faster isomer) and G10b-b (slower isomer) of G10b-S were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 2.5 min to give G10b-a. The slower enantiomer was eluted at retention time of 3.6 min to give G10b-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
1.0 mL



Mobile phase
MTBE:EtOH (0.1% MSA) = 50:50



Flow rate
45 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
15 mg/mL in EtOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC










Example G10b-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.60 (br, 1H), 11.62 (s, 1H), 8.36-8.09 (m, 1H), 7.94 (s, 1H), 7.90-7.75 (m, 1H), 7.73-6.83 (m, 9H), 6.76 (s, 1H), 6.34 (s, 1H), 5.85 (s, 1H), 5.36-5.16 (m, 1H), 4.27 (s, 1H), 4.08-3.90 (m, 2H), 3.81-3.64 (m, 1H), 3.54-3.41 (m, 1H), 3.30-2.85 (m, 2H), 2.36-1.83 (m, 8H), 1.81-1.62 (m, 4H), 1.60-1.48 (m, 2H), 1.47-1.29 (m, 3H), 1.23-1.15 (m, 2H), 1.10 (s, 3H), 1.02-0.79 (m, 2H), 0.79-0.45 (m, 2H), MS (ESI, m/e) [M+1]+846.2. Example G10b-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.58 (br, 1H), 11.62 (s, 1H), 8.31-8.06 (m, 1H), 7.94 (s, 1H), 7.89-7.75 (m, 1H), 7.75-6.89 (m, 9H), 6.75 (s, 1H), 6.34 (s, 1H), 5.98 (s, 1H), 5.24-5.02 (m, 1H), 4.27 (s, 1H), 4.09-3.91 (m, 2H), 3.72-3.57 (m, 11H), 3.57-3.35 (m, 2H), 3.14-2.86 (m, 1H), 2.43-2.27 (m, 2H), 2.27-1.93 (m, 5H), 1.91-1.79 (m, 1H), 1.79-1.64 (m, 4H), 1.58-1.51 (m, 2H), 1.44-1.29 (m, 3H), 1.22-1.14 (m, 2H), 1.10 (s, 3H), 1.03-0.89 (m, 2H), 0.77-0.55 (m, 2H), MS (ESI, m/e) [M+1]+846.2.


Example G11: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 34 (1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (52 mg, 0.10 mmol) and 3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide (56 mg, 0.15 mmol) in 15 mL of DCM were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (58 mg, 0.3 mmol), 4-dimethylaminopyridine (37 mg, 0.3 mmol) and triethylamine (0.1 mL). The mixture was stirred at room temperature for 72 h. then it was diluted with water and extracted with DCM:i-PrOH=5:1. The organic layer was combined, dried over sodium sulfate and it was concentrated in vacuum. The residue was purified by chromatography column on silica (eluent: PE/EA=1/2 then DCM/MeOH=10/1 plus 1% NH3·H2O) to give the crude as a yellow gel, which was purified with Pre-HPLC to give the product (1.14 mg, 1.30%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.64 (s, 1H), 9.95-9.65 (m, 1H), 8.59-8.40 (m, 2H), 8.01-7.91 (m, 1H), 7.81-7.70 (m, 2H), 7.52-7.36 (m, 3H), 7.34-7.23 (m, 1H), 7.15-7.08 (m, 2H), 7.06-7.04 (d, J=8.1 Hz, 2H), 6.98-6.93 (m, 1H), 6.74 (s, 1H), 6.35 (s, 1H), 5.99-5.84 (m, 1H), 5.23-5.13 (m, 1H), 4.55-4.54 (m, 2H), 3.49-4.40 (m, 2H), 3.91-3.83 (m, 2H), 3.80-3.69 (m, 2H), 3.60-3.40 (m, 7H), 2.73-2.67 (m, 2H), 2.63-2.50 (m, 3H), 2.35-2.31 (m, 1H), 2.08-1.90 (m, 4H), 1.82-1.77 (m, 3H), 1.02-0.80 (m, 2H), 0.76-0.50 (m, 1H), MS (ESI, m/e) [M+1]+874.2.


Example G12: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((2-oxaspiro[3.5]nonan-7-yl)methoxy)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


To a solution of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (52 mg, 0.10 mmol) and 4-((2-oxaspiro[3.5]nonan-7-yl)methoxy)-3-nitrobenzenesulfonamide (C-8) (53 mg, 0.15 mmol) in 15 mL of DCM were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (58 mg, 0.3 mmol), 4-dimethylaminopyridine (37 mg, 0.3 mmol) and triethylamine (0.1 mL). The mixture was stirred at room temperature for 72 h, then it was diluted with water and extracted with DCM: i-PrOH=10:1. The organic layer was combined, dried over sodium sulfate and was concentrated in vacuum. The residue was purified by chromatography column on silica (eluent: PE/EA=1/2 then DCM/MeOH=10/1) to give the crude as a yellow gel, which was purified with Pre-HPLC to give the product (4.0 mg, 4.67%). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.62 (s, 1H), 9.75-9.52 (m, 1H), 8.19 (s, 1H), 7.94-7.87 (m, 2H), 7.74-7.65 (m, 11H), 7.53-7.44 (m, 2H), 7.43-7.39 (m, 1H), 7.39-7.28 (m, 2H), 7.15-7.04 (m, 3H), 6.74 (s, 1H), 6.34 (s, 1H), 5.97-5.85 (m, 1H), 5.24-5.12 (m, 1H), 4.29 (s, 2H), 4.20 (s, 2H), 3.92-3.91 (d, J=4.9 Hz, 2H), 3.74-3.63 (m, 1H), 3.50-3.33 (m, 2H), 2.36-2.27 (m, 2H), 2.20-1.98 (m, 6H), 1.93-1.84 (m, 2H), 1.75-1.64 (m, 4H), 1.46-1.35 (m, 3H), 1.10-0.85 (m, 5H), 0.77-0.54 (m, 2H), MS (ESI, m/e) [M+1]+858.2.


Example G13: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((1r, 4r)-4-(bis(cyclopropylmethyl)amino)cyclohexyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((1r, 4r)-4-(bis(cyclopropylmethyl)amino)cyclohexyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H), 9.15 (s, 1H), 8.39 (s, 1H), 7.99 (d, J=7.3 Hz, 1H), 7.95-7.88 (m, 1H), 7.76-7.62 (m, 1H), 7.61-7.38 (m, 3H), 7.38-7.26 (m, 1H), 7.14-6.91 (m, 3H), 6.91-6.79 (m, 2H), 6.77-6.66 (m, 1H), 6.35-6.25 (m, 1H), 6.04-5.91 (m, 0.5H), 5.84-5.72 (m, 0.5H), 4.39-4.15 (m, 1H), 3.68-3.41 (m, 2H), 3.23-2.81 (m, 5H), 2.62-2.52 (m, 3H), 2.41-2.30 (m, 1H), 2.30-1.86 (m, 10H), 1.81-1.61 (m, 4H), 1.55-1.31 (m, 4H), 1.23-1.08 (m, 2H), 0.97-0.78 (m, 2H), 0.76-0.59 (m, 4H), 0.58-0.29 (m, 5H), MS (ESI, m/e) [M+1]+924.3.


Example G16: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-cyclopropylmorpholin-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-cyclopropylmorpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20-12.16 (m, 1H), 11.63 (s, 1H), 8.56-8.40 (m, 2H), 8.01-7.91 (m, 1H), 7.76-7.68 (m, 1H), 7.54-7.33 (m, 3H), 7.33-7.23 (m, 1H), 7.16-7.00 (m, 2H), 7.00-6.86 (m, 2H), 6.80-6.64 (m, 1H), 6.36-6.28 (s, 1H), 6.02-5.77 (m, 1H), 4.31-4.22 (m, 1H), 3.96-3.88 (m, 1H), 3.85-3.75 (m, 2H), 3.66-3.55 (m, 2H), 3.52-3.33 (m, 3H), 3.05-2.98 (m, 2H), 2.96-2.86 (m, 2H), 2.78-2.66 (m, 2H), 2.37-2.27 (m, 2H), 2.23-2.09 (m, 3H), 2.05-1.93 (m, 2H), 1.76-1.63 (m, 4H), 0.98-0.78 (m, 4H), 0.48-0.29 (m, 3H), MS (ESI, m/e) [M+1]+858.2.


Example G18: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-(dimethylglycyl)morpholin-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-1,1′-biphenyl-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-(dimethylglycyl)morpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 1H), 8.46-8.35 (m, 2H), 7.93 (s, 1H), 7.81-7.62 (m, 1H), 7.59-7.41 (m, 3H), 7.38-7.33 (m, 1H), 7.15-7.04 (m, 2H), 7.02-6.86 (m, 3H), 6.75-6.70 (m, 1H), 6.33-6.28 (m, 1H), 6.02-5.77 (m, 1H), 4.39-4.24 (m, 2H), 4.16-4.10 (m, 1H), 3.98-3.88 (m, 2H), 3.82-3.74 (m, 1H), 3.64-3.55 (m, 2H), 3.52-3.47 (m, 2H), 3.23-3.10 (m, 1H), 3.06-2.98 (m, 1H), 2.90-2.75 (m, 1H), 2.66-2.52 (m, 8H), 2.29-2.11 (m, 3H), 2.07-1.94 (m, 2H), 1.81-1.65 (m, 3H), 1.51-1.30 (m, 2H), 0.96-0.78 (m, 3H), 0.69-0.60 (m, 1H), 0.59-0.48 (m, 1H), MS (ESI, m/e) [M+1]+903.2.


Example G20: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((tetrahydro-2H-pyran-4-yl)methoxy)phenyl)sulfon yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-nitro-4-((tetrahydro-2H-pyran-4-yl)methoxy)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 9.876-9.349 (m, 0.7H), 8.14 (s, 1H), 7.92 (s, 1H), 7.87-7.71 (m, 1H), 7.54-7.39 (m, 2H), 7.39-7.17 (m, 2H), 7.17-6.76 (m, 4H), 6.76-6.60 (m, 1H), 6.32 (s, 1H), 6.05-5.69 (m, 1H), 5.41-5.03 (m, 1H), 4.36-4.18 (m, 1H), 3.98 (d, J=5.9 Hz, 2H), 3.92-3.80 (m, 2H), 3.20-2.81 (m, 2H), 2.29-1.81 (m, 6H), 1.80-1.52 (m, 4H), 1.52-1.23 (m, 7H), 1.01-0.85 (m, 2H), 0.78-0.42 (m, 2H), MS (ESI, m/e) [M+1]+818.2.


Example G24b: (trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: tert-butyl ((4-hydroxy-4-methylcyclohexyl methyl)carbamate



embedded image


To a solution of tert-butyl ((4-oxocyclohexyl)methyl)carbamate (500 mg, 2.2 mmol) in THF (500 mL) was added CH3MgBr (1 M solution in THF) (8.8 ml, 8.8 mmol) at −78° C. for 15 mins. After addition, the reaction mixture was stirred at −78° C. for 2 hours and then at 0° C. for 3 hours. The mixture was poured into saturated aq. NH4Cl (200 mL), extracted with EA (200 mL×3). The combined organic phase was concentrated to give the crude product, which was used directly for next step.


Step 2: 4-(aminomethyl)-1-methylcyclohexan-1-ol 2,2,2-trifluoroacetate



embedded image


To a solution of tert-butyl ((4-hydroxy-4-methylcyclohexyl)methyl)carbamate (535 mg, 2.2 mmol) in DCM (50 mL) was added TFA (10 mL). After addition, the reaction mixture was stirred at room temperature overnight. The mixture was then concentrated in vacuum to remove solvent, and the crude product was obtained, which was used directly for next step without no further purification.


Step 3: (cis- or trans-)-4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide, (trans- or cis-)-4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide



embedded image


To a solution 4-(aminomethyl)-1-methylcyclohexan-1-ol 2,2,2-trifluoroacetate (566 mg, 2.2 mmol) in THF (50 mL) was added 4-fluoro-3-nitrobenzenesulfonamide (484 mg, 2.2 mmol), and triethylamine (1.1 g, 11 mmol). The mixture was stirred at room temperature overnight. After removal of solvent, the resulted residue was purified by chromatography column on silica (eluent: MeOH/DCM=1/40) to give the crude product. The crude product was further purified by prep-HPLC to give the product P1 (fast peak, 80 mg) as a yellow solid. MS (ESI, m/e) [M+1]+344.0; and product P2 (slower. 150 mg) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.57 (t, J=5.6 Hz, 1H), 8.46 (d, J=2.2 Hz, 1H), 7.82 (dd, J=9.2, 2.2 Hz, 1H), 7.32 (s, 2H), 7.26 (d, J=9.2 Hz, 1H), 3.95 (s, 1H), 3.32-3.28 (m, 2H), 1.65-1.31 (m, 7H), 1.28-1.20 (m, 2H), 1.08 (s, 3H), MS (ESI, m/e) [M−17]+326.0


Then with P2 ((trans- or cis-)-4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8, the desired compound was afforded. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (br, 1H), 11.64 (s, 1H), 8.68-8.19 (m, 2H), 7.96 (s, 1H), 7.83-7.20 (m, 6H), 7.18-6.79 (m, 4H), 6.73 (s, 1H), 6.35 (s, 1H), 6.05-5.74 (m, 1H), 5.46-4.86 (m, 1H), 4.38-4.13 (m, 1H), 3.95 (s, 1H), 3.83-3.56 (m, 1H), 3.26-3.10 (m, 3H), 3.05-2.89 (m, 1H), 2.26-1.87 (m, 5H), 1.71-1.62 (m, 2H), 1.62-1.30 (m, 9H), 1.30-1.15 (m, 3H), 1.07 (s, 3H), 1.00-0.77 (m, 2H), 0.75-0.42 (m, 2H), MS (ESI, m/e) [M+1]+845.2.


Two enantiomers G24b-a (faster isomer) and G24b-b (slower isomer) of (trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(S)-42-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 2.6 min to give G24b-a. The slower enantiomer was eluted at retention time of 3.8 min to give G24b-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
1.0 mL



Mobile phase
MtBE:EtOH (0.2% MSA) = 50:50



Flow rate
95 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
28 mg/mL in EtOH:DCM = 3:1



Prep-HPLC equipment
Prep-HPLC-YMC










Example G24b-a: 1H NMR (400 MHz, DMSO-da) δ ppm: 12.38-12.06 (m, 0.5H), 11.64 (s, 1H), 9.47-9.10 (m, 0.5H), 8.65-8.28 (m, 2H), 7.97 (s, 1H), 7.82-7.67 (m, 1H), 7.67-7.35 (m, 4H), 7.35-6.82 (m, 5H), 6.73 (s, 1H), 6.35 (s, 1H), 5.82 (s, 1H), 5.41-5.04 (m, 0.5H), 4.41-4.27 (m, 0.5H), 4.24 (s, 1H), 3.78-3.32 (m, 2H), 3.27-3.11 (m, 3H), 2.67-2.54 (m, 1H), 2.33-1.86 (m, 7H), 1.81-1.46 (m, 8H), 1.39-1.28 (m, 2H), 1.19-1.02 (m, 5H), 0.99-0.79 (m, 2H), 0.76-0.42 (m, 2H). MS (ESI, m/e) [M+1]+844.8. Example G24b-b: 1H NMR (400 MHz, DMSO-d5) δ ppm: 12.48-11.94 (m, 0.5H), 11.64 (s, 1H), 9.74-9.13 (m, 0.5H), 8.60-8.27 (m, 2H), 7.96 (s, 1H), 7.85-6.79 (m, 10H), 6.73 (s, 1H), 6.46-6.27 (m, 1H), 6.04-5.91 (m, 1H), 5.374.75 (m, 0.5H), 4.544.29 (m, 0.5H), 4.24 (s, 1H), 3.69-3.33 (m, 2H), 3.27-3.01 (m, 3H), 2.75-2.50 (m, 2H), 2.45-1.89 (m, 7H), 1.87-1.46 (m, 7H), 1.38-1.26 (m, 2H), 1.19-0.97 (m, 5H), 0.97-0.78 (m, 2H), 0.76-0.44 (m, 2H), MS (ESI, m/e) [M+1]+844.8.


Example G27: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((morpholin-2-ylmethyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((morpholin-2-ylmethyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.57 (s, 1H), 8.45-8.28 (m, 2H), 7.91 (s, 1H), 7.70-7.61 (m, 1H), 7.57-7.44 (m, 2H), 7.43-7.39 (m, 1H), 7.31-7.26 (m, 1H), 7.11-7.03 (m, 2H), 7.02-6.98 (m, 1H), 6.95-6.83 (m, 2H), 6.77-6.69 (m, 1H), 6.30 (s, 1H), 6.00-5.78 (m, 1H), 4.32-4.20 (m, 1H), 4.00-3.86 (m, 2H), 3.78-3.67 (m, 1H), 3.58-3.48 (m, 1H), 3.24-3.14 (m, 3H), 3.09-3.01 (m, 1H), 2.93-2.86 (m, 1H), 2.81-2.71 (m, 1H), 2.65-2.52 (m, 2H), 2.31-2.11 (m, 2H), 2.05-1.95 (m, 2H), 1.82-1.65 (m, 2H), 1.58-1.41 (m, 3H), 0.85-0.42 (m, 7H), MS (ESI, me) [M+1]+818.8.


Example G30: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8, and was afforded. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (br, 1H), 11.60 (s, 1H), 8.46 (s, 2H), 7.95 (s, 1H), 7.84-7.65 (m, 1H), 7.60-7.36 (m, 3H), 7.35-6.82 (m, 5H), 6.73 (s, 1H), 6.33 (s, 1H), 6.06-5.74 (m, 1H), 5.40-4.85 (m, 1H), 4.424.14 (ml H), 3.79-3.60 (m, 4H), 3.60-3.47 (m, 2H), 3.46-3.30 (m, 5H), 3.21-2.85 (m, 2H), 2.34-1.91 (m, 5H), 1.90-1.63 (m, 5H), 1.47-1.23 (m, 1H), 1.01-0.79 (m, 1H), 0.76-0.44 (m, 2H), MS (ESI, m/e) [M+1]+819.1.


Example G30-S: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]+834.8.


Two enantiomers G30-a (faster isomer) and G30-b (slower isomer) of G30-S were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 3.6 min to give G30-a. The slower enantiomer was eluted at retention time of 5.5 min to give G30-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
1.5 mL



Mobile phase
MTBE:EtOH (0.1% MSA) = 50:50



Flow rate
20 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
7 mg/mL in EtOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC










Example G30-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.57 (br, 1H), 11.61 (s, 1H), 8.65-8.24 (m, 2H), 7.95 (s, 1H), 7.85-7.64 (m, 1H), 7.64-7.31 (m, 4H), 7.31-6.81 (m, 5H), 6.72 (s, 1H), 6.33 (s, 1H), 5.81 (s, 1H), 5.43-5.01 (m, 0.3H), 4.484.16 (m, 1H), 4.01-3.59 (m, 4H), 3.59-3.45 (m, 2H), 3.32-2.95 (m, 2H), 2.48-1.88 (m, 8H), 1.88-1.23 (m, 8H), 1.00-0.79 (m. 2H), 0.75-0.41 (m, 2H), [M+1]+834.8. Example G30-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.51-12.04 (m, 0.4H), 11.62 (s, 1H), 10.39-9.96 (m, 0.4H), 8.62-8.25 (m, 2H), 7.91-7.83 (m, 2H), 7.95 (s, 1H), 7.60-6.85 (m, 8H), 6.73 (s, 1H), 6.33 (s, 1H), 5.98 (s, 1H), 5.28-4.89 (m, 0.5H), 4.47-3.98 (m, 0.7H), 3.81-3.61 (m, 4H), 3.59-3.45 (m, 2H), 3.32-2.79 (m, 2H), 2.49-1.95 (m, 2H), 1.94-1.23 (m, 8H), 1.04-0.79 (m, 2H), 0.78-0.42 (m, 2H), (MS (ESI, m/e) [M+1]+834.8


Example G30-R: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]+834.8


Example G31: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-methylmorpholin-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-methylmorpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-da) δ ppm: 11.62 (s, 1H), 8.47 (s, 2H), 7.95 (s, 1H), 7.74 (s, 1H), 7.60-7.34 (m, 4H), 7.29-7.21 (m, 1H), 7.11-7.10 (m, 2H), 6.98-6.89 (m, 2H), 6.73-6.69 (m, 1H), 6.34 (s, 1H), 5.99-5.80 (m, 1H), 4.29 (s, 1H), 3.91 (s, 1H), 3.80 (s, 1H), 3.63-3.57 (m, 1H), 3.51-3.44 (m, 2H), 3.12-2.99 (m, 7H), 2.45-2.40 (m, 1H), 2.20-2.12 (m, 4H), 2.02-1.97 (m, 4H), 1.71 (s, 2H), 1.47-1.44 (m. 2H), 1.28 (s, 2H), 0.96-0.84 (m, 4H), MS (ESI, m/e) [M/2+1]+832.8.


Example G32: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-acetylmorpholin-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-acetylmorpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.52 (s, 1H), 8.40-8.33 (m, 2H), 7.90 (s, 1H), 7.72-7.49 (m, 2H), 7.48 (d, J=7.2 Hz, 1H), 7.42 (s, 1H), 7.33-7.27 (m, 1H), 7.15-6.81 (m, 5H), 6.72 (s, 1H), 6.29 (s, 1H), 5.99 (s, 0.5H), 5.79 (s, 0.5H), 4.36-4.25 (m, 2H), 4.14-3.82 (m, 2H), 3.67-3.34 (m, 6H), 3.22-2.98 (m, 1H), 2.72-2.56 (m, 2H), 2.40-2.11 (m, 4H), 2.05-1.90 (m, 6H), 1.78-1.65 (m, 2H), 1.60-1.35 (m, 2H), 0.95-0.81 (m, 2H), 0.71-0.47 (m, 2H), MS (ESI, m/e) [M+1]+859.8.


Example G35-S: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-do) δ ppm: 11.59 (s, 1H), 10.23-9.66 (m, 1H), (8.18 (s, 1H), 7.98-7.90 (m, 1H), 7.90-7.69 (m, 2H), 7.62-7.42 (m, 2H), 7.42-7.13 (m, 3H), 7.13-6.82 (m, 3H), 6.82-6.68 (m, 1H), 6.33 (s, 1H), 6.07-5.70 (m, 1H), 5.36-5.01 (m, 1H), 4.55 (t, J=6.5 Hz, 2H), 4.45 (t, J=5.7 Hz, 2H), 4.26 (d, J=20.3 Hz, 2H), 3.94-3.57 (m, 1H), 3.57-3.37 (m, 3H), 3.21-2.87 (m, 1H), 2.72-2.54 (m, 3H), 2.47-1.67 (m, 14H), 1.04-1.34 (m, 1H), 1.02-0.79 (m, 2H), 0.79-0.44 (m, 2H), MS (ESI, m/e) [M+1]-890.8.


Two enantiomers G35-a (faster isomer) and G35-b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 4.6 min to give G35-a. The slower enantiomer was eluted at retention time of 6.0 mm to give G35-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
0.5 mL



Mobile phase
MtBE:MeOH (0.2% MSA) = 70:30



Flow rate
20 ml/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
16 mg/ml in MeOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC










Example G35-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 9.44-9.06 (m, 1H), 8.38-8.08 (m, 11H), 8.08-7.76 (m, 2H), 7.76-6.83 (m, 9H), 6.83-6.66 (m, 1H), 6.34 (s, 1H), 5.94-5.65 (m, 1H), 5.37-5.11 (m, 1H), 4.63-4.51 (m, 2H), 4.51-4.39 (m, 2H), 4.39-4.14 (m, 2H), 3.82-3.63 (m, 1H), 3.63-3.41 (m, 2H), 3.18-2.77 (m, 2H), 2.77-2.55 (m, 3H), 2.42-1.62 (m, 14H), 1.62-1.38 (m, 1H), 0.96-0.84 (m, 2H), 0.80-0.55 (m, 2H), MS (ESI, m/e) [M+1]+890.8. Example G35-b: 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.60 (s, 1H), 9.58-9.27 (m, 1H), 8.29-8.10 (m, 1H), 8.05-7.75 (m, 2H), 7.67-7.53 (m, 1H), 7.53-7.42 (m, 2H), 7.42-7.16 (m, 3H), 7.16-6.86 (m, 3H), 6.74 (s, 1H), 6.33 (s, 1H), 6.03-5.91 (m, 1H), 5.254.99 (m, 1H), 4.60-4.50 (m, 2H), 4.50-4.38 (m, 2H), 4.364.18 (m, 2H), 3.74-3.32 (m, 4H), 3.24-2.86 (m, 1H), 2.79-2.53 (m, 3H), 2.46-1.58 (m, 14H), 1.53-1.35 (m, 1H), 1.03-0.88 (m, 2H), 0.77-0.49 (m, 2H), MS (ESI, m/e) [M+1]+890.8.


Example G36: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluoro-1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-fluoro-1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-do) δ ppm: 11.56 (s, 1H), 9.33 (s, 1H), 8.19 (s, 1H), 8.01-7.79 (m, 2H), 7.59-7.39 (m, 3H), 7.39-7.15 (m, 3H), 7.10-7.01 (m, 3H), 6.93-6.83 (m, 1H), 6.72 (s, 1H), 6.32 (s, 1H), 5.98 (s, 0.5H), 5.79 (s, 0.5H), 4.41-4.25 (m, 3H), 3.98-3.95 (m, 2H), 3.31-3.21 (m, 5H), 3.10-2.85 (m, 3H), 2.28-1.81 (m, 15H), 1.74-1.39 (m, 8H), 0.99-0.79 (m, 4H), MS (ESI, m/e) [M+1]+918.8.


Example G37: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((((R)-1-(oxetan-3-yl)pyrrolidin-3-yl)methyl)amino)phenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (R)-3-nitro-4-(((1-(oxetan-3-yl)pyrrolidin-3-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.62 (s, 1H), 8.67-8.58 (m, 1H), 8.46 (s, 1H), 7.95 (s, 1H), 7.80-7.52 (m. 2H), 7.51-7.44 (m, 2H), 7.43-7.35 (m, 1H), 7.29-7.01 (m, 3H), 6.99-6.86 (m, 2H), 6.73 (s, 1H), 6.34 (s, 1H), 6.01-5.76 (m, 1H), 4654.44 (m, 4H), 4.384.23 (m, 1H), 3.79-3.63 (m, 1H), 3.24-2.85 (m, 2H), 2.83-2.69 (m, 1H), 2.66-2.54 (m, 6H), 2.29-2.10 (m, 3H), 2.10-1.89 (m, 4H), 1.80-1.67 (m, 3H), 1.61-1.50 (m, 2H), 1.28-1.07 (m, 4H), 0.99-0.81 (m, 3H), 0.80-0.45 (m, 3H), MS (ESI, me) [M+1]+857.8.


Example G39: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((((S)-1-(oxetan-3-yl)pyrrolidin-3-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (S)-3-nitro-4-(((1-(oxetan-3-yl)pyrrolidin-3-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.00 (s, 1H), 11.66 (s, 1H), 10.42-9.76 (m, 1H), 8.68 (s, 1H), 8.50 (s, 1H), 7.97 (s, 1H), 7.77 (s, 1H), 7.55-7.37 (m, 4H), 7.37-7.20 (m, 2H), 7.17-6.91 (m, 4H), 6.74 (s, 1H), 6.36 (s, 1H), 6.03-5.82 (m, 1H), 5.26-5.06 (m, 1H), 4.62 (s, 5H), 3.50-3.34 (m, 5H), 3.04-2.86 (m, 2H), 2.71-2.60 (m, 3H), 2.33 (s, 2H), 2.04-1.97 (m, 3H), 1.80-1.53 (m, 3H), 1.52-1.38 (m, 1H), 0.98-0.83 (m, 4H), 0.76-0.63 (m, 1H), 0.62-0.51 (m, 1H), MS (ESI) m/e [M+1]+857.8.


Example G43a and Example G43b: (cis- or trans-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-ethyl-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide/(trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-ethyl-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G43a was synthesized with (cis- or trans-)-4-(((4-ethyl-4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (faster peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43 (br, 0.4H), 11.65 (s, 1H), 8.65-8.26 (m, 2H), 7.97 (s, 1H), 7.83-7.66 (m, 1H), 7.66-6.80 (m, 9H), 6.08-5.70 (m, 1H), 6.73 (s, 1H), 6.35 (s, 1H), 5.47-4.93 (m, 0.5H), 4.61-4.08 (m, 0.5H), 3.77 (s, 1H), 3.26-3.14 (m, 2H), 2.40-1.65 (m, 9H), 1.60-1.07 (m, 15H), 1.00-0.76 (m, 6H), 0.73-0.39 (m, 2H), MS (ESI, m/e) [M+1]+840.8; The desired compound G43b was synthesized with (trans- or cis-)-4-(((4-ethyl-4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (slower peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.34 (br, 1H), 11.64 (s, 1H), 8.72-8.23 (m, 2H), 7.97 (s, 1H), 7.87-6.79 (m, 10H), , 6.73 (s, 1H), 6.35 (s, 1H), 6.10-5.67 (m, 1H), 5.44-4.92 (m, 0.4H), 4.46-4.12 (m, 0.6H), 3.98 (s, 1H), 3.27-3.18 (m, 2H), 2.38-1.83 (m, 7H), 1.82-1.50 (m, 7H), 1.50-1.33 (m, 3H), 1.33-1.15 (m, 4H), 1.15-0.99 (m, 3H), 0.98-0.76 (m, 6H), 0.76-0.41 (m, 2H), MS (ESI, m/e) [M+1]+840.8.


Example G63: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((1-cyclopropyl-4-fluoropiperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((1-cyclopropyl-4-fluoropiperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.53 (s, 1H), 11.71 (s, 1H), 9.95 (s, 1H), 9.31 (s, 2H), 8.37-7.68 (m, 3H), 7.54-7.46 (m, 2H), 7.32-7.20 (m, 2H), 7.15-7.07 (m, 2H), 6.75 (d, J=4.5 Hz, 1H), 6.38 (s, 1H), 5.97-5.88 (m, 1H), 5.31-5.22 (m, 1H), 4.38 (d, J=19.7 Hz, 2H), 3.73-3.55 (m, 3H), 2.97 (s, 4H), 2.41 (s, 1H), 2.24-1.95 (m, 8H), 1.90 (s, 1H), 1.66-1.55 (m, 1H), 1.49-1.45 (m, 2H), 1.06 (s, 2H), 0.94 (d, J=8.3 Hz, 2H), 0.87-0.83 (m, 2H), MS (ESI, m/e) [M+1]+874.8.


Example G64: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((R)-1-(1,3-difluoropropan-2-yl)pyrrolidin-3-yl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (R)-4-((1-(1,3-difluoropropan-2-yl)pyrrolidin-3-yl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 0.5H), 11.62 (s, 1H), 9.41 (s, 0.5H), 8.46 (s, 1H), 8.26 (s, 1H), 7.95 (s, 1H), 7.75 (s, 1H), 7.68-7.50 (m, 1H), 7.49-7.39 (m, 3H), 7.24-7.15 (m, 3H), 7.10-6.88 (m, 2H), 6.74 (s, 1H), 6.34 (s, 1H), 5.99 (s, 0.5H), 5.82 (s, 0.5H), 4.67 (d, J=4.6 Hz, 2H), 4.56 (d, J=4.5 Hz, 2H), 4.17 (s, 1H), 3.09-2.86 (m, 5H), 2.77 (d, J=6.9 Hz, 2H), 2.68 (d, J=6.8 Hz, 2H), 2.35-2.16 (m, 4H), 2.12-2.05 (m, 3H), 1.77-1.59 (m, 4H), 1.32-1.14 (m, 3H), 0.97-0.80 (m, 4H), MS (ESI, m/e) [M+1]+865.8.


Example G70: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-chloro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-chloro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.00 (s, 1H), 11.75 (s, 1H), 8.06 (s, 1H), 7.76-7.42 (m, 6H), 7.28-6.87 (m, 4H), 6.81-6.65 (m, 2H), 6.43 (s, 2H), 5.97 (s, 1H), 4.28 (s, 1H), 3.82 (d, J=9.0 Hz, 2H), 3.75-3.61 (m, 1H), 3.29-3.20 (m, 2H), 3.07 (s, 2H), 3.00 (s, 1H), 2.16 (s, 3H), 2.05-1.95 (m, 3H), 1.81 (s, 1H), 1.71 (s, 1H), 1.57 (d, J=12.3 Hz, 3H), 1.47-1.44 (m, 1H), 1.24 (s, 4H), 1.21-1.13 (m, 2H), 0.99-0.81 (m, 4H), MS (ESI, m/e) [M+1]+805.8.


Example G72: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((3-cyano-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-cyano-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.08 (s, 1H), 11.71 (s, 1H), 8.02 (s, 1H), 7.87 (s, 1H), 7.72 (s, 1H), 7.52-7.45 (m, 3H), 7.28-7.04 (m, 4H), 6.95-6.89 (m, 1H), 6.78-6.66 (m, 2H), 6.40 (s, 1H), 5.98 (s, 1H), 5.79 (s, 1H), 4.33-4.19 (m, 1H), 3.82 (d, J=8.8 Hz, 2H), 3.22-3.19 (m, 2H), 3.08 (s, 2H), 2.98 (s, 2H), 2.18 (s, 3H), 2.02-1.97 (m, 4H), 1.80-1.71 (m, 4H), 1.56 (d, J=12.6 Hz, 3H), 1.45-1.39 (m, 2H), 1.23-1.15 (m, 5H), MS (ESI, m/e) [M+1]+797.2.


Example G73: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)-3-((trifluoromethyl)sulfonyl)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)-3-((trifluoromethyl)sulfonyl)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.30 (s, 1H), 11.69 (s, 1H), 8.09 (s, 1H), 7.99 (s, 1H), 7.87 (s, 1H), 7.78 (s, 1H), 7.50-7.45 (m, 3H), 7.29 (s, 2H), 7.14-6.96 (m, 3H), 6.73 (s, 1H), 6.38 (s, 1H), 5.97-5.80 (m, 1H), 5.25-5.11 (m, 1H), 3.83 (d, J=8.5 Hz, 2H), 3.72-3.66 (m, 1H), 3.37 (s, 1H), 3.23-3.19 (m, 4H), 3.01-2.98 (m, 2H), 2.82-2.75 (m, 1H), 2.56 (s, 3H), 2.33 (s, 1H), 2.12 (s, 1H), 2.03-1.97 (m, 2H), 1.8-1.721 (m, 2H), 1.53 (d, J=12.2 Hz, 2H), 1.22-1.17 (m, 8H), MS (ESI, m/e) [M+1]+904.1.


Example G75: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 3-nitro-4-(((1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)benzenesulfonamide 2,2,2-trifluoroacetate and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.61 (s, 1H), 9.81-9.27 (m, 1H), 8.56-8.32 (m, 2H), 7.94 (s, 1H), 7.71 (s, 1H), 7.59-7.17 (m, 4H), 7.16-6.79 (m, 4H), 6.78-6.68 (m, 1H), 6.61-6.50 (m, 3H), 6.34 (s, 1H), 5.99-5.69 (m, 1H), 5.44-5.03 (m, 4H), 4.344.16 (m, 1H), 3.31-3.21 (m, 2H), 3.20-2.67 (m, 4H), 2.20-1.85 (m, 7H), 1.85-1.53 (m, 6H), 1.48-1.20 (m, 7H), 0.98-0.82 (m, 2H), 0.70-0.43 (m, 2H), MS (ESI, m/e) [M+1]+872.2.


Two enantiomers G75-a (faster isomer) and G75-b (slower isomer) of 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 1.1 min to give G75-a. The slower enantiomer was eluted at retention time of 1.5 min to give G75-b.













Column
CHIRAL ART Cellulose-SB







Column size
2 cm × 25 cm, 5 um


Injection
1.0 mL


Mobile phase
CO2: [EtOH:CAN = 1:1(0.2% MSA)] = 50:50


Flow rate
40 mL/min


Wave length
UV 220 nm


Temperature
35° C.


Sample solution
26.7 mg/mL in MeOH:DCM = 3:1


Prep-SFC equipment
Prep-SFC-80-2









Example G75-a: 1H NMR (DMSO-d6) δ ppm: 11.63 (s, 1H), 8.46 (s, 2H), 7.95 (s, 1H), 7.78-7.66 (m, 1H), 7.62-7.35 (m, 4H), 7.33-6.60 (m, 7H), 6.34 (s, 1H), 5.81 (s, 1H), 4.68-4.20 (m, 5H), 3.30-3.14 (m, 3H), 2.90-2.69 (m, 2H), 2.61-2.54 (m, 1H), 2.40-1.82 (m, 10H), 1.80-1.18 (m, 10H), 0.98-0.80 (m, 2H), 0.74-0.44 (m, 2H), MS (ESI, m/e)[M+1]+871.8. Example G75-b: 1H NMR (CDCl3-d6) δ ppm: 9.45 (s, 1H), 8.90 (s, 1H), 8.52 (s, 1H), 8.25-7.90 (m, 3H), 7.78-7.38 (m, 3H), 7.18-6.78 (m, 5H), 6.58 (d, J=36.8 Hz, 2H), 5.95 (s, 1H), 4.75-4.54 (m, 4H), 4.42-4.16 (m, 1H), 3.57-3.40 (m, 1H), 3.33-3.05 (m, 3H), 2.89-2.52 (m, 4H), 2.38-2.09 (m, 6H), 1.97-1.79 (m, 8H), 1.50-1.33 (m, 4H), 0.92-0.84 (m, 2H), 0.72-0.50 (m, 2H), MS (ESI, m/e) [M+1]+871.8.


Example G76: (trans- or cis-)N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


With (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and (trans- or cis-) 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid, the desired compound was afforded following the similar procedure of Example D2b. 1H NMR (400 MHz, DMSO-dr) δ ppm: 12.17 (br, 1H), 11.60 (s, 1H), 8.66-8.10 (m, 2H), 7.93 (s, 1H), 7.83-7.18 (m, 6H), 7.18-6.71 (m, 4H), 6.59 (s, 1H), 6.33 (s, 1H), 5.24-5.06 (m, 1H), 3.83-3.71 (m, 3H), 3.71-3.58 (m, 2H), 3.53-3.39 (m, 3H), 3.22-2.79 (m, 5H), 2.25-1.56 (m, 9H), 1.50-1.26 (m, 4H), 0.96-0.82 (m, 2H), 0.75-0.48 (m, 2H), MS (ESI, m/e)[M+1]+821.2.


Example G76-S: (trans- or cis-)N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


The desired compound was synthesized with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and (trans- or cis-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid following the procedures similar to those in Example D2b. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.61 (s, 1H), 8.50-8.35 (m, 2H), 7.93 (s, 1H), 7.74-7.72 (d, 1H, J=8.8), 7.65-7.55 (m, 1H), 7.50-7.45 (m, 1H), 7.44-7.38 (m, 2H), 7.30-7.10 (m, 2H), 7.08-6.87 (m, 3H), 6.59 (s, 1H), 6.34 (s, 1H), 3.82-3.73 (m, 3H), 3.61-3.55 (m, 2H), 3.53-3.40 (m, 3H), 3.33-3.26 (m, 3H), 3.18-3.14 (m, 1H), 2.43-2.26 (m, 2H), 2.10-1.84 (m, 4H), 1.81-1.53 (m, 4H), 1.47-1.07 (m, 5H), 0.98-0.83 (m, 2H), 0.76-0.64 (m, 1H), 0.61-0.50 (m, 1H), MS (ESI, m/e) [M+1]+821.2.


Example G77: (trans- or cis-)N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


With (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide instead of 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide, the desired compound was afforded by following the similar procedure of Example D2b. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.18 (br, 1H), 11.60 (s, 1H), 8.59-8.20 (m, 2H), 7.93 (s, 1H), 7.87-7.20 (m, 6H), 7.20-6.79 (m, 4H), 6.60 (s, 1H), 6.33 (s, 1H), 5.32-4.91 (m, 1H), 3.86-3.71 (m, 3H), 3.71-3.54 (m, 2H), 3.54-3.38 (m, 3H), 3.31-2.79 (m, 5H), 2.21-1.54 (m, 9H), 1.53-1.23 (m, 4H), 1.02-0.81 (m, 2H), 0.78-0.40 (m, 2H), MS (ESI, m/e) [M+1]+821.2.


Example G77-S: (trans- or cis-)N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzamide



embedded image


The desired compound was synthesized with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and (trans- or cis-) (S)-2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid following the procedures similar to those in Example D2b. 1H NMR (400 MHz, DMSO-d5) δ ppm: 12.19 (br, 1H), 11.61 (s, 1H), 8.61-8.21 (m, 2H), 7.93 (s, 1H), 7.85-7.63 (m, 2H), 7.62-7.38 (m, 3H), 7.34-6.80 (m, 5H), 6.60 (s, 1H), 6.34 (s, 1H), 5.23-5.03 (m, 0.5H), 4.49-4.12 (m, 0.5H), 3.84-3.72 (m, 3H), 3.68-3.55 (m, 2H), 3.52-3.40 (m, 2H), 3.32-3.27 (m, 4H), 3.21-2.99 (m, 1H), 2.41-1.11 (m, 14H), 1.03-0.80 (m, 2H), 0.79-0.44 (m, 2H), MS (ESI, m/e) [M+1]+821.2.


Example G80a: (cis- or trans-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (cis- or trans-)-4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]+954.8.


Example G80b: (trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (trans- or cis-)-4-((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]V 954.8.


After deprotection of tert-butyldimethyl-silanyl for G80a. Example G81a: (cis- or trans-) 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxycyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was obtained.




embedded image



1H NMR (400 MHz, DMSO-d6) δ ppm: 12.91 (br, 1H), 11.61 (s, 1H), 8.16 (s, 1H), , 7.94 (s, 1H), 7.90-7.64 (m, 2H), 7.64-6.83 (m, 8H), 6.33 (s, 1H), 6.07-5.74 (m, 1H), 5.38-4.95 (m, 0.7H), 4.40-4.14 (m, 1H), 4.04-3.86 (m, 2H), 3.85-3.38 (m, 3H), 3.25-2.84 (m, 1H), 2.46-1.80 (m, 8H), 1.80-1.24 (m, 11H), 1.02-0.79 (m, 2H), 0.78-0.43 (m, 2H), MS (ESI, m/e) [M+1]+831.8.


After deprotection of tert-butyldimethyl-silanyl for G80b, Example G81b: (trans- or cis-) 3-((1H-pyrrolo[2,3-b]pyrindin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxycyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was obtained. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.77 (br, 1H), 11.62 (s, 1H), 8.18 (s, 1H), 7.94 (s, 1H), 7.90-7.75 (m, 1H), 7.75-6.83 (m, 9H), 6.74 (s, 1H), 6.34 (s, 1H), 6.08-5.09 (m, 1H), 5.42-4.92 (m, 0.7H), 4.61-4.47 (m, 1H), 4.03-3.82 (m, 2H), 3.82-3.35 (m, 3H), 3.23-2.89 (m, 1H), 2.40-1.44 (m, 14H), 1.22-1.00 (m, 5H), 0.98-0.87 (m, 2H), 0.79-0.47 (m, 2H), MS (ESI, m/e) [M+1]+831.8.


Example G84: N-(4-(N-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carbonyl)sulfamoyl)-2-nitrophenyl)morpholine-4-carboxamide



embedded image


The desired compound was synthesized with N-(2-nitro-4-sulfamoylphenyl)morpholine-4-carboxamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.48 (s, 1H), 11.67 (s, 1H), 9.67 (s, 1H), 8.33 (s, 1H), 8.00-7.99 (m, 2H), 7.99-7.78 (m, 2H), 7.49-7.47 (m, 3H), 7.30-7.25 (m, 2H), 7.12-7.10 (m, 2H), 6.71 (s, 1H), 6.38 (s, 1H), 6.02-5.76 (m, 1H), 5.22-5.10 (m, 1H), 3.61-3.52 (m, 4H), 3.47-3.44 (m, 4H), 3.25-3.22 (m, 3H), 2.45-2.04 (m, 8H), 2.02-1.48 (m, 3H), 0.93-0.84 (m, 2H), 0.62-0.55 (m, 2H), MS (ESI, m/e) [M+1]+831.8.


Example G85-S: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine, and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.64 (s, 1H), 8.57 (s, 1H), 8.05 (d, J=2.1 Hz, 1H), 7.84 (d, J=9.0 Hz, 1H), 7.59 (s, 1H), 7.54-7.51 (m, 2H), 7.37-7.23 (m, 5H), 7.17 (t, J=7.4 Hz, 1H), 6.98 (t, J=7.4 Hz, 1H), 6.91 (s, 1H), 6.82 (d, J=7.6 Hz, 1H), 6.37-6.35 (m, 2H), 4.99 (d, J=7.9 Hz, 1H), 3.79-3.67 (m, 5H), 3.54-3.52 (m, 2H), 3.38-3.29 (m, 2H), 2.06-1.92 (m, 2H), 1.86-1.75 (m, 6H), 1.27-1.23 (m, 6H), MS (ESI, m/e) [M+1]+832.8.


Example G85-R: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-isopropylphenyl)pyrrolidine, and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.69 (s, 1H), 8.62-8.56 (m, 2H), 8.04 (s, 1H), 7.82 (s, 1H), 7.58-7.50 (m, 3H), 7.35-7.29 (m, 4H), 7.19-7.15 (m, 2H), 7.00-6.97 (m, 1H), 6.91 (s, 1H), 6.82 (d, J=7.6 Hz, 1H), 6.66 (s, 1H), 6.37-6.35 (m, 3H), 4.99 (d, J=7.7 Hz, 1H), 3.73-3.66 (m, 5H), 3.54-3.48 (m, 2H), 3.38-3.32 (m, 2H), 2.55 (s, 1H), 2.03-1.97 (m, 4H), 1.84-1.75 (m, 3H), 1.47-1.45 (m, 1H), 1.28-1.25 (m, 6H), MS (ESI, me) [M+1]+832.8.


Example G86: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-(methoxymethyl)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-(methoxymethyl)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.23 (br, 1H), 11.64 (s, 11H), 8.50-8.40 (m, 2H), 7.97 (s, 1H), 7.85-7.50 (m, 2H), 7.49-7.44 (m, 3H), 7.40-7.19 (m, 1H), 7.13-7.05 (m, 2H), 7.01-6.85 (m, 2H), 6.72 (s, 1H), 6.35 (s, 1H), 5.99 (s, 0.5H), 5.81 (s, 0.5H), 5.30-5.12 (m, 0.5H), 4.30-4.26 (m, 0.5H), 3.33-3.21 (m, 5H), 3.12 (d, J=6.0 Hz, 2H), 3.06-2.90 (m, 2H), 2.29-2.10 (m, 4H), 2.08-1.95 (m, 4H), 1.81-1.67 (m, 6H), 1.58-1.41 (m, 5H), 1.02-0.81 (m, 5H), 0.67-0.50 (m, 2H), MS (ESI, m/e) [M+1]+858.9.


Example G87: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((((S)-1-(tetrahydro-2H-pyran-4-yl)pyrrolidin-3-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (S)-3-nitro-4-(((1-(tetrahydro-2H-pyran-4-yl)pyrrolidin-3-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.55 (s, 1H), 9.62 (s, 1H), 8.64-8.34 (M. 2H), 7.92 (s, 1H), 7.76-7.53 (m, 2H), 7.52-7.40 (m, 3H), 7.31 (s, 1H), 7.10-6.% (m, 3H), 6.90-6.85 (m, 2H), 6.75-6.68 (m, 1H), 6.31 (s, 1H), 6.04-5.70 (m, 1H) 3.87 (s, 2H), 3.30-3.10 (m, 5H), 3.05-2.83 (m, 3H), 2.27-2.13 (m, 3H), 2.06-1.91 (m, 4H), 1.72 (s, 3H), 1.55-1.36 (m, 5H), 1.33-1.24 (m, 3H), 0.96-0.80 (m, 4H), 0.65 (s, 1H), 0.51 (s, 1H), MS (ESI) m/e [M+1]+885.9.


Example G88-S: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.68 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.82 (s, 1H), 7.57-7.50 (m, 3H), 7.35-7.30 (m, 4H), 7.20-7.15 (m, 3H), 6.99 (t, J=7.5 Hz, 1H), 6.92 (s, 1H), 6.82 (d, J=7.1 Hz. 1H), 6.67 (s, 1H), 6.37-6.35 (m, 2H), 4.99 (d, J=8.4 Hz, 1H), 3.80-3.75 (m, 3H), 3.73-3.56 (m, 4H), 3.51-3.44 (m, 2H), 3.37-3.28 (m, 2H), 2.43 (s, 1H), 1.91-1.84 (m, 1H), 1.72-1.67 (m, 1H), 1.47-1.44 (m, 2H), 1.23 (s, 6H), MS (ESI, m/e) [M+1]+816.8.


Example G89-S: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.69 (s, 1H), 8.59-8.56 (m, 2H), 8.04 (s, 1H), 7.83 (d, J=8.4 Hz, 1H), 7.57-7.50 (m, 3H), 7.35-7.30 (m, 4H), 7.17-7.10 (m, 3H), 6.98 (t, J=7.5 Hz, 1H), 6.92 (s, 1H), 6.82 (d, J=7.6 Hz, 1H), 6.37-6.35 (m, 2H), 4.99 (d, J=7.8 Hz, 1H), 3.83-3.75 (m, 3H), 3.70-3.58 (m, 4H), 3.53-3.43 (m, 2H), 3.37-3.29 (m, 2H), 2.43-2.40 (m, 1H), 1.90-1.84 (m, 1H), 1.72-1.67 (m, 1H), 1.46-1.43 (m, 1H), 1.30-1.23 (m, 7H), MS (ESI, m/e) [M+1]+816.8.


Example G90-S: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((l H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (DMSO-d6) δ ppm: 11.64 (s, 1H), 8.59-8.15 (m, 2H), 7.94 (s, 1H), 7.71 (d, J=8.4 Hz, 1H), 7.55-6.90 (m, 8H), 6.75 (s, 1H), 6.32 (s, 1H), 5.98-5.77 (m, 1H), 3.81-3.61 (m, 4H), 3.59-3.37 (m, 7H), 2.83-2.60 (m, 2H), 2.44-1.93 (m, 7H), 1.88-1.35 (m, 6H), 1.24-1.03 (m, 3H), MS (ESI, m/e) [M+1]+822.8.


Two enantiomers G90-a (faster isomer) and G90-b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 3.7 min to give G90-a. The slower enantiomer was eluted at retention time of 5.5 min to give G90-b.













Column
CHIRAL ART Cellulose-SB







Column size
5 cm × 25 cm, 5 um


Injection
3.0 mL


Mobile phase
MTBE: [MeOH (0.2% MSA)] = 70:30


Flow rate
95 ml/min


Wave length
UV 220 nm


Temperature
25° C.


Sample solution
32 mg/mL in MeOH:DCM = 3:1


Prep-HPLC equipment
Prep-HPLC-YMC









Example G90-a: 1H NMR (DMSO-d6) δ ppm: 11.64 (s, 1H), 8.49 (s, 2H), 7.97 (s, 1H), 7.83-6.86 (m, 10H), 6.72 (s, 1H), 6.35 (s, 1H), 5.81 (s, 1H), 3.87-3.40 (m, 7H), 3.20-2.94 (m, 1H), 2.73-2.59 (m, 2H), 2.43-1.21 (m, 16H), 1.13 (t, J=7.6 Hz, 3H), MS (ESI, m/e) [M+1]+822.8. Example G90-b: 1H NMR (DMSO-d6) δ ppm: 11.63 (s, 1H), 8.48 (s, 2H), 7.96 (d, J=2.0 Hz, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.64-7.39 (m, 4H), 7.34-6.97 (m, 5H), 6.72 (s, 1H), 6.35 (s, 1H), 5.98 (s, 1H), 3.80-3.46 (m, 7H), 2.77-2.55 (m, 3H), 2.45-1.21 (m, 16H), 1.14 (t, J=7.2 Hz, 3H), MS (ESI, m/e)[M+1]+822.8.


Example G91-R: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-((R)-2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-isopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.55 (s, 2H), 8.04 (s, 1H), 7.80 (s, 1H), 7.68 (s, 1H), 7.61-7.44 (m, 3H), 7.29 (d, J=8.6 Hz, 2H), 7.22 (d, J=7.4 Hz, 1H), 7.17-7.11 (m, 1H), 7.01 (t, J=7.2 Hz, 1H), 6.91-6.82 (m, 2H), 6.36-6.34 (m, 3H), 4.92 (d, J=7.7 Hz, 1H), 4.25 (s, 1H), 3.70 (s, 1H), 2.83-2.76 (m, 1H), 2.73-2.67 (m, 1H), 2.03-1.97 (m, 5H), 1.69-1.66 (m, 3H), 1.55-1.52 (m, 2H), 1.47-1.43 (m, 1H), 1.32-1.25 (m, 6H), MS (ESI, m/e) [M+1]+842.8.


Example G92-R: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.65-8.45 (m, 2H), 8.06 (d, J=2.4 Hz, 1H), 7.83 (dd, J=9.2 Hz, 1.6 Hz, 1H), 7.65-7.45 (m, 3H), 7.40-7.22 (m, 3H), 7.17-6.96 (m, 4H), 6.93-6.78 (m, 2H), 6.47-6.27 (m, 3H), 5.20 (d, J=8.0 Hz, 1H), 4.24 (s, 1H), 3.71 (t, J=7.6 Hz, 1H), 3.45-3.37 (m, 11H), 3.29-3.20 (m, 2H), 2.47-2.36 (m, 1H), 2.10-1.79 (m, 4H), 1.73-1.49 (m, 5H), 1.40-1.27 (m, 2H), 1.18-1.06 (m, 5H), 1.04-0.90 (m, 2H), 0.82-0.64 (m, 2H), MS (ESI, m/e) [M+1]+840.8.


Example G92-S: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 11H), 8.65-8.42 (m, 2H), 8.07-8.01 (m, 1H), 7.88-7.73 (m, 1H), 7.64-7.43 (m, 3H), 7.39-7.21 (m, 3H), 7.16-6.95 (m, 4H), 6.95-6.76 (m, 2H), 6.44-6.25 (m, 3H), 5.25-5.13 (m, 1H), 4.24 (s, 1H), 3.76-3.65 (m, 1H), 3.47-3.35 (m, 11H), 3.30-3.20 (m, 2H), 3.18-2.84 (m, 11H), 2.47-2.36 (m, 1H), 2.11-1.77 (m, 4H), 1.74-1.58 (m, 3H), 1.58-1.46 (m, 2H), 1.40-1.27 (m, 2H), 1.16-1.10 (m, 1H), 1.09 (s, 3H), 1.04-0.91 (m, 2H), 0.82-0.65 (m, 2H), MS (ESI, m/e) [M+1]+840.8.


Example G93-R: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.66-8.48 (m, 2H), 8.10-8.01 (m, 1H), 7.88-7.74 (m, 1H), 7.63-7.45 (m, 3H), 7.39-7.23 (m, 3H), 7.14-6.94 (m, 4H), 6.93-6.77 (m, 2H), 6.45-6.24 (m, 3H), 5.26-5.09 (m, 1H), 3.96 (s, 1H), 3.80-3.63 (m, 1H), 3.42-3.37 (m, 1H), 3.28-3.17 (m, 2H), 2.47-2.37 (m, 1H), 2.12-1.76 (m, 4H), 1.62-1.23 (m, 9H), 1.08 (s, 4H), 1.03-0.90 (m, 2H), 0.81-0.64 (m, 2H), MS (ESI, m/e) [M+1]+840.8.


Example G93-S: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1s, 4s)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. MS (ESI, m/e) [M+1]+840.8.


Example G94-R: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.17 (s, 1H), 11.70 (s, 1H), 8.64 (s, 1H), 8.57 (s, 1H), 8.05 (s, 1H), 7.84 (d, J=9.2 Hz, 1H), 7.65-7.44 (m, 3H), 7.37-7.22 (m, 4H), 7.14-7.06 (m, 1H), 7.05-6.96 (m, 2H), 6.92-6.81 (m, 2H), 6.45-6.32 (m, 3H), 5.28-5.10 (m, 1H), 3.82-3.68 (m, 5H), 3.63-3.49 (m, 2H), 2.48-2.40 (m, 1H), 2.08-1.70 (m, 8H), 1.09-0.89 (m, 2H), 0.84-0.74 (m, 2H), MS (ESI) m/e [M+1]+830.7.


Example G94-S: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.69-8.58 (m, 1H), 8.58-8.52 (m, 1H), 8.10-7.99 (m, 1H), 7.89-7.77 (m, 1H), 7.63-7.45 (m, 3H), 7.41-7.21 (m, 4H), 7.16-7.05 (m, 1H), 7.05-6.96 (m, 2H), 6.90 (s, 1H), 6.87-6.80 (m, 1H), 6.44-6.28 (m, 3H), 5.29-5.07 (m, 1H), 3.82-3.65 (m, 5H), 3.59-3.46 (m, 2H), 3.43-3.36 (m, 1H), 2.47-2.34 (m, 1H), 2.14-1.67 (m, 8H), 1.07-0.88 (m, 2H), 0.83-0.63 (m, 2H), MS (ESI) m/e [M+1]+830.8.


Example G95-R: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.68 (s, 1H), 8.64-8.49 (m, 2H), 8.10-7.99 (m, 1H), 7.91-7.71 (m, 1H), 7.65-7.41 (m, 3H), 7.41-7.20 (m, 3H), 7.18-7.06 (m, 2H), 7.06-6.95 (m, 2H), 6.90 (s, 1H), 6.87-6.78 (m, 1H), 6.42-6.27 (m, 3H), 5.32-5.10 (m, 1H), 3.85-3.55 (m, 6H), 3.55-3.43 (m, 2H), 3.43-3.36 (m, 1H), 3.20-2.79 (m, 1H), 2.46-2.33 (m, 1H), 2.19-1.77 (m, 4H), 1.09-0.89 (m, 2H), 0.85-0.61 (m, 2H), MS (ESI, m/e) [M+1]+814.7.


Example G95-S: N-((4-((((S)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (S)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. MS (ESI, m/e) [M+1]+814.7.


Example G %-R: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.15 (s, 1H), 11.68 (s, 1H), 8.60-8.55 (m, 2H), 8.05 (s, 1H), 7.84 (d, J=9.0 Hz, 1H), 7.58-7.51 (m, 3H), 7.35-7.30 (m, 3H), 7.15-7.06 (m, 2H), 7.04-6.97 (m, 2H), 6.90 (s, 1H), 6.86-6.80 (m, 1H), 6.39-6.33 (m, 3H), 5.22-5.10 (m, 1H), 3.82-3.71 (m, 4H), 3.65-3.58 (m, 2H), 3.53-3.45 (m, 2H), 3.38 (s, 1H), 2.06-1.82 (m, 4H), 1.03-0.94 (m, 2H), 0.80-0.75 (m, 1H), 0.75-0.68 (m, 1H), MS (ESI) m/e [M+1]+814.7.


Example G96-S: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.32-12.04 (m, 1H), 11.67 (s, 1H), 8.76-8.38 (m, 2H), 8.11-7.96 (m, 1H), 7.91-7.72 (m, 1H), 7.66-7.43 (m, 3H), 7.43-7.21 (m, 3H), 7.21-6.95 (m, 4H), 6.95-6.73 (m, 2H), 6.46-6.23 (m, 3H), 5.26-5.08 (m, 1H), 3.90-3.58 (m, 5H), 3.58-3.34 (m, 6H), 2.44-2.35 (m, 1H), 2.07-1.83 (m, 4H), 1.08-0.90 (m, 2H), 0.83-0.62 (m, 2H), MS (ESI, m/e) [M+1]+814.8.


Example G97-R: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43-11.83 (m, 1H), 11.68 (s, 1H), 8.36 (s, 1H), 8.15-7.95 (m, 2H), 7.65-7.37 (m, 4H), 7.37-7.18 (m, 3H), 7.15-6.94 (m, 3H), 6.94-6.80 (m, 2H), 6.44-6.26 (m, 3H), 5.27-5.11 (m, 1H), 4.664.44 (m, 3H), 4.44-4.26 (m, 2H), 3.77-3.67 (m, 1H), 3.46-3.31 (m, 2H), 3.01-2.60 (m, 2H), 2.50-1.69 (m, 12H), 1.07-0.89 (m, 2H), 0.85-0.61 (m, 2H), MS (ESI, m/e) [M+1]+886.7.


Example G97-S: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide. MS (ESI, m/e) [M+1]+886.7.


Example G98: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm; 12.24-11.87 (m, 1H), 11.68 (s, 1H) 8.70-8.43 (m, 2H), 8.12-7.91 (m, 1H), 7.86-7.75 (m, 1H), 7.62-7.43 (m, 3H), 7.38-7.15 (m, 4H), 7.14-7.04 (m, 1H), 7.04-6.95 (m, 2H), 6.95-6.75 (m, 2H), 6.47-6.28 (in, 2H), 5.30-5.08 (m, 1H), 4.70-4.34 (m, 4H), 3.84-3.61 (m, 3H), 3.61-3.33 (m, 3H), 2.70-2.53 (m, 2H), 2.47-2.35 (m, 1H), 2.16-1.66 (m, 9H), 1.06-0.90 (m, 2H), 0.82-0.63 (m, 2H), MS (ESI, m/e) [M+1]+885.7.


Example G99: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((2-oxaspiro[3.5]nonan-7-yl)methoxy)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((2-oxaspiro[3.5]nonan-7-yl)methoxy)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.34 (s, 1H), 11.71 (s, 1H), 8.38 (s, 1H), 8.12-8.00 (m, 2H), 7.62-7.58 (m, 1H), 7.56-7.49 (m, 2H), 7.43-7.38 (m, 1H), 7.35-7.26 (m, 3H), 7.12-7.06 (m, 1H), 7.05-6.97 (m, 2H), 6.89 (m, 1H), 6.86-6.84 (m, 1H), 6.42-6.31 (m, 3H), 5.25-5.15 (m, 1H), 4.29 (s, 2H), 4.21 (s, 2H), 4.00-3.91 (m, 2H), 3.77-3.67 (m, 11H), 3.42-3.38 (m, 11H), 2.45-2.37 (m, 1H), 2.12-2.01 (m, 3H), 2.00-1.78 (m, 3H), 1.74-1.62 (m, 3H), 1.48-1.38 (m, 2H), 1.10-0.90 (m, 4H), 0.82-0.65 (m, 2H), MS (ESI, m/e) [M+1]+853.7.


Example G100a and Example G100b: (cis- or trans-)(R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxy-4-methylcyclohexyl))methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide/(trans- or cis-)(R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G100a was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (cis- or trans-)-4-(((1-fluoro-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (faster peak in HPLC). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.54 (s, 1H), 8.50-8.36 (m, 2H), 7.97 (s, 1H), 7.71 (s, 1H), 7.55 (d, J=8.1 Hz, 1H), 7.55 (d, J=8.1 Hz, 1H), 7.50-7.39 (m, 2H), 7.30 (d, J=8.8 Hz, 2H), 7.28-7.20 (m, 1H), 7.10 (t, J=6.8 Hz, 1H), 7.06-6.94 (m, 2H), 6.95-6.81 (m, 2H), 6.36 (d, J=8.8 Hz, 2H), 6.31 (s, 1H), 5.20 (d, J=8.2 Hz, 1H), 4.34 (s, 1H), 3.76-3.53 (m, 3H), 3.43-3.35 (m, 1H), 2.47-2.38 (m, 1H), 2.10-1.79 (m, 8H), 1.71-1.51 (m, 5H), 1.51-1.38 (m, 2H), 1.09-0.93 (m, 2H), 0.91-0.74 (m, 1H), 0.72-0.65 (m, 1H), MS (ESI, m/e) [M+1]+858.7. The desired compound G100b was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (trans- or cis-)-4-(((1-fluoro-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (slower peak in HPLC). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43 (s, 1H), 11.97 (s, 1H), 8.92 (s, 1H), 8.84 (s, 1H), 8.34 (s, 1H), 8.10 (d, J=9.2 Hz, 1H), 7.87 (s, 1H), 7.85-7.78 (m, 2H), 7.63-7.55 (m, 3H), 7.51 (d, J=9.2 Hz, 1H), 7.40-7.35 (m, 1H), 7.32-7.25 (m, 2H), 7.18-7.08 (m, 2H), 6.70-6.59 (m, 3H), 5.50-5.47 (m, 1H), 4.45 (s, 1H), 4.02-3.86 (m, 3H), 2.73-2.68 (m, 1H), 2.37-2.22 (m, 3H), 2.16-2.10 (m, 2H), 2.01-1.95 (m, 2H), 1.74 (s, 4H), 1.51 (s, 3H), 1.41 (s, 3H), 1.30-1.24 (m, 2H), 1.10-1.05 (m, 1H), 1.00-0.93 (m, 1H), MS (ESI, m/e) [M+1]+858.7.


Example G101a and Example G101b: (cis- or trans-) (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-methoxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide /(trans- or cis-) (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-methoxy-4-methylcyclohexyl))methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G101a was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (cis- or trans-) 4-(((4-methoxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (faster peak in HPLC). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.69 (s, 1H), 8.65-8.50 (m, 2H), 8.09-8.01 (m, 1H), 7.87-7.77 (m, 1H), 7.14-7.05 (m, 2H), 7.05-6.96 (m, 2H), 6.93-6.80 (m, 2H), 6.44-6.31 (m, 3H), 5.25-5.08 (m, 1H), 3.83-3.62 (m, 1H), 3.31-3.26 (m, 2H), 3.09 (s, 4H), 3.01-2.85 (m, 1H), 2.17-1.76 (m, 4H), 1.76-1.53 (m, 5H), 1.39-1.29 (m, 2H), 1.27-1.21 (m, 1H), 1.19-1.07 (m, 5H), 1.05-0.92 (m, 2H), 0.81-0.63 (m, 2H), MS (ESI, m/e) [M+1]+854.8. The desired compound G101b was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with (trans- or cis-) 4-(((4-methoxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (slower peak in HPLC). 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.63-8.55 (m, 1H), 8.05 (d, J=2.6 Hz, 1H), 7.82 (dd, J=9.3, 2.0 Hz, 1H), 7.60-7.57 (m, 1H), 7.54-7.48 (m, 2H), 7.35-7.26 (m, 3H), 7.13-7.06 (m, 2H), 7.04-6.97 (m, 2H), 6.89 (s, 1H), 6.86-6.82 (m, 1H), 6.40-6.31 (m, 3H), 5.25-5.15 (m, 1H), 3.73-3.68 (m, 1H), 3.42-3.38 (m, 1H), 3.26-3.21 (m, 2H), 3.05 (s, 3H), 2.46-2.39 (m, 1H), 2.09-1.80 (m, 5H), 1.78-1.74 (m, 2H), 1.57 (s, OH), 1.49-1.43 (m, 2H), 1.24-1.18 (m, 1H), 1.03 (s, 3H), 1.01-0.92 (m, 2H), 0.79-0.75 (m, 1H), 0.70-0.67 (m, 1H), MS (ESI, m/e) [M+1]+854.8.


Example G102: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-methylcyclohex-3-en-1-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((4-methylcyclohex-3-en-1-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.61-8.56 (m, 2H), 8.05 (s, 1H), 7.82 (d, J=9.0 Hz, 1H), 7.58 (s, 1H), 7.55-7.48 (m, 2H), 7.35-7.28 (m, 3H), 7.14-7.06 (m, 2H), 7.04-6.98 (m, 2H), 6.89 (s, 1H), 6.86-6.82 (m, 1H), 6.38-6.33 (m, 3H), 5.34 (s, 1H), 5.23-5.18 (m, 1H), 3.75-3.70 (m, 1H), 3.42-3.36 (m, 1H), 2.45-2.37 (m, 1H), 2.11-1.71 (m, 11H), 1.61 (s, 3H), 1.31-1.22 (m, 1H), 0.99-0.93 (m, 2H), 0.78 (s, 1H), 0.70 (s, 1H), MS (ESI) m/e [M+1]+822.8.


Example G103: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-ethylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.15 (s, 1H), 11.69 (s, 1H), 8.55 (s, 2H), 8.04 (s, 1H), 7.80 (s, 1H), 7.68 (s, 1H), 7.61-7.44 (m, 3H), 7.30-7.28 (m, 2H), 7.22-(d, J=7.2 Hz, 1H), 7.17-7.11 (m, 1H), 7.01 (t, J=7.2 Hz, 1H), 6.91-6.82 (m, 2H), 6.36-6.34 (m, 3H), 4.92 (d, J=7.7 Hz, 1H), 4.25 (s, 1H), 3.70 (s, 1H), 2.83-2.76 (m, 1H), 2.71-2.67 (m, 1H), 2.03-1.97 (m, 5H), 1.69-1.66 (m, 3H), 1.55-1.52 (m, 2H), 1.47-1.43 (m, 1H), 1.29-1.26 (m, 6H), MS (ESI, m/e) [M+1]+828.8.


Example G104: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-ethylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide. 1H NMR (4 (00 MHz, DMSO-d6) δ ppm: 12.27 (s, 1H), 11.69 (s, 1H), 8.37 (s, 1H), 8.05 (s, 2H), 7.60-7.47 (m, 3H), 7.43 (s, 1H), 7.32-7.27 (m, 3H), 7.22 (d, J=7.2 Hz, 1H), 7.14 (t, J=7.2 Hz, 1H), 7.01 (t, J=7.2 Hz, 1H), 6.92-6.82 (m, 2H), 6.44-6.30 (m, 3H), 4.92 (d, J=7.8 Hz, 1H), 4.58-4.50 (m, 4H), 4.39-4.34 (m, 2H), 3.71 (t, J=7.8 Hz, 1H), 3.51 (s, 1H), 2.99 (s, 2H), 2.86-2.64 (m, 4H), 2.02-1.97 (m, 6H), 1.73-1.71 (m, 1H), 1.45 (s, 1H), 1.27-1.24 (m, 3H), MS (ESI, m/e) [M+1]+874.7.


Example G105: (S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrophenyl)sulfonyl)-4′-(2-(2-isopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (S)-2-(2-isopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methoxy)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.67 (s, 1H), 8.35 (s, 1H), 8.04 (s, 2H), 7.56-7.54 (m, 2H), 7.49 (s, 1H), 7.41 (s, 1H), 7.35-7.29 (m, 5H), 7.17 (t, J=7.4 Hz, 1H), 6.99 (t, J=7.4 Hz, 1H), 6.91 (s, 1H), 6.83 (d, J=7.7 Hz, 1H), 6.37-6.35 (m, 3H), 4.99 (d, J=8.0 Hz, 1H), 4.58-4.51 (m, 4H), 4.38-4.33 (m, 2H), 3.70 (t, J=8.0 Hz, 1H), 3.38-3.32 (m, 1H), 2.45-2.48 (m, 1H), 2.03-1.97 (m, 5H), 1.92-1.84 (m, 3H), 1.72-1.68 (m, 1H), 1.47-1.44 (m, 1H), 1.28-1.24 (m, 9H), MS (ESI, m/e) [M+1]+888.8.


Example G106: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((((r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.21 (s, 1H), 11.65 (s, 1H), 8.48 (s, 2H), 7.97 (s, 1H), 7.74 (s, 1H), 7.63-7.37 (m, 5H), 7.26-6.89 (m, 4H), 6.72 (s, 1H), 6.36 (s, 1H), 6.08-5.70 (m, 1H), 4.46 (s, 1H), 4.24 (s, 1H), 3.30-3.10 (m, 3H), 3.10-3.00 (m, 1H), 2.30-2.10 (m, 5H), 2.09-1.90 (m, 2H), 1.76-1.62 (m, 5H), 1.58-1.47 (m, 3H), 1.41-1.30 (m, 3H), 1.14-1.00 (m, 6H), 0.85 (s, 1H), 0.68 (s, 1H), 0.50 (s, 1H). MS (ESI) m/e [M+1]+878.8.


Example G107-a and Example G107-b: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide/(S or R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


3-((1H-pyrrolo[2,3-b]pyri din-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was synthesized with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-ethylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. Then two enantiomers G107-a (faster isomer) and G107-b (slower isomer) were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 2.5 min to give G107-a. The slower enantiomer was eluted at retention time of 3.6 min to give G107-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
0.5 mL



Mobile phase
MTBE:EtOH (0.2% MSA) = 50:50



Flow rate
20 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
30 mg/mL in EtOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC










Example G107-a: 1H NMR (DMSO-d6) δ ppm: 11.65 (s, 1H), 8.56-8.36 (m, 2H), 7.97 (d, J=2.0 Hz, 1H), 7.75 (d, J=8.4 Hz, 1H), 7.61-7.38 (m, 4H), 7.24-6.85 (m, 5H), 6.73 (s, 1H), 6.36 (s, 1H), 5.81 (s, 1H), 4.25 (s, 1H), 3.23 (t, J=6.0 Hz, 3H), 2.68-2.58 (m, 2H), 2.42-1.83 (m, 8H), 1.79-1.44 (m, 8H), 1.36-1.06 (m, 11H), MS (ESI, m/e) [M+1]+832.8. Example G107-b: 1H NMR (DMSO-d6) δ ppm: 11.64 (s, 1H), 8.57-8.34 (m, 2H), 7.97 (s, 1H), 7.80-7.66 (m, 1H), 7.61-7.42 (m, 4H), 7.25-6.93 (m, 5H), 6.73 (s, 1H), 6.35 (s, 1H), 5.99 (s, 1H), 4.24 (s, 1H), 3.28-3.16 (m, 3H), 2.70-2.61 (m, 2H), 2.36-2.04 (m, 6H), 1.85-1.48 (m, 9H), 1.33 (t, J=12.0 Hz, 3H), 1.17-1.07 (m, 9H), MS (ESI, m/e) [M+1]+832.9.


Example G108a and Example G108b: (cis- or trans-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide/(trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide was synthesized with 4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 2 products were obtained after prep-HPLC purification. Example G108a was the faster peak, 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.48 (s, 1H), 11.71 (s, 1H), 8.45-8.31 (m, 1H), 8.10-7.95 (m, 2H), 7.69-7.36 (m, 5H), 7.35-7.20 (m, 2H), 7.19-7.04 (m, 2H), 6.80-6.69 (m, 1H), 6.39 (s, 1H), 5.99-5.88 (m, 1H), 5.30-5.10 (m, 1H), 4.67 (s, 1H), 4.29-4.20 (m, 2H), 3.71 (s, 1H), 3.46 (s, 3H), 2.38-2.30 (m, 2H), 2.13 (s, 3H), 2.04-1.93 (m, 4H), 1.78-1.68 (m, 3H), 1.63-1.55 (m, 2H), 1.48-1.35 (m, 3H), 0.98-0.91 (m, 2H), 0.78-0.68 (m, 1H), 0.61 (s, 1H), MS (ESI) m/e [M+1]+849.8. Example G108b was the slower peak, MS (ESI) m/e [M+1]+849.8.


Example G109: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((1-fluoro-4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.38-12.19 (m, 0.5H), 11.70 (s, 1H), 10.55-10.05 (m, 0.5H), 8.66-8.43 (m, 2H), 8.11-7.87 (m, 2H), 7.85-7.72 (m, 11H), 7.60-7.39 (m, 3H), 7.37-6.99 (m, 5H), 6.75 (s, 1H), 6.38 (s, 1H), 6.08-5.77 (m, 1H), 5.27-4.97 (m, 1H), 4.77-4.51 (m, 1H), 3.76-3.54 (m, 4H), 3.22-2.89 (m, 3H), 2.36-1.33 (m, 17H), 1.00-0.87 (m, 2H), 0.79-0.49 (m, 2H), MS (ESI, m/e) [M+1]+848.8.


Example G110a and Example G110b: (cis- or trans-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide/(trans- or cis-)3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-hydroxycyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound G110a was synthesized with (cis- or trans-)-4-(((4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (faster peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.44 (br, 1H), , 11.69 (s, 1H), 8.66-8.35 (m, 2H), 7.99 (s, 1H), 7.89-7.70 (m, 2H), 7.61-7.40 (m, 3H), 7.36-6.84 (m, 5H), 6.84-6.66 (m, 1H), 6.74 (s, 1H), 6.45-6.29 (m, 1H), 6.37 (s, 1H), 6.07-5.81 (m, 1H), 5.33-5.01 (m, 1H), 4.56-4.41 (m, 1H), 3.82-3.36 (m, 3H), 3.24-3.11 (m, 2H), 3.08-2.86 (m, 1H), 2.33-1.52 (m, 14H), 1.18-0.81 (m, 7H), 0.77-0.50 (m, 2H), MS (ESI, m/e) [M+1]+830.8; The desired compound G11 Ob was synthesized with (trans- or cis-)-4-(((4-hydroxycyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (slower peak in HPLC) and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.36 (br, 1H), 11.68 (s, 1H), 8.64-8.37 (m, 2H), 7.98 (s, 1H), 7.91-7.65 (m, 2H), 7.62-7.38 (m, 3H), 7.37-6.80 (m, 5H), 6.74 (s, 1H), 6.37 (s, 1H), 5.99-5.73 (m, 1H), 5.38-5.01 (m, 1H), 4.374.19 (m, 1H), 3.73-3.37 (m, 3H), 3.27-3.17 (m, 2H), 3.08-2.87 (m, 1H), 2.43-1.33 (m, 19H), 0.99-0.82 (m, 2H), 0.77-0.44 (m, 2H), MS (ESI, m/e) [M+1]+840.8.


Two enantiomers G110b-a (faster isomer) and G110b-b (slower isomer) of G110b were separated by chiral preparative HPLC. The chiral separation conditions are shown below. The faster enantiomer was eluted at retention time of 2.5 min to give G110b-a. The slower enantiomer was eluted at retention time of 3.8 min to give G110b-b.
















Column
CHIRAL ART Cellulose-SB









Column size
2 cm × 25 cm, 5 um



Injection
0.5 mL



Mobile phase
MTBE:EtOH (0.2% MSA) = 50:50



Flow rate
20 mL/min



Wave length
UV 220 nm



Temperature
25° C.



Sample solution
36 mg/mL in EtOH:DCM = 3:1



Prep-HPLC equipment
Prep-Gilson-HPLC










Example G110b-a: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.60 (br, 1H), 11.61 (s, 1H), 8.40-8.07 (m, 1H), 8.02-7.74 (m, 2H), 7.74-6.83 (m, 9H), 6.83-6.67 (m, 1H), 6.34 (s, 1H), 5.84-5.69 (m, 1H), 5.37-5.12 (m, 1H), 5.41-5.26 (m, 1H), 4.67-4.44 (m, 1H), 4.06-3.82 (m, 2H), 3.82-3.57 (m, 1H), 3.57-3.41 (m, 1H), 3.22-2.91 (m, 1H), 2.41-1.46 (m, 15H), 1.19-0.79 (m, 8H), 0.79-0.45 (m, 2H), MS (ESI, m/e) [M+1]+831.8. Example G110b-b: 1H NMR (400 MHz, DMSO-do) δ ppm: 12.66 (br, 1H), 11.61 (s, 1H), 8.32-8.07 (m, 1H), 8.02-7.76 (m, 2H), 7.71-6.84 (m, 9H), 6.74 (s, 1H), 6.34 (s, 1H), 6.06-5.89 (m, 1H), 5.28-4.91 (m, 1H), 4.63-4.45 (m, 1H), 4.06-3.83 (m, 2H), 3.77-3.56 (m, 1H), 3.55-3.41 (m, 1H), 3.22-2.88 (m, 1H), 2.43-1.52 (m, 16H), 1.19-0.83 (m, 7H), 0.78-0.47 (m, 2H), MS (ESI, m/e) [M+1]+831.8.


Example G111: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((((S)-4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (S)-3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.24 (s, 0.5H), 11.66 (s, 1H), 9.58-9.30 (m, 0.5H), 8.50 (s, 2H), 7.97 (s, 1H), 7.76 (s, 1H), 7.61 (s, 1H), 7.55-7.39 (m, 3H), 7.33-6.91 (m, 6H), 6.74 (s, 1H), 6.36 (s, 1H), 6.04-5.80 (m, 1H), 4.60-4.49 (m, 2H), 4.49-4.39 (m, 2H), 3.90-3.67 (m, 3H), 3.59-3.43 (m, 5H), 2.88-2.70 (m, 2H), 2.60-2.50 (m, 2H), 2.07-1.86 (m, 5H), 1.85-1.75 (m, 2H), 1.16-1.07 (m, 2H), 0.99-0.80 (m, 3H), 0.78-0.50 (m, 2H), MS (ESI) m/e [M+1]+873.8.


Example G112: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((((R)-4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[11′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (R)-3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-do) δ ppm: 12.27-12.13 (m, 1H), 11.63 (s, 1H), 8.53-8.38 (m, 2H), 7.96 (s, 1H), 7.52-7.40 (m, 3H), 7.35-7.21 (m, 1H), 7.19-7.07 (m, 2H), 7.05-6.83 (m, 3H), 6.74 (s, 1H), 6.35 (s, 1H), 6.04-5.75 (m, 1H), 4.58-4.50 (m, 2H), 4.48-4.40 (m, 2H), 3.90-3.81 (m, 1H), 3.77-3.69 (m, 1H), 3.62-3.38 (m, 5H), 3.21-3.06 (m, 1H), 2.80-2.70 (m, 1H), 2.63-2.53 (m, 2H), 2.35-2.10 (m, 5H), 2.04-1.91 (m, 3H), 1.84-1.70 (m, 3H), 1.39-1.31 (m, 1H), 0.99-0.72 (m, 3H), 0.72-0.45 (m, 2H), MS (ESI, m/e) [M+1]+874.8.


Example G113: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-(methylsulfonyl))morpholin-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-(methylsulfonyl)morpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (br. 1H), 11.63 (s, 1H), 8.54-8.45 (m, 2H), 7.98 (s, 1H), 7.81-7.74 (m, 1H), 7.62-7.42 (m, 4H), 7.30-6.95 (m, 5H), 6.74 (s, 1H), 6.36 (s, 1H), 5.99 (s, 0.5H), 5.83 (s, 0.5H), 3.96 (d, J=12.0 Hz, 1H), 3.76 (s, 1H), 3.63-3.34 (m, 8H), 2.92 (s, 3H), 2.90-2.80 (m, 1H), 2.74-2.66 (m, 1H), 2.49-2.17 (m, 5H), 2.10-1.42 (m, 7H), 0.99-0.81 (m, 2H), 0.78-0.50 (m, 2H), MS (ESI, m/e) [M+1]+895.7.


Example G114: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((S)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm; 11.63 (s, 1H), 8.58-8.40 (m, 2H) 7.95 (s, 1H), 7.80-7.70 (m, 1H), 7.65-7.36 (m, 4H), 7.34-7.21 (m, 1H), 7.15-7.04 (m, 2H), 6.99-6.85 (m, 2H), 6.72 (s, 1H), 6.34 (s, 1H), 6.01-5.76 (m, 1H), 4.574.47 (m, 2H), 4.46-4.37 (m, 2H), 4.334.22 (m, 1H), 3.70-3.57 (m, 3H), 3.51-3.41 (m, 3H), 3.06-2.85 (m, 3H), 2.24-2.13 (m, 2H), 2.05-1.93 (m, 3H), 1.86-1.79 (m, 2H), 1.74-1.65 (m, 2H), 1.21-1.10 (m, 2H), 1.09-1.01 (m, 2H), 0.99-0.90 (m, 2H), 0.89-0.82 (m, 2H), 0.73-0.45 (m, 3H), MS (ESI, m/e) [M+1]+889.8.


Example G115: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((5-chloro-6-((1-(dimethylglycyl)-4-fluoropiperidin-4-yl)methoxy)pyridin-3-yl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-(((4-(methylsulfonyl)morpholin-2-yl)methyl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H), 8.30 (s, 1H), 8.04 (s, 1H), 7.99-7.91 (m, 1H), 7.57-7.41 (m, 3H), 7.35-7.32 (m, 1H), 7.16-6.98 (m, 3H), 6.93-6.82 (m, 1H), 6.74-6.72 (m, 1H), 6.34-6.30 (m, 1H), 5.99 (s, 0.5H), 5.79 (s, 0.5H), 4.47 (s, 1H), 4.42 (s, 1H), 4.31-4.18 (m, 2H), 3.95-3.87 (m, 1H), 3.25-3.11 (m, 4H), 2.87-2.81 (m, 1H), 2.67-2.51 (m, 2H), 2.26-2.07 (m, 8H), 2.04-1.91 (m, 6H), 1.78-1.64 (m, 4H), 1.55-1.33 (m, 4H), 0.95-0.84 (m, 2H), 0.68-0.45 (m, 2H), MS (ESI, m/e) [M+1]+909.7.


Example G116: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-hydroxycyclohexyl)methoxy)-3-nitrophenyl)sulfonyl)-2′3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with (trans- or cis-)-4-((4-hydroxycyclohexyl)methoxy)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(3-chloro-2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-dh) δ ppm: 12.48 (br, 1H), 11.61 (s, 1H), 8.18 (s, 1H), 7.94 (s, 1H), 7.85 (m, 1H), 7.54-7.37 (m, 5H), 7.25-7.08 (m, 3H), 6.73 (s, 1H), 6.34 (s, 1H), 5.79-5.76 (m, 0.5H), 5.32-5.31 (m, 0.5H), 4.53-4.51 (m, 11H), 3.91 (d, J=6.0 Hz, 2H), 3.82-3.41 (m, 1H), 3.25-3.02 (m, 1H), 2.67-2.65 (m, 2H), 2.45-2.08 (m, 5H), 1.99-1.66 (m, 10H), 1.62-1.53 (m, 2H), 1.36-1.07 (m, 6H), 0.60-0.51 (m, 2H), MS (ESI, m/e) [M+1]+865.7.


Example G117: (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)-N-((3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)phenyl)sulfonyl)benzamide



embedded image


The desired compound was synthesized with 3-nitro-4-(((4-(oxetan-3-yl)morpholin-2-yl)methyl)amino)benzenesulfonamide and (trans- or cis-)2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)cyclohexyl)benzoic acid following the procedures similar to those in Example D1b. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.48 (br, 0.5H), 11.61 (s, 1H), 9.26 (br, 0.5H), 8.18 (s, 1H), 7.94 (s, 1H), 7.85 (m, 1H), 7.54-7.37 (m, 5H), 7.25-7.08 (m, 3H), 6.73 (s, 1H), 6.34 (s, 1H), 5.79-5.76 (m, 0.5H), 5.32-5.31 (m, 0.5H), 4.53-4.51 (m, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.82-3.41 (m, 1H), 3.25-3.02 (m, 1H), 2.67-2.65 (m, 2H), 2.45-2.08 (m, 5H), 1.99-1.66 (m, 10H), 1.62-1.53 (m, 2H), 1.36-1.07 (m, 6H), 0.60-0.51 (m, 2H), MS (ESI, m/e) [M+1]+865.7.


Example G118: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-((R)-2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-ylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one

To a solution of (R)-2-(2-bromophenyl)pyrrolidine (10 g, 44.22 mmol) in DCM (100 mL) was added triethylamine (6.699 g, 66.33 mmol), then added (CF3CO)2O (10.216 g. 48.65 mmol) at 0° C. After stirred at room temperature for 1 hour, the reaction mixture was concentrated. The resulted residue was dissolved with DCM (500 ml), and then washed with saturated aq. NaHCO3solution, brine. After dried over Na2SO4, the organic phase was concentrated to obtain the product (14 g) as a brown solid. MS (ESI, m/e) [M+1]+321.8.


Step 2: tert-butyl (R)-4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate

To a solution of (R)-1-(2-(2-bromophenyl)pyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (5 g, 15.52 mmol) in toluene (100 ml) was added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1 (2H)-carboxylate (7.189 g, 23.25 mmol), Pd(OAc)2 (348 mg, 1.552 mmol), Tricyclohexyl phosphine (870 mg, 3.1 mmol) and K3PO4 (11.53 g, 54.32 mmol). The mixture was then stirred at 100° C. for 12 hours at N2 atmosphere. After cooled to room temperature, the reaction mixture was washed with brine and dried over Na2SO4. After removal of solvent, the resulted residue was purified by chromatograph column on silica gel (eluent: PE/EA=50/1 to 10/1) to obtain the product (3.66 g) as yellow oil. MS (ESI, m/e) [M−55]+368.8.


Step 3: (R)-2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To a solution of tert-butyl (R)-4-(2-(1-(2,2,2-trifluoroacetyl)pyrrolidin-2-yl)phenyl)-3,6-dihydropyridine-1 (2H)-carboxylate (3.66 g, 8.62 mmol) in DCM (100 ml) was added TFA (20 ml). The mixture was stirred at room temperature for 2 hours. After removal of solvent and TFA, the residue was dissolved with DCM (200 ml) and then washed with saturated aq. NaHCO3solution, brine, dried over Na2SO4. The DCM solution was concentrated to obtain the crude product (2.66 g) as a brown oil, which was used in next step without further purification.


Step 4: (R)-2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one

To a solution of (R)-2,2,2-trifluoro-1-(2-(2-(1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (2.66 g, 8.2 mmol) in MeOH (100 mL) was added HCHO(37%, 3.99 g 49.18 mmol) and NaBH3CN (2.058 g, 32.77 mmol). The mixture was stirred at room temperature for 2 hours. After removal of solvent, the residue was dissolved with EA (200 ml), washed with brine, and then dried over Na2SO4. The EA solution was concentrated to obtain the crude product (2.5 g) as a yellow solid, which was used in next step without further purification. MS (ESI, m/e) [M+1]+338.9.


Step 5: (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine

To a solution of (R)-2,2,2-trifluoro-1-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)ethan-1-one (2.5 g, 7.39 mmol) in MeOH (50 mL) and H2O (50 mL) was added LiOH·H2O (3.1 g, 73.9 mmol). After stirred at 60° C. for 3 hours, the reaction mixture was extracted with DCM (200 mL×3). The combined organic phase was concentrated. The residue was purified by column chromatograph on silica gel (eluent: DCM/MeOH=10/1 (added 1% NH3·H2O)) to obtain the product (1.2 g). MS (ESI, m/e) [M+1]+243.0.


Step 6: (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methyl-1,2,3,6-tetrahydropyridine

To a solution of (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)-1,2,3,6-tetrahydropyridine (500 mg, 2.07 mmol) in toluene (50 ml) was added 1-bromo-4-iodobenzene (1.165 g, 4.13 mmol), Pd2(dba)3 (189 mg, 0.207 mmol), BINAP(257.5 mg, 0.414 mmol) and t-BuOK (757.6 mg, 6.21 mmol). The mixture was stirred at 90° C. for 12 hours at N2 atmosphere. After cooled to room temperature, the reaction mixture was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by chromatograph column on silica gel (DCM/MeOH=50/1) to obtain the product (508 mg) as a yellow oil. MS (ESI, m/e) [M+1]+396.8.


Step 7: tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)-1-methyl-1,2,3,6-tetrahydropyridine (508 mg, 1.28 mmol) and tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(3,3,4,4-tetramethylborolan-1-yl)benzoate (725.3 mg, 1.66 mmol) in 1,4-dioxane (50 mL) and H2O (5 mL) was added Pd(ddpf)Cl2 (93.6 mg, 0.128 mmol) and Cs2CO3 (1248 mg, 3.84 mmol). The mixture was stirred at 100° C. for 3 hours under N2 protection. After cooled to room temperature, the reaction mixture was diluted with DCM (200 mL), then washed with brine (200 mL×2) and dried over Na2SO4. After concentration, the residue was purified by chromatography column on silica (eluent: DCM/MeOH=25/1) to obtain the product (367 mg) as a yellow solid. MS (ESI, m/e) [M+1]+626.9.


Step 8: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid

To a solution of tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate (367 mg, 0.585 mmol) in DCM (30 mL) was added TFA (15 mL). The mixture was stirred at room temperature for 2 hours. After removal of solvent and TFA, the crude product was obtained as a yellow solid, which was used in next step without further purification. MS (ESI, m/e) [M+1]+570.9.


Step 9: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-((R)-2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide

To a solution of (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (334 mg, 0.585 mmol) in DCM (50 mL) was added HATU (333.5 mg, 0.878 mmol) and triethylamine (295 mg, 2.925 mmol). The mixture was stirred at room temperature for 1 hour and then to the mixture was added 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (301.5 mg, 0.878 mmol) and DMAP (35.7 mg, 0.293 mmol). The reaction mixture was stirred at room temperature for overnight. After washed with saturated aq. NaHCO3solution, brine and dried over Na2SO4, the reaction mixture was concentrated and purified by chromatography column on silica (eluent: MeOH/DCM=1/10) to give the crude product. The crude product was further purified by prep-TLC (eluent: MeOH/DCM=1/10) to obtain the desired product (135 mg) as a yellow solid. 1H NMR (400 MHz, DMSO dr) δ 12.32 (br. 1H), 11.70 (s, 1H), 8.71-8.42 (m, 2H), 8.12-7.97 (m, 1H), 7.79-7.71 (m, 1H), 7.62-7.44 (m, 3H), 7.38-6.94 (m, 8H), 6.90 (s, 1H), 6.44-6.25 (m, 3H), 5.86-5.60 (m, 1H), 5.00-4.79 (m, 1H), 4.32-4.17 (m, 1H), 3.9-3.43 (m, 3H), 3.43-0.34 (m, 2H), 3.28-3.20 (m, 2H), 2.95-2.72 (m, 5H), 2.42-2.31 (m, 2H), 2.06-1.93 (m, 2H), 1.80-1.48 (m, 6H), 1.38-1.26 (m, 2H), 1.17-1.04 (m, 5H), MS (ESI, m/e) [M+1]+896.8.


Example G119: (R)-3-((I H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G118 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-fluorotetrahydro-2H-pyran-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.31 (br, 1H), 11.69 (s, 1H), 8.69-8.46 (m, 2H), 8.01-7.97 (m, 1H), 7.88-7.74 (m, 1H), 7.61-7.42 (m, 3H), 7.39-7.06 (m, 7H), 7.06-6.94 (m, 1H), 6.90 (s, 1H), 6.47-6.27 (m, 3H), 5.71 (s, 1H), 4.96-4.81 (m, 1H), 3.98-3.62 (m, 7H), 3.63-3.34 (m, 5H), 3.06-2.58 (m, 5H), 2.44-2.30 (m, 1H), 2.06-1.92 (m, 2H), 1.88-1.67 (m, 5H), MS (ESI, m/e) [M+1]+885.8.


Example G120: N-((4-((((R)-1,4-dioxan-2-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G118 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with (R)-4-(((1,4-dioxan-2-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (DMSO-d6) δ ppm: 12.18 (br, 1H), 11.69 (s, 1H), 8.55 (s. 2H), 8.04 (d, J=1.9 Hz, 1H), 7.82 (d, J=8.9 Hz, 1H), 7.56-7.51 (m, 3H), 7.34-7.28 (m, 3H), 7.26-7.07 (m, 4H), 7.00 (d, J=7.3 Hz, 1H), 6.90 (s, 1H), 6.41-6.32 (m, 3H), 5.70 (s, 1H), 4.88 (d, J=7.0 Hz, 1H), 3.96-3.91 (m, 1H), 3.84-3.70 (m, 6H), 3.65-3.61 (m, 4H), 3.53-3.42 (m, 4H), 2.88 (s, 4H), 2.38-2.31 (m, 2H), 1.98 (s, 2H), 1.79-1.71 (m, 1H), MS (ESI, m/e) [M+1]+869.8.


Example G121: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G118 by replacing 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide with 4-(((4-fluoro-1-(oxetan-3-yl)piperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonanide. 1H NMR (DMSO-d6) δ ppm: 11.56 (s, 1H), 10.11 (s, 1H), 8.52-8.24 (m, 2H), 8.01-7.89 (m, 1H), 7.76-7.63 (m, 1H), 7.62-7.49 (m, 1H), 7.48-7.33 (m, 2H), 7.33-7.09 (m, 6H), 7.09-6.94 (m, 2H), 6.90 (s, 1H), 6.43-6.20 (m, 3H), 5.70 (s, 1H), 4.91-4.76 (m, 1H), 4.59-4.47 (m, 2H), 4.46-4.36 (m, 2H), 3.81-3.51 (m, 5H), 3.48-3.34 (m, 4H), 3.30-2.87 (m, 3H), 2.82-2.68 (m, 3H), 2.68-2.59 (m, 2H), 2.41-2.28 (m, 1H), 2.06-1.91 (m, 4H), 1.88-1.66 (m, 5H), MS (ESI, m/e) [M+1]+941.2.


Example G122: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-((R)-2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A100. To a solution of(R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-methylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid (400 mg, 0.69 mmol) in DCM (25 ml) were added HATU (393 mg, 0.69 mmol) and triethylamine (1 mL). The mixture was stirred at room temperature for 1 hour. Then 4-((((0r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (478 mg, 1.40 mmol) and DMAP (171 mg, 1.40 mmol ) were added into the reactor and stirred at room temperature overnight. The reaction mixture was washed with saturated aq. NaHCO3, brine, and dried over anhydrous Na2SO4, then concentrated. The residue was purified by prep-HPLC to obtain example G122 (400 mg). 1H NMR (DMSO-do) δ ppm: 11.54 (s, 1H), 9.58 (s, 1H), 8.40 (d, J=2.0 Hz, 1H), 8.30 (t, J=5.6 Hz, 1H), 7.96 (d, J=2.5 Hz, 1H), 7.66 (dd, J=9.2, 1.7 Hz, 1H), 7.56 (d, J=8.6 Hz, 1H), 7.41 (t, J=2.9 Hz, 1H), 7.36 (d, J=2.5 Hz, 1H), 7.26-7.19 (m, 6H), 7.04 (t, J=7.5 Hz, 1H), 6.90 (d, J=6.8 Hz, 2H), 6.82 (d, J=9.2 Hz, 1H), 6.36 (d, J=8.6 Hz, 2H), 6.31-6.27 (m, 1H), 5.00 (d, J=7.5 Hz, 1H), 4.23 (s, 1H), 3.79-3.64 (m, 1H), 3.42-3.35 (m, 3H), 3.25-3.15 (m, 3H), 3.05 (s, 1H), 2.81-2.70 (m, 2H), 2.59 (s, 3H), 2.46-2.36 (m, 1H), 1.97-1.88 (m, 5H), 1.82-1.48 (m, 8H), 1.37-1.31 (m, 2H), 1.17-1.12 (m, 2H), MS (ESI, m/e) [M+1]+897.9.


Example G123: 3-((l H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(I-acetylpiperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G122 by replacing (R)-1-methyl-4-(2-(pyrrolidin-2-yl)phenyl)piperidine with (R)-1-(4-(2-(pyrrolidin-2-yl)phenyl)piperidin-1-yl)ethan-1-one. 1H NMR (DMSO-d6) δ ppm: 12.14 (s, 1H), 11.70 (s, 1H), 8.57-8.55 (m, 2H), 8.05 (d, J=2.5 Hz, 1H), 7.83 (d, J=9.4 Hz, 1H), 7.59 (s, 1H), 7.54-7.49 (m, 2H), 7.36-7.30 (m, 4H), 7.17-7.08 (m, 2H), 7.03-7.00 (m, 1H), 6.90 (s, 1H), 6.86-6.8 (m, 1H), 6.38-6.36 (m, 3H), 5.06 (s, 1H), 4.55 (s, 1H), 4.24 (s, 1H), 3.93 (s, 1H), 3.71 (s, 1H), 3.39-3.38 (m, 1H), 3.26-3.23 (m, 3H), 3.18-3.16 (m, 2H), 2.70-2.60 (m, 2H), 2.04 (s, 3H), 1.97 (s, 1H), 1.86 (s, 2H), 1.69-1.65 (m, 4H), 1.56-1.53 (m, 2H), 1.33-1.30 (m, 2H), 1.15-1.00 (m, 5H), MS (ESI) m/e [M+1]+925.8.


Example G124: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(1-(dimethylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine

A mixture of (R)-tert-butyl 4-(2-(I-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine-1-carboxylate (1 g, 2.1 mmol) in HCl (4 M in EA, 20 mL) was stirred at 20° C. for 2 hours. TLC showed the reaction was complete. The precipitation was filtered off and dried to give (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine (600 mg, HCl salt) as an off-white solid. MS (ESI, m/e) [M+1]+387.8.


Step 2: (R)-1-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-2-(dimethylamino)ethenone

To a solution of 2-(dimethylamino)acetic acid (175 mg, 1.7 mmol) and TEA (424 mg, 4.2 mmol) in DCM (10 mL) was added HATU (646 mg, 1.7 mmol) at 0° C., and the mixture was stirred at 0° C. for 30 min. Then (R)-4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidine (600 mg, 1.4 mmol) was added and the resulting mixture was stirred at 20° C. for 2 hours. LC/MS showed the reaction was completed. The mixture was washed with water (10 mL), brine (10 mL), dried over Na2SO4, and concentrated in vacuum to give 900 mg of the crude product, which was purified by prep-HPLC to obtain (R)-1-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-2-(dimethylamino)ethanone (453 mg). 1H NMR (400 MHz, CD3OD) δ ppm: 7.28 (d, J=7.6 Hz, 1H), 7.22-7.10 (m, 3H), 7.08-7.03 (m, 1H), 7.01-6.97 (m, 1H), 7.01-6.97 (m, 1H), 6.30 (d, J=8.8 Hz, 2H), 5.03-4.97 (m, 1H), 5.00 (d, J=7.4 Hz, 1H), 4.69 (d, J=13.6 Hz, 1H), 4.17 (d, J=12.6 Hz, 1H), 3.74-3.68 (m. 1H), 3.74-3.68 (m, 1H), 3.46-3.35 (m, 2H), 3.23 (d, J=13.2 Hz, 1H), 2.84-2.73 (m, 1H), 2.59-2.48 (m, 1H), 2.39 (s, 6H), 2.08-1.92 (m, 1H), 2.08-1.92 (m, 3H), 1.85-1.75 (m, 3H), 1.74-1.58 (m, 1H), MS (ESI, m/e) [M+1]+470.1.


Step 3: tert-butyl (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(dimethylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylate

To a solution of (R)-1-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-2-(dimethylamino)ethanone (200 mg, 0.425 mmol) in 1,4-dioxane (200 mL) and H2O (2 mL) was added tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (203.8 mg, 0.468 mmol) and Pd(dppf)Cl2 (62 mg, 0.085 mmol) and Cs2CO3 (414.4 mg, 1.275 mmol). The mixture was stirred at 100° C. for overnight under nitrogen protection. After cooled to room temperature, the mixture was diluted with DCM (100 mL), washed with brine, dried over Na2SO4, concentrated in vacuum. The residue was purified by chromatography column on silica gel (eluent: DCM/MeOH=20/1 to 10/1) to give the product (130 mg, yield: 43.7%). MS (ESI, m/e) [M+1]+699.9.


Step 4: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(dimethylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid

To a solution of tert-butyl 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (130 mg, 0.186 mmol) in DCM (10 mL) was added TFA (3 mL). The mixture was stirred at room temperature for 2 hours. The mixture was concentrated in vacuum to give the crude product, which was used directly for next step. MS (ESI, m/e) [M+1]+643.8.


Step 5: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(1-(dimethylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide

To a solution of (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-(1-(dimethylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxylic acid in DCM (20 ml) was added HATU (106 mg, 0.279 mmol) and TEA (94 mg, 0.930 mmol). The mixture was stirred at room temperature for 1 hour. Then to the mixture was added 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide (127.7 mg, 0.37 mmol) and DMAP (22.7 mg, 0.186 mmol). The mixture was stirred at room temperature for overnight. The mixture was diluted with DCM (100 mL), and then washed with brine, dried over Na2SO4, evaporated in vacuum. The resulted residue was purified by prep-HPLC to give the desired compound G124 (18 mg)1H NMR (400 MHz, DMSO-d6) δ ppm 11.56 (s, 1H), 9.65 (s, 1H), 8.46-8.34 (m, 2H), 7.97 (s, 1H), 7.76-7.49 (m, 2H), 7.45-7.12 (m, 7H), 7.08-6.98 (m, 1H), 6.96-6.77 (m, 3H), 6.44-6.19 (m, 3H), 5.18-4.96 (m, 1H), 4.66-4.42 (m, 1H), 4.23 (s, 1H), 4.10-3.78 (m, 3H), 3.79-3.62 (m, 1H), 3.45-3.35 (m, 1H), 3.30-3.03 (m, 5H), 2.89-2.58 (m, 7H), 2.07-1.82 (m, 4H), 1.77-1.59 (m, 6H), 1.57-1.48 (m, 2H), 1.40-1.29 (m, 2H), 1.16-1.044 (m, 5H), MS (ESI, m/e) [M+1]+968.9.


Example G125: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-((R)-2-(2-(1-(methylglycyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G124 starting from tert-butyl (R)-(2-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-2-oxoethyl)(methyl)carbamate. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.53 (s, 1H), 8.43-8.23 (m, 2H), 7.95 (s, 1H), 7.68-7.51 (m, 2H), 7.45-7.14 (m, 7H), 7.07-7.00 (m, 1H), 6.96-6.85 (m, 2H), 6.85-6.74 (m, 1H), 6.70-6.51 (m, 1H), 6.43-6.33 (m, 1H), 6.29 (s, 1H), 5.38-5.25 (m, 1H), 5.13-5.01 (m, 1H), 4.60-4.48 (m, 1H), 4.23 (s. 1H), 3.94-3.69 (m, 3H), 3.64-3.53 (m, 1H), 3.43-3.38 (m, 1H), 3.26-3.17 (m, 3H), 3.07-2.76 (m, 5H), 2.04-1.92 (m, 5H), 1.76-1.59 (m, 6H), 1.56-1.43 (m, 4H), 1.13-1.03 (m, 5H), MS (ESI, m/e) [M+1]+954.9


Example G126: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(1-(3-(dimethylamino)propanoyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G124 starting from (R)-1-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-3-(dimethylamino)propan-1-one. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 11H), 9.17 (s, 1H), 8.52-8.21 (m, 2H), 7.97 (s, 1H), 7.72-7.61 (m, 1H), 7.61-7.48 (m, 1H), 7.47-7.09 (m, 7H), 7.08-6.96 (m, 1H), 6.96-6.74 (m, 3H), 6.45-6.22 (m, 3H), 5.15-4.91 (m, 1H), 4.68-4.49 (m, 1H), 4.23 (s, 1H), 4.02-3.87 (m, 1H), 3.80-3.66 (m, 1H), 3.46-3.36 (m, 1H), 3.29-3.10 (m, 6H), 2.89-2.79 (m, 2H), 2.79-2.72 (m, 6H), 2.71-2.64 (m, 1H), 2.05-1.84 (m, 3H), 1.81-1.40 (m, 10H), 1.40-1.27 (m, 3H), 1.16-1.01 (m, 5H), MS (ESI, m/e) [M+1]+982.9.


Example G127: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-((R)-2-(2-(1-(2-amino-2-methylpropanoyl)piperidin-4-yl)phenyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example G124 starting from tert-butyl (R)-(1-(4-(2-(1-(4-bromophenyl)pyrrolidin-2-yl)phenyl)piperidin-1-yl)-2-methyl-1-oxopropan-2-yl)(tert-butoxycarbonyl)carbamate. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.56 (s, 1H), 8.48-8.26 (m, 2H), 7.97 (s, 1H), 7.80-7.62 (m, 1H), 7.62-7.49 ((n, 1H), 7.48-7.13 (m, 8H), 7.08-6.99 (m, 1H), 6.94-6.83 (m, 2H), 6.42-6.25 (m, 3H), 5.11-5.02 (m, 1H), 4.45-4.32 (m, 1H), 4.23 (s, 1H), 3.77-3.68 (m, 1H), 3.61-3.53 (m, 1H), 3.52-3.49 (m, 1H), 3.43-3.37 (m, 1H), 3.25-3.17 (m, 2H), 2.03-1.89 (m, 10H), 1.70-1.43 (m, 15H), 1.14-1.05 (m, 5H), MS (ESI, m/e) [M+1]+968.9.


Example G128: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-N-((4-(((1-acetylpiperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((1-acetylpiperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.69 (s, 1H), 8.62 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.83 (d, J=8.8 Hz, 1H), 7.58-7.51 (m, 3H), 7.35-7.28 (m, 3H), 7.14-7.04 (m, 4H), 6.90 (s, 1H), 6.85 (d, J=8.8 Hz, 1H), 6.42-6.32 (m, 3H), 5.21 (d, J=8.0 Hz, 1H), 4.38 (d, J=8.8 Hz, 1H), 3.85-3.71 (m, 2H), 3.33-3.31 (m, 2H), 2.92-2.88 (m, 1H), 2.49-2.40 (m, 2H), 2.08-1.65 (m, 11H), 1.12-0.94 (m, 4H), 0.75-0.71 (m, 2H), MS (ESI, m/e) [M+1]+853.8.


Example G129: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((1-(methylsulfonyl)piperidin-4-yl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-(((1-(methylsulfonyl)piperidin-4-yl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.16 (s, 1H), 11.69 (s, 1H), 8.63 (s, 1H), 8.56 (s, 1H), 8.04 (s, 1H), 7.83 (d, J=8.8 Hz, 1H), 7.58-7.51 (m, 3H), 7.34-7.28 (m, 3H), 7.14-7.04 (m, 4H), 6.90 (s, 1H), 6.85 (d, J=8.8 Hz, 1H), 6.42-6.32 (m, 3H), 5.21 (d, J=8.0 Hz, 1H), 3.75-3.45 (m, 4H), 3.03-3.01 (m, 1H), 2.83 (s, 1H), 2.68-2.62 (m, 2H), 2.49-2.40 (m, 1H), 2.08-1.65 (m, 10H), 1.32-1.26 (m, 2H), 1.05-0.91 (m, 2H), 0.79-0.66 (m, 2H), MS (ESI, m/e) [M+1]+889.8.


Example G130: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((2-morpholinoethyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((2-morpholinoethyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.01 (br, 1H), 11.70 (s, 1H), 8.80-8.65 (m, 1H), 8.60-8.45 (m, 1H), 8.10-7.95 (m, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.60-7.40 (m, 3H), 7.40-7.20 (m, 3H), 7.15-6.95 (m, 4H), 6.94-6.80 (m, 2H), 6.45-6.25 (m, 3H), 5.25-5.10 (m, 1H), 3.80-3.60 (m, 4H), 3.50-3.30 (m, 4H), 2.80-2.60 (m, 6H), 2.16-1.76 (m, 5H), 1.10-0.90 (m, 2H), 0.80-0.65 (m, 2H), MS (ESI, m/e) [M+1]+827.8.


Example G131: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-((2-(tetrahydro-2H-pyran-4-yl)-2-azaspiro[3.3]heptan-6-yl)amino)phenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 3-nitro-4-((2-(tetrahydro-2H-pyran-4-yl)-2-azaspiro[3.3]heptan-6-yl)amino)benzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.54 (s, 1H), 8.38 (s, 1H), 8.08 (s, 1H), 7.94 (s, 1H), 7.66 (s, 1H), 7.55 (d, J=8.0 Hz, 1H), 7.42 (s, 1H), 7.36-7.28 (m, 3H), 7.26-7.24 (m, 1H), 7.11-7.08 (m, 1H), 7.04-6.97 (m, 2H), 6.93-6.84 (m, 2H), 6.63-6.61 (m, 1H), 6.36 (d, J=8.6 Hz, 2H), 6.30 (s, 1H), 5.32 (s, 1H), 5.21-5.20 (m, 1H), 4.02-3.69 (m, 5H), 3.28-3.19 (m, 3H), 3.00 (s, 5H), 2.12-1.80 (m, 9H), 1.45 (s, 1H), 1.08-0.93 (m, 3H), 0.84-0.81 (m, 4H), 0.70 (s, 1H), MS (ESI) m/e [M+1]+893.9.


Example G132a and Example G132b: (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-(cis or trans)-((dimethyl(oxo)-16-sulfaneylidene)amino)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide; (R)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-(((4-(trans or cis)-((dimethyl(oxo)-16-sulfaneylidene)amino)cyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with (R)-2-(2-cyclopropylphenyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 3 4-(((4-((dimethyl(oxo)-16-sulfaneylidene)amino)cyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. G132a was obtained as faster peak by separation and purification of crude product with prep-HPLC. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.10 (s, 1H), 11.70 (s, 1H), 8.64-8.47 (m, 2H), 8.04 (d, J=2.2 Hz, 1H), 7.81 (d, J=8.5 Hz, 1H), 7.62-7.45 (m. 3H), 7.38-7.25 (m, 3H), 7.14-6.98 (m, 4H), 6.97-6.80 (m, 2H), 6.47-6.24 (m, 3H), 5.24-5.16 (m, 1H), 3.77-3.65 (m, 1H), 3.52-3.37 (m, 3H), 3.28-3.20 (m, 2H), 3.00 (s, 6H), 2.04-1.83 (m, 4H), 1.74-1.63 (m, 1H), 1.56-1.44. (m, 6H), 1.04-0.92 (m, 2H), 0.88-0.63 (m, 4H), MS (ESI, m/e) [M+1]+901.8. G132b was obtained as slower peak by separation and purification of crude product with prep-HPLC. MS (ESI, m/e) [M+1]+901.8.


Example G133: (R or S)-3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4,4-difluoropyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example A147b by replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.20 (s, 1H), 11.69 (s, 1H), 8.55 (s, 2H), 8.04 (d, J=2.4 Hz, 1H), 7.81 (d, J=9.1 Hz, 1H), 7.58-7.49 (m, 3H), 7.39-7.29 (m, 3H), 7.16-6.99 (m, 5H), 6.92 (s, 1H), 6.47-6.32 (m, 3H), 5.47 (t, J=7.4 Hz, 1H), 4.29-4.14 (m, 2H), 3.98-3.87 (m, 1H), 3.4 (t, J=6.0 Hz, 2H), 2.40-2.30 (m, 1H), 2.03-1.98 (m, 1H), 1.69 (s, 1H), 1.66 (s, 1H), 1.55 (s, 1H), 1.52 (s, 1H), 1.33 (t, J=10.9 Hz, 2H), 1.23 (s, 2H), 1.15-1.12 (m, 1H), 1.09 (s, 3H), 1.00-0.94 (m, 2H), 0.79-0.75 (m, 1H), 0.72-0.70 (m, 11H), MS (ESI, m/e) [M+1]+876.8.


Example G134: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)-4-(trifluoromethyl)pyrrolidin-1-yl)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compounds were synthesized following the procedures similar to those in Example A1 by replacing 2-phenylpyrrolidine with 2-(2-cyclopropylphenyl)-4-(trifluoromethyl)pyrrolidine, and replacing 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide with 4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrobenzenesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ ppm: 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.18 (s, 1H), 11.70 (s, 1H), 8.65-8.45 (m, 2H), 8.09-7.99 (m, 1H), 7.82 (d, J=9.0 Hz, 1H), 7.67-7.42 (m, 3H), 7.41-7.18 (m, 3H), 7.18-6.81 (m, 6H), 6.52-6.20 (m, 3H), 5.30 (t, J=7.4 Hz, 1H), 4.24 (s, 1H), 3.93-3.73 (m, 2H), 3.60-3.43 (m, 1H), 3.30-3.18 (m, 2H), 3.042-2.90 (m, 1H), 2.16-2.02 (m, , 1H), 1.89-1.74 (m, 1H), 1.74-1.42 (m, 5H), 1.40-1.27 (m, 2H), 1.20-1.02 (m, 5H), 1.02-0.89 (m, 2H), 0.80-0.65 (m, 2H), MS (ESI, m/e) [M+1]+908.7.


Example G134: 4′-((R)-2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-((6-fluoro-1H-indol-4-yl)oxy)-N-((4-((((1r, 4r)-4-hydroxy-4-methylcyclohexyl)methyl)amino)-3-nitrophenyl)sulfonyl)-[1,1′-biphenyl]-4-carboxamide



embedded image



1H NMR (DMSO-d6) δ ppm: 12.21 (s, 1H), 11.26 (s, 1H), 8.56 (s, 1H), 8.44 (s, 1H), 7.68-7.63 (m, 1H), 7.59-7.54 (m, 1H), 7.46-7.43 (m, 1H), 7.38-7.35 (m, 2H), 7.23 (s, 1H), 7.13-7.06 (m, 2H), 7.02-6.95 (m, 3H), 6.88-6.82 (m, 2H), 6.40-6.35 (m, 2H), 6.24-6.13 (m, 2H), 5.26-5.20 (m, 1H), 3.27 (s, 3H), 2.54 (s, 1H), 2.07-1.97 (m, 3H), 1.92-1.80 (m, 1H), 1.72-1.62 (m, 3H), 1.58-1.3 (m, 2H), 1.38-1.30 (m, 3H), 1.10 (s, 4H), 1.03-0.95 (m, 2H), 0.92-0.78 (m, 2H), 0.73-0.65 (m, 1H), MS (ESI) m/e [M+1]+857.8.


Example H3: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


Step 1: 5-((2-(trimethylsilyl)ethoxy)methyl)-1,5-dihydropyrazolo[4,3-b]pyrrolo[3,2-e]pyridine

To the solution of 6-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-5-amine (1.39 g) and Ac2O (1.94 g) in toluene (15 mL) was added AcOK (1.96 g), and the mixture was stirred at 25° C. for 3 hours under N2 atmosphere. Then isoamyl nitrate (1.46 g) was added and the reaction mixture was stirred at 60° C. for 14 hr. After cooled to room temperature, the mixture was quenched by aq. NaHCO3 (200 mL) and then extracted with DCM (100 mL×3). The combined organic layer was washed with brine (100 mL), dried over anhydrous Na2SO4 and concentrated in vacuum. The resulted residue (2 g) was dissolved in MeOH (25 mL) and K2CO3 (5.5 g) was added. After stirred at 25° C. for 2 hours under N2 atmosphere, the reaction mixture was poured into water (200 mL), and then extracted with DCM (100 ml×3). The combined organic layer was washed with brine (100 mL), dried over anhydrous Na2SO4 and concentrated in vacuum. The crude product was purified by column chromatography on silica gel (eluent: Petroleum ether/Ethyl acetate=100/1 to 5/1) to obtain 5-((2-(trimethylsilyl)ethoxy)methyl)-1,5-dihydropyrazolo[4,3-b]pyrrolo[3,2-e]pyridine (500 mg) as a yellow solid. MS (ESI, m/e) [M+1]+288.9.


Step 2: methyl 4-bromo-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate

To the solution of 5-((2-(trimethylsilyl)ethoxy)methyl)-1,5-dihydropyrazolo[4,3-b]pyrrolo[3,2-e]pyridine (600 mg) and methyl 4-bromo-2-fluorobenzoate(700 mg) in DMF (50 mL) was added Cs2CO3 (1.9 g). The mixture was heated to 120° C., and stirred for 6 hours. After cooled to room temperature, the reaction mixture was poured into water and extracted with EA.


The organic layers were dried over anhydrous Na2SO4, concentrated and purified by column chromatography on silica gel to obtain methyl 4-bromo-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate (300 mg). MS (ESI, m/e) [M+1]+500.7.


Step 3: methyl 4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate

Under nitrogen atmosphere, a mixture of methyl 4-bromo-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate (2 (0) mg), 4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-1,3,2-dioxaborolane (160 mg), Pd(dppf)Cl2 (30 mg), and K2CO3 (166 mg) in 1,4-dioxane (50 mL) and H2O (10 mL) was heated to 90° C., and stirred overnight. After cooled to room temperature, the reaction mixture was washed with water, brine and dried over anhydrous Na2SO4. The organic layers were concentrated and purified by column chromatography on silica gel with 10%-50% EA/PE to obtain methyl 4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate (300 mg) as a white foam.


Step 4: methyl 4′-oxo-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate

To a solution of methyl 4-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-2-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)benzoate (300 mg) in THF was added 2 N HCl acid (1 mL) and the mixture was stirred for 3 hours at room temperature. Then the reaction mixture was adjusted to PH ˜8 with saturated aq. NaHCO3solution. After extraction with EA, the organic lavers were dried over anhydrous Na2SO4, concentrated and purified by chromatography on silica gel to give (200 mg) as a white solid.


Step 5: methyl 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1-biphenyl]-4-carboxylate

To the solution of 2-(2-cyclopropylphenyl)pyrrolidine(50.8 mg, 0.29 mmol), 4′-oxo-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate(150 mg) in DCM (25 mL) was HOAc (1 drop) and NaBH(OAc)3 added. After stirred overnight at room temperature, the reaction mixture was washed with saturated aq. NaHCO3 solution. The organic layers were dried over anhydrous Na2SO4, concentrated and purified by chromatography on silica gel to give as a white solid. MS (ESI, m/e) [M+1]+687.9.


Step 6: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid

To a solution of methyl 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxylate(150 mg) in MeOH/THF(15 mL/5 mL) was added NaOH(3N, 1 mL). After stirred for 4 hours at room temperature, the reaction mixture was acidified by 1N HCl acid to PH ˜5 and was then extracted with DCM. The organic layers were dried over anhydrous Na2SO4 and concentrated. The crude 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid was used in next step directly without further purification. MS (ESI, m/e) [M+1]+673.9.


Step 7: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide

To a solution of 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid (100 mg, 0.15 mmol) in dichloromethane (25 mL) was added O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetraMethyluroniuMhexafluorophosphate (86 mg, 0.225 mmol) and trimethylamine (0.5 mL). The mixture was stirred for 0.5 hour at room temperature, then 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (95 mg, 0.3 mmol) was added. After stirred overnight at room temperature, the mixture was washed with water (10 mL) and the organic layers were dried over anhydrous Na2SO4 and concentrated in vacuum. The residue was further purified by prep-HPLC to obtain 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide (50 mg). MS (ESI, m/e) [M+1]+970.8.


Step 8: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide

To a solution of 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-3-(5-((2-(trimethylsilyl)ethoxy)methyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide (40 mg) in DCM(10 mL) was added TFA(0.5 mL), the mixture was stirred overnight at room temperature. After removal of solvent, the residue was diluted with 20 mL DCM and was then basified by saturated aq. NaHCO3 solution. The isolated organic layers were concentrated and purified by chromatography on silica gel to obtain the desired compound. 1H NMR (400 MHz, DMSO-d6) δ ppm: 12.43 (s, 0.5H), 11.39 (s, 1H), 10.70 (s, 0.5H), 8.30-8.20 (m, 2H), 8.07 (s, 2H), 7.69-7.39 (m, 5H), 7.35-7.15 (m, 2H), 7.13-7.07 (m, 2H), 6.30-6.15 (m, 2H), 6.13 (s, 1H), 5.33 (d, J=4.7 Hz, 1H), 3.86 (t, J=14.2 Hz, 3H), 3.20-3.15 (m, 3H), 2.15-1.97 (m, 8H), 1.83 (s, 8H), 1.70-1.61 (m, 5H), 1.48-1.35 (m, 2H), MS (ESI, m/e) [M+1]+840.8, and Example H3a: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-3-(5-(hydroxymethyl)pyrazolo[4,3-b]pyrrolo[3,2-e]pyridin-1 (5H)-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide, MS(ESI, m/e) [M+1]+870.8.


Example 17: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-nitrophenyl)sulfonyl)-2′3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-nitrobenzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.66 (s, 1H), 8.42 (s, 1H), 8.33 (s, 1H), 7.98 (s, 1H), 7.81-7.68 (m, 2H), 7.48 (s, 3H), 7.32-6.85 (m, 10H), 6.71 (s, 1H), 6.36 (s, 1H), 5.97-5.82 (m, 1H), 4.10 (s, 1H), 3.55 (s, 4H), 3.18 (s, 1H), 3.00 (s, 1H), 2.33 (s, 3H), 2.20 (s, 3H), 2.11-1.96 (m, 4H), 1.89 (s, 1H), 1.72 (s, 1H), 1.23 (s, 5H), 0.97-0.82 (m, 3H), 0.64 (d, J=44.8 Hz, 2H), MS (ESI, m/e) [M−1]+968.7.


Example 18: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-nitrophenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-nitrobenzenesulfonamide and 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.68-9.49 (m, 1H), 8.09 (s, 1H), 7.94 (s, 1H), 7.81-7.73 (m, 3H), 7.38-7.25 (m, 8H), 7.21-7.11 (m, 2H), 6.90 (s, 2H), 6.72 (s, 1H), 6.12-6.03 (m, 1H), 4.02 (s, 1H), 3.76-3.73 (m, 1H), 3.51 (s, 4H), 2.99 (s, 4H), 2.56 (s, 2H), 2.33-2.17 (s, 2H), 2.17-2.10 (m, 5H), 2.03-1.96 (m, 3H), 1.67-1.45 (m, 2H), 1.45 (s, 1H), 1.24 (s, 5H), 1.00 (s, 2H), 0.78 (s, 1H), 0.65 (s, 1H), MS (ESI, m/e) [M+1]+922.7.


Example 19: 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-((trifluoromethyl)sulfonyl)phenyl)sulfonyl)-2′3′4′5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-((trifluoromethyl)sulfonyl)benzenesulfonamide and 3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]+1055.3.


Example 110: 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-N-((4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-((trifluoromethyl)sulfonyl)phenyl)sulfonyl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxamide



embedded image


The desired compound was synthesized with 4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-3-((trifluoromethyl)sulfonyl)benzenesulfonamide and 4′-(2-(2-cyclopropylphenyl)pyrrolidin-1-yl)-2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid following the procedures similar to those in Example G8. MS (ESI, m/e) [M+1]+923.3.


Biochemical Assay
Method A: Bcl-2/Bcl-X Fluorescence Polarization Assay

Compounds disclosed herein were tested for blocking of Bcl-2/Bcl-x1 protein with its ligand in an assay based on fluorescence polarization methodology. Recombinant human 2.7 nM Bcl-2/1.3 nM Bcl-x1 protein was pre-incubated with a serial dilution of compounds disclosed herein (maximum concentration is 1 μM for Bcl-2 assay, and 10 μM or 1 μM for Bcl-x1 assay, 3-fold serially diluted, 10 points) at room temperature for 0.5 hour in an assay buffer containing 20 mM potassium phosphate buffer, pH 7.5, 50 mM NaCl, 1 mM EDTA, 0.05% Tween-20, 0.01% BSA. Then the FITC labeled Bak peptide Ac-GQVGRQLAIIGDK(FITC)INR-amide (1 nM for Bcl-2, 0.82 nM for Bcl-x1) was added to plate and further incubated at room temperature for 0.5 h. The FP signals (485 nm-520 nm-520 nm) were read on BMG PHERAstar FS or BMG PHERAstar FSX instrument. The inhibition percentage of Bcl-2/Bcl-x1 interaction with its ligand in presence of increasing concentrations of compounds was calculated based on the FP signals. The IC50 for each compound was derived from fitting the data to the four-parameter logistic equation by Graphpad Prism software.


Method B: Bcl-2/Bcl-X TR-FRET Assay

Compounds disclosed herein were tested for blocking of Bcl-2/Bcl-X protein with its ligand in an assay based on Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) methodology. Recombinant human 0.05 nM Bcl-2/0.03 nM Bcl-X protein was pre-incubated with a serial dilution of compounds disclosed herein (maximum concentration is 0.1 μM for Bcl-2 assay, and 10 μM for Bcl-x1 assay, 3-fold serially diluted, 10 points; or maximum concentration is 0.02 μM for Bcl-2 assay, and 2 μM for Bcl-x1 assay, 3-fold serially diluted, 10 points) at room temperature for 0.5 hour in an assay buffer containing 20 mM potassium phosphate buffer, pH 7.5, 50 mM NaCl, 1 mM EDTA, 0.05% Tween-20, 0.01% BSA. Then the FITC labeled Bak peptide Ac-GQVGRQLAIIGDK(FITC)INR-amide (0.5 nM for Bcl-2, 0.3 nM for Bcl-x1) and MAb Anti 6His Tb cryptate Gold were added to plate and further incubated at room temperature for 1 hour. The TR-FRET signals (337 nm-520 nm-490 nm) were read on BMG PHERAstar FSX instrument. The inhibition percentage of Bcl-2/Bcl-X interaction with its ligand in presence of increasing concentrations of compounds was calculated based on the TR-FRET signals. The IC50 for each compound was derived from fitting the data to the four-parameter logistic equation by Graphpad Prism software. To improve the assay sensitivity and test more potent compounds in the present application, the bcl-2 concentration was reduced in method B.


Cell Proliferation Assay

The Bcl-2 family proteins are central regulators of apoptosis. Bcl-2 and Bcl-XL are antiapoptotic factors within this family. In our cell proliferation assay, the Bcl-2 dependent acute lymphoblastic leukemia (ALL) cell line, RS4:11, was used to study the cellular potency of Bcl-2 inhibitors. The cells (ATCC, CRL-1873) were cultured in RPMI-1640 complete medium (RPMI-1640 medium, HEPES (Gibco, 22400-105) supplemented with 10% fetal bovine serum (FBS) (Gibco, 10099-1441), 100 unit/ml penicillin and 100 μg/ml streptomycin (Gibco, 15140122)) and maintained in a humidified chamber at 37° C. containing 5% CO2. Each compound was serially diluted with 1 μM as the maximum concentration. To test the apoptotic effect of the compounds, the cells were seeded at 50,000 in 180 μl per well in 96-well plates and treated with 10-point dilution series of each compound for 48 hours at 37° C. Cell viability was assessed after the treatment using CellTiter-GLO luminescent assay (Promega) according to the manufacturer's recommendations. Briefly, 30 W of CellTiter-GLO reagent was added into 200 μl of cell culture. Mixture was agitated on an orbital shaker for 5 minutes to ensure cell lysis followed by 7 mins incubation at room temperature to allow development and stabilization of luminescent signals, which corresponded to quantity of ATP and thus the quantity of metabolically active cells. Luminescent signals were measured using PHERAstar FS reader (BMG). Mean IC50 values for cell viability were determined with GraphPad Prism software. The Bcl-XL-dependent ALL cell line, Molt-4 (ATCC, CRL-1582) was also used in cell proliferation assay to further evaluate the specificity of these inhibitors. Similarly, the cells were cultured in RPMI-1640 complete medium (RPMI-1640 medium, HEPES (Gibco, 22400-105) supplemented with 10% fetal bovine serum (FBS) (Gibco, 10099-1441), 100 unit/ml penicillin and 100 μg/ml streptomycin (Gibco, 15140122) and 1×GlutaMAX (Gibco, 35050-061)) and maintained in a humidified chamber at 37° C. containing 5% CO2. The anti-proliferative IC50 s of these compounds were similarly determined as a percentage of viable cells upon treatment compared to the untreated control using CellTiter-GLO luminescent assay.









TABLE 1-A







Biological data tested with Method A












Biochemical activity
Cellular activity




(IC50, nM)
(IC50, nM)













Example
BCL-2
Bcl-xl
RS4; 11
Molt-4

















A1
43
4570
582
6230



A2
140
7152
558
6191



A3
122
ND
1191
7038



A4
16
2145
74
>10000



A4a
3.8
987
36
4134



A4b
36
2697
72
4145



A5
449
ND
ND
ND



A6
3689
ND
ND
ND



A7
417
ND
ND
ND



A8
7.2
900
48
7584



A8a
1.9
162
19
1870



(faster







isomer)







A8b
33
4096
147
>10000



(slower







isomer)







A9
1884
ND
ND
ND



A10
1075
ND
ND
ND



A11
14
926
50
>10000



A12
6.6
645
30
5156



A13
43
ND
404
>10000



A14
133
ND
1570
>10000



A15
31
>10000
200
>10000



A16
80
>10000
813
>10000



A17
1122
ND
ND
ND



A18
14
724
73
>10000



A19
191
ND
1025
>10000



A20
71
ND
1505
>10000



A21
41
2168
6229
>10000



A22
76
>10000
1096
8911



A23
241
ND
ND
ND



A24
13
879
69
4498



A25
34
2169
260
9176



A26
54
5889
454
7301



A27
10
2326
203
>10000



A28
281
ND
1613
6689



A29
26
ND
1599
>10000



A30
221
ND
1144
5797



A31
20
4299
85
>10000



A32
26
2915
123
4145



A33
87
ND
1367
>10000



A35
13
1237
145
>10000



A46
130
ND
ND
ND



A47
977
ND
ND
ND



A54
9.0
2693
90
6249



A55
36
ND
215
8030



A56
14
ND
ND
ND



A57
27
5710
156
4395



A61
>1000
ND
ND
ND



A62
59
ND
ND
ND



A63
29
>10000
328
>10000



A64
31
ND
ND
ND



A65
8.5
372
40
3306



A67
18
1818
328
>10000



A68
3.9
132
20
>10000



A69
40
ND
135
4900



A70
13
974
123
6348



A73
2.9
138
20
2107



A74
5.3
374
8.6
1847



A75
17
1692
61
5336



A76
5.2
1450
47
2519



A77
23
4224
55
1858



A79
56
ND
ND
ND



A80
186
ND
ND
ND



A81
942
ND
ND
ND



A82
15
1847
217
5176



A83
43
ND
ND
ND



A84
283
ND
ND
ND



A85
125
ND
ND
ND



B1
49
>10000
560
>10000



B2
83
ND
339
5519



B3
85
ND
565
5194



B4
95
ND
2004
>10000



B5
141
ND
736
5090



B6
17
>10000
91
7264



B8
64
ND
>10000
>10000



B12
16
1923
586
>10000



B17
5.3
2178
48
8933



B18
2.2
310
30
>10000



B21
89
ND
ND
ND



C1
5.9
3696
109
>10000



C2
14
1501
184
6757



C3
7.3
1816
56
7722



C4
7.9
5131
112
5563



C5
53
ND
4259
>10000



C6
24
ND
1295
>10000



C7
30
ND
2182
>10000



C8
58
ND
694
>10000



C9
26
2686
185
>10000



C10
31
4646
147
6101



C11
89
ND
261
>10000



C12
226
ND
ND
ND



C13
78
ND
335
>10000



C14
18
>10000
93
7933



C15
62
ND
ND
ND



C16
57
>10000
435
>10000



C17
124
ND
ND
ND



C18
21
4159
121
9823



C19
28
5708
204
7266



C21
49
ND
132
5444



C22
60
ND
ND
ND



C24a
3.0
2143
105
>10000



C24b
20
2483
852
>10000



C26a
32
3241
353
7722



C26b
62
ND
ND
ND



C28
29
4324
280
>10000



C31
3.3
1118
41
5599



C36
41
6879
233
7454



C37
51
ND
ND
ND



C39
19
6310
119
>10000



C40
14
5539
383
>10000



C41
12
4975
122
>10000



C42
18
5457
226
>10000



C45
48
ND
ND
ND



C46
30
8846
106
>10000



C47
722
ND
ND
ND



C48
117
ND
ND
ND



C51
14
5761
59
9477



C52
92
2317
ND
ND



C53
23
ND
180
4217



C54
41
5457
185
5792



C55
12
1099
86
5300



C57
30
5126
463
>10000



C60
7.3
>10000
107
>10000



C62
147
ND
ND
ND



C63
69
ND
ND
ND



C66
14
1947
3012
>10000



C67
110
ND
ND
ND



C69
28
4340
243
>10000



C81
18
2207
410
>10000



C86
96
>10000
748
9817



C87
11
2411
1055
>10000



C88a
20
3593
155
5639



C88b
26
4115
198
7706



C89
15
1002
328
7612



C90
63
9932
291
1469



C99
15
1561
645
>10000



C118
11
>10000
339
9522



C125
13
3708
104
>10000



C126
3.7
1915
24
>10000



C127
12
2762
53
>10000



C128
58
ND
ND
ND



C129
92
ND
ND
ND



C131
19
6594
621
>10000



C132
50
>10000
324
6885



C133
756
ND
ND
ND



C134
8.7
>10000
125
7126



C135
11
>10000
72
6550



C136
16
5406
126
8660



C137
174
ND
ND
ND



C138
28
>10000
127
>10000



C139
27
7086
346
>10000



C140
135
ND
ND
ND



C141
14
4271
94
4115



C142
34
8240
153
2593



C143
59
ND
569
4992



C144
80
ND
ND
ND



C145
45
ND
ND
ND



C146
79
ND
ND
ND



C152
93
ND
ND
ND



C161
51
ND
400
>10000



C162
90
ND
580
>10000



C163
16
2300
171
9054



C164
21
6594
141
4139



C165
6.7
3663
96
>10000



C166
72
ND
ND
ND



C167
92
ND
ND
ND



C168
17
4451
363
>10000



C169
52
ND
ND
ND



C170
6.4
3613
118
>10000



C171
15
1450
492
>10000



C172
5.2
123
131
>10000



C173
121
ND
ND
ND



C174
23
7700
260
>10000



C175
20
2826
476
>10000



C176
39
ND
ND
ND



C177
27
8037
451
>10000



C178
97
ND
ND
ND



C179
36
3486
151
5579



C180
23
3998
118
1989



C181
45
ND
ND
ND



C182
226
ND
ND
ND



C183
4.7
1054
187
>10000



C184
15
>10000
226
7116



C185
109
ND
ND
ND



C186
98
ND
ND
ND



C187
61
ND
ND
ND



C-189
29
ND
79
6506



C190
57
ND
ND
ND



C191
93
ND
ND
ND



C192
21
8397
57
6831



C193
19
>10000
159
3946



C194
61
ND
ND
ND



C195
19
ND
>10000
>10000



D1a
3080
ND
ND
ND



D1b
27
3744
377
>10000



D2a
862
ND
ND
ND



D2b
6.5
1421
60
ND



D2a-S
520
ND
ND
ND



D2b-S
4.0
949
19
5745



D2a-R
1016
ND
ND
ND



D2b-R
12
3319
108
>10000



D3a
865
ND
ND
ND



D3b
4.0
3053
47
>10000



D4a
2418
ND
ND
ND



D4b
15
7261
94
6258



D5
12
ND
43
7445



D6
19
6631
178
5053



D13-1a
3846
ND
ND
ND



D13-1b
22
ND
ND
ND



D14-1a
2181
ND
ND
ND



D14-1b
23
9747
182
>10000



D63a
2020
ND
ND
ND



D63b
12
>10000
259
>10000



D96
5.9
3441
43
>10000



D97a
631
ND
ND
ND



D97b
4.0
1613
44
8270



D99
>1000
ND
ND
ND



D100
107
ND
ND
ND



D101
66
ND
ND
ND



D102
36
>10000
1038
>10000



D103
6.7
3797
144
>10000



D104
1150
ND
ND
ND



D105
>1000
ND
ND
ND



D106
>1000
ND
ND
ND



E1
54
ND
1630
>10000



E2
20
6924
583
>10000



E3
16
1758
931
>10000



E4
15
ND
798
>10000



E12
7.2
763
144
>10000



E13
6.8
423
82
3800



F1
49
ND
1804
6553



F2
755
ND
ND
ND



F5
2.8
230
4.3
6184



F9
91
ND
ND
ND



F11
37
6665
329
>10000



F30
34
>1000
290
>10000



F31
107
ND
ND
ND



F32
13
>10000
137
7038



F33
149
ND
ND
ND



F36
4.6
2000
31
6086



G1
12
2490
88
6773



G1C
6.9
1528
37
5165



G2
16
93
208
8167



G2C
14
187
159
>10000



G3
33
570
455
>10000



G4
24
5376
241
>10000



G5
19
400
197
4704



G6
13
7356
59
6091



G7
125
ND
3854
>10000



G8
6.4
1097
64
>10000



G8-S
4.8
937
25
2465



G8-a
5.3
884
15
5645



G8-b
4.3
868
10
4754



G9
6.2
936
34
4469



G9-a
7.1
1491
42
>10000



G9-b
5.9
1727
28
6450



G9-S
4.2
1099
38
1091



G10a
5.5
3327
12
7494



G10b
17
3804
72
3754



G10b-S
5.4
3294
4.6
3211



G10b-a
4.6
5372
14
4112



G10b-b
3.0
5125
10
4086



G11
4.5
723
40
>10000



G12
18
5955
51
>10000



G13
5.0
407
72
>10000



G16
27
4982
280
>10000



G18
3.4
172
39
>10000



G20
15
4824
53
>10000



G24b
6.7
2184
36
>10000



G24b-S
2.1
1978
12
4465



G24b-a
3.6
1508
10
4583



G24b-b
2.6
1052
4.9
4045



G26
7.0
551
52
5038



G27
9.5
161
118
>10000



G30
4.9
1019
18
5329



G30-S
3.5
1250
19
4831



G30-a
4.5
1362
22
4607



G30-b
3.4
1362
13
4157



G30-R
7.9
884
121
>10000



G31
6.0
302
66
1230



G32
10
1183
123
>10000



G35-S
2.4
398
14
5187



G35-a
1.9
341
15
7583



G35-b
2.2
287
8.2
3540



G36
5.9
137
41
474



G37
4.3
643
103
6627



G39
17
635
116
6262



G63
20
885
86
8597



G64
8.9
1657
70
3738



G70
353
ND
ND
ND



G72
431
ND
ND
ND



G73
252
ND
ND
ND



G75-a
4.6
1024
42
3246



G75-b
3.6
1088
28
2090



G75
5.2
1008
46
>10000



G76
5.3
1163
34
6301



G76-S
4.2
1099
38
8091



G77
5.0
730
24
>10000



G77-S
3.1
720
35
7397



G80a
>1000
ND
ND
ND



G80b
849
ND
ND
ND



G81a
16
8313
49
5487



G81b
5.3
3571
15
8809



G84
12
1118
117
7311



G85-S
59
3692
103
4082



G85-R
2.9
150
10
1837



G86
18
ND
254
9760



G87
18
65
274
2011



G88-S
61
ND
ND
ND



G89-S
59
ND
ND
ND



G90-S
2.8
1574
11
6783



G90-a
3.3
1344
25
3218



G90-b
2.3
1135
16
4655



G91-R
2.4
249
8.5
1726



G92-R
1.8
198
8.2
1266



G92-S
10
1570
37
4257



G93-R
3.6
346
32
3249



G93-S
29
4321
157
2989



G94-R
2.7
157
12
1423



G94-S
12
1317
66
2600



G95-R
3.5
110
16
1439



G95-S
12
1112
91
6197



G96-R
4.9
227
29
2065



G96-S
19
924
55
2744



G97-R
2.2
37
3.9
434



G97-S
8.3
733
35
3030



G98
1.5
65
5.6
1351



G100a
2.8
331
17
3709



G100b
3.3
239
34
3764



G103
13
1404
58
9594



G104
6.5
167
11
1314



G105
51
1249
47
2669



G106
6.0
6701
15
3173



G107-a
1.6
1646
18
7251



G107-b
1.2
1944
11
>10000



G43a
8.2
5049
79
2712



G43b
3.7
2719
22
3042



G108a
3.2
1348
31
>10000



G108b
5.7
1187
24
>10000



G109
5.3
1828
24
>10000



G110a
3.3
1200
13
6182



G110b
6.8
2212
27
5693



G110b-a
5.9
3459
17
3908



G110b-b
4.4
2936
11
2930



G111
6.2
2503
253
>10000



G112
2.5
660
12
4278



G113
7.4
2213
124
>10000



G114
3.2
640
18
5969



G115
9.0
1201
91
>10000



G116
12
6160
20
>10000



G117
4.9
698
70
>10000



H3a
310
ND
ND
ND



H3
27
4572
409
>10000



I7
134
ND
ND
ND



I8
882
ND
ND
ND



I9
>1000
ND
ND
ND



I10
559
ND
ND
ND

















TABLE 1-B







Biological data tested with Method B












Biochemical
Cellular activity


Exam-

activity (IC50, nM)
(IC50, nM)












ple

BCL-2
Bcl-xl
RS4;11
Molt-4















A37

40
ND
ND
ND


A66

1.7
130
289
>10000


A72

33
650
214
>10000


A78

19
4100
1411
>10000


A86

42
ND
ND
ND


A87

30
ND
ND
ND


A68-S

4.8
1000
196
>10000


A68-R

0.28
34
10
5241


A88

32
ND
ND
ND


A89

>100
ND
ND
ND


A90

3.8
280
71
5605


A91

>100
ND
ND
ND


A93

68
ND
ND
ND


A94

21
ND
ND
ND


A95

>100
ND
ND
ND


A96

28
ND
ND
ND


A97

0.32
16
4.8
1410


A98

>100
ND
ND
ND


A99

0.56
57
58
>10000


A100

0.21
17
4.6
>10000


A101

0.055
5.6
7.1
2410


A102

19
ND
ND
ND


A103

0.56
68
11
>10000


A104

1.2
126
16
4613


A105

1.3
144
13
3997


A106

0.3
22
175
>10000


A107

3.5
254
18
3177


A108

6.6
ND
32
>10000


A109

0.68
36
2.7
1317


A110

3.0
276
15
1258


A111

11
ND
31
6290


A112

0.11
12
3.4
1211


A113

0.24
19
8.6
1190


A114

0.089
9.9
2.7
589


A115

0.8
67
22
3835


A116

2.3
150
65
7043


A117a

0.5
61
11
8962


A117b

2.5
150
46
>10000


A118a

0.58
61
3.7
979


A118b

0.15
16
1.2
459


A119

0.96
143
38
>1000


A120

0.47
86
88
>10000


A121

0.88
178
6.6
1799


A122

3.8
ND
48
6919


A123

0.49
89
38.5
3912


A124

4.4
242
14
5844


A125

0.23
21
4.5
489


A126

0.79
32
26
>10000


A127

1.4
170
32
4100


A128

4.4
320
115
>10000


A129

5.4
ND
45
4351


A130

1.2
ND
31
>10000


A131

0.14
24
16
1350


A132

0.63
56
4.2
1993


A133

0.38
57
6.3
5958


A134

0.35
46
2.1
1392


A135

0.25
24
12
751


A136

0.28
19
3.8
1412


A137

0.74
165
10
3537


A138

4.2
115
ND
ND


A139

6.8
ND
2322
>10000


A140

1.8
161
24
>10000


A141

49
ND
ND
ND


A142

12
211
108
2510


A143

16
ND
ND
ND


A144

36
>10000
ND
ND


A145a

8.4
1500
79
5958


A145b

5.8
530
36
3489


A145c

0.44
32
6.8
782


A145d

29
ND
ND
ND


A146

13
1748
22
1900


A147a

20
3202
24
3141


A147b

1.8
230
4.9
1252


A148

62
ND
ND
ND


A149

>100
ND
ND
ND


A150

3.3
1354
41
4108


A151

2.7
ND
26
>10000


A152

33
650
214
>10000


A153

5.9
ND
424
>10000


A154

22
ND
ND
ND


A155

6
2064
94
>10000


A156

17
ND
142
4395


A157

>100
ND
ND
ND


A158

>100
ND
ND
ND


B13

>100
ND
ND
ND


B14

25
>10000
2552
>10000


B15

8.1
>10000
425
9497


B16

3.9
3900
282
>10000


B19a

>100
ND
ND
ND


B19b

>100
ND
ND
ND


B20a

>100
ND
ND
ND


B20b

>100
ND
ND
ND


B21

100
ND
ND
ND


B22

>100
ND
ND
ND


B23

>100
ND
ND
ND


B24

>100
ND
ND
ND


B25

24
ND
154
9873


B26

9
ND
511
>10000


B27

8.9
>10000
340
>10000


B28

11
ND
ND
ND


B29

26
ND
ND
ND


B30

47
ND
ND
ND


B31

660
ND
ND
ND


B32

59
ND
ND
ND


B33

>100
ND
ND
ND


B34

33
ND
ND
ND


B35

17
ND
ND
ND


B36

87
ND
ND
ND


B37

>100
ND
ND
ND


B38

2.3
>10000
115
>10000


B39

>100
ND
ND
ND


B40

69
ND
ND
ND


D107a

29
ND
ND
ND


D107b

1.7
ND
187
>10000


F5

0.045
55
5.8
5890


F23

0.039
35
2.2
3736


F22

0.032
26
1.3
2825


F21

0.022
24
1.1
2035


F24

0.078
58
5.9
2848


F25

0.042
36
2.0
4411


F26

0.034
43
1.9
>10000


F27

1.2
3402
119
>10000


F28

0.98
1523
83
>10000


F29

0.63
3061
86
>10000


F34

0.092
74
6.7
7417


F35

1.4
1300
160
>10000


F36

4.6
2000
31
6086


F37

0.041
20
2.8
1442


F38

0.07
38
3.8
1745


F39a

0.21
210
14
>10000


F39b

3.9
2300
105
>10000


F40

0.045
18
2.7
2702


F41

0.059
22
4.5
4302


F42

44
ND
ND
ND


F43

0.015
18
0.41
2520


F44

0.048
61
1.1
1378


F45

0.036
46
1.0
5979


F46

0.052
28
0.4
2847


F47

0.038
34
0.7
1468


F48

0.074
132
1.8
3753


F49

0.74
2907
123
9342


F50

2.1
5361
349
9342


F51

1.1
1823
43
7000


F52

1.6
9125
107
8988


F53

1.0
835
100
>10000


F54

0.11
154
0.8
1866


F55

0.31
320
44
>10000


F56

0.43
323
11
4016


F57

4.4
2600
342
>10000


F58

4.8
1800
262
>10000


F59

4.7
ND
198
>10000


F60

7.7
5500
517
>10000


F61

0.081
86
27
>10000


F62

0.023
29
1.4
991


F63

0.021
17
0.8
6819


F64

0.02
28
0.8
2442


F65

0.32
1408
45
>10000


F66

57
ND
ND
ND


F67

78
ND
ND
ND


F68

0.12
148
13
>10000


F69

0.076
133
15
>10000


F70

0.24
390
53
>10000


F71

2.1
7700
1287
>10000


F72a

1.3
826
25
7892


F72b

2.0
1879
42
4305


F73

1.1
1507
63
>10000


F74a

1.9
1490
30
7527


F74b

1.4
372
12
4138


F75

1.5
>10000
36
2045


F76

12
2300
2389
>10000


F77

23
ND
ND
ND


F78

0.21
278
1.5
3569


F79

1.1
1860
38
>10000


F80

32
>10000
ND
ND


F81

0.56
666
11
1695


F82

0.82
1067
7.6
2488


F83

6.9
ND
60
4833


F84

3.8
7674
44
2229


F85

0.058
38
3.5
3507


F86

0.15
60
32
>10000


F87

1.5
ND
36
>10000


F88

1.6
2426
13
6977


F89

1.7
3077
27
4013


F90

0.094
99
3.6
>10000


F91a

0.071
164
3.6
1880


F91b

0.063
27
0.38
957


F92

0.025
22
1.2
1370


F93

15
>10000
900
>10000


F94

0.97
1300
32
>10000


F95

0.28
708
7.8
4166


F96

27
ND
ND
ND


F97

0.047
82
1.0
>10000


F98

3.3
1930
14
>10000


F99

0.024
52
2.6
3080


F100

0.058
133
6.4
7032


F101a

0.063
364
11
2960


F101b

0.098
124
4.4
>10000


F102

0.087
271
1.3
3410


F103

0.57
1160
8.9
>10000


F104

0.055
86
0.4
1490


F105

0.091
382
3.1
7700


F106

0.021
67
0.7
1206


F107

0.047
20
0.9
1025


F108

0.05
31
1.1
1191


F109

0.039
167
1.2
3847


F110

0.055
106
2.7
2555


F111

0.03
61
0.4
1663


F112

0.045
42
0.7
871


F113

7.8
9004
103
>10000


F114

2.6
1880
152
2960


F115

6.4
ND
123
>10000


F116

0.13
167
5.4
4709


F117

0.15
45
6.5
1457


F118

0.13
60
120
>10000


F119

0.044
35
2.1
2804


F120

0.025
37
2.7
2520


F121

0.092
181
10
4580


F122

0.74
1960
57
>10000


F123

0.27
688
28.8
>10000


F124a

1
4459
19
>10000


F124b

1.3
4141
27
>10000


F125

0.45
4534
30
>10000


F126

0.076
50
7.5
>10000


F127

0.084
172
2.1
1790


F128

0.12
34
7.8
1810


F129

0.21
534
29
>10000


F130

0.021
23
0.5
7350


F131a

0.046
17
4.9
>10000


F131b

0.061
28
11
>10000


F132a

0.17
335
30
>10000


F132b

0.015
7.1
0.49
4260


G85-R

2.6
140
10
1612


G91-R

1.5
150
8.5
1726


G92-R

1.1
120
8.9
1955


G94-R

1.5
67
15
1935


G95-R

1.6
61
16
1439


G99

3.2
540
36
6905


G101a

6.1
ND
ND
ND


G101b

7.3
320
111
>10000


G102

23
1100
861
>10000


G118

0.068
17
2.8
>10000


G119

0.099
19
3.7
7848


G120

0.17
19
9
>10000


G121

0.095
12
1.6
>10000


G122

0.053
19
1.6
>10000


G123

1.1
176
5.4
3556


G124

0.063
22
3.8
>10000


G125

0.064
14
33
>10000


G126

0.084
12
12
>10000


G127

1.2
150
60.3
>10000


G128

1.2
75
21
765


G129

3.3
123
35
974


G130

9.1
170
82
2338


G131

14
ND
ND
ND


G132a

2.6
250
30
5343


G132b

0.24
297
20
8246


G133

1.6
170
1.5
392


G134

13
3396
33
1427


G135

49
2743
ND
ND





ABT- 199


embedded image


0.34
190
9.5
3166





F133

49
>10000
ND
ND





Ex- ample 8 in CN- 10674 9233A


embedded image


84
>10000
ND
ND





ND: no data.






Bcl-2-G101V Biochemical Assay

Selected compounds disclosed herein were tested for blocking of Bcl-2-G101 protein with its ligand in an assay based on time-resolved fluorescence resonance energy transfer methodology. 0.05 nM of Recombinant human Bcl-2-2101V protein was pre-incubated with a serial dilution of compounds disclosed herein (maximum concentration is 10 PM, 4-fold serially diluted, 10 points, or maximum concentration is 1 uM, 3-fold serially diluted, 10 points) at room temperature for 0.5 hour in an assay buffer containing 20 mM potassium phosphate buffer, pH 7.5, 50 mM NaCl, 1 mM EDTA, 0.05% Tween-20, 0.01% BSA. Then 5 nM of the FITC labeled Bak peptide Ac-GQVGRQLAIIGDK(FITC)INR-amide and Mab Anti-6His Th cryptate Gold was added to plate and further incubated at room temperature for 1 hour. The TR-FRET signals (ex337 nm, em490 nm/520 nm) were read on BMG PHERAstar FSX instrument. The inhibition percentage of Bcl-2-G101V interaction with its ligand in presence of increasing concentrations of compounds was calculated based on the ratio of fluorescence at 490 nm to that at 520 nm. The IC50 for each compound was derived from fitting the data to the four-parameter logistic equation by Graphpad Prism software or Dotmatics. The data was shown in Table 1-C.









TABLE 1-C







Biochemical data of inhibition of mutant Bcl-2-G101V











Biochemical




activity




Bcl-2-G101V,


Example

IC50 (nM)












A114

2.7


F21

0.93


F26

1.2


F43

0.42


F44

1.6


F48

2.1


F63

0.52


F85

1.3


F90

1.4


F91b

0.25


F92

0.86


F99

2.5


F106

0.72


F126

12


F132b

0.31


G122

1.5


G124

1.1





ABT-199


embedded image


28









To further assess the compound's binding affinity to Bcl-2 Gly101Val mutant, selected compounds in Table 1-C together with ABT-199 were examined in biochemical assay. These compounds were confirmed to be unexpectedly more potent than ABT-199 (28 nM), which indicates these compounds may overcome the BCL2 resistant mutant.


TABLE 2 describes ABT-199 its structurally similar analogs and their activity in both of biochemical assay and cellular assay. As can be seen from the table, these analogs exhibit a dramatic trend of decreasing activity (at least more than 10 fold) for Bcl-2 compared with ABT-199. For example, the most similar analog B6 shows about 14 fold less potent in biochemical assay and more than 20 fold less potent in RS4; 11 cellular proliferation assay. The decrease in activity of ABT-199 analogs from B1 to 1B5 ranges from 40 fold to greater than 100 fold in biochemical assay, and the drop potency in RS4:11 cellular proliferation assay are all greater than 80 fold.









TABLE 2







ABT-199 and its structurally similar analogs in the present invention












Biochemical
Cellular




activity#
activity




(IC50, nM)
(IC50, nM)


Example

BCL-2
RS4;11













B1

49
560


B2

83
339


B3

85
565


B4

95
2004


B5

141
ND


B6

17
91





ABT-199


embedded image


1.2
3.8





ABT-199 analog


embedded image


ND
ND





#Data tested with method A.






TABLE 3 Å describes selected compounds without the carbon atom between two rings A and B and their activity or potency in both of biochemical assay and cellular assay.


Compounds in the present patent show unexpected structure-activity relationship (SAR). When ring A is phenyl or spiro ring, compounds (1F5, F55, A4, A8) with an ortho-substituent (e.g., Cl atom or cyclopropyl) on the phenyl group are much more potent (>10 fold) compared to those compounds with the same substituent on other positions of the phenyl group. However, the above SAR with respect to the change of the substitution positions on the phenyl group were not found when the ring A is hexane or hexene group.













TABLE 3A








Biochemical activity
Cellular activity




(IC50, nM)
(IC50, nM)



Example
BCL-2
RS4; 11




















F5B
0.045#
5.8



F53B
1.0#
100



F55B
0.31#
44



F58B
4.8#
262



F60B
7.7#
517



A4A
16
2145



A3A
122
ND



A2A
140
7152



A8A
7.2
48



A10A
1075
ND



A14A
133
1570



C3A
7.3
56



C4A
7.9
112



C192A
21
8397



D1bA
27
3744



D13-1bA
22
ND



D14-1bA
23
9747



D2bA
6.5
60



D3bA
4.0
3053



D4bA
15
7261








#: Data tested with method B.







Table 3B describes some examples with different ring A and their activity or potency in both of biochemical assay and cellular assay. No —CH2— between Ring A and B. Surprisingly, examples F21, F22, F23, F24, F25, F26, F34, F37, F38, F40, F41, F43-F48, F62-F64, F90, F91b, F92, F99, F104, F106, F109, F111, F120, F126, F130 and F132b with spiro ring as ring A have significantly increased activity in both of biochemical assay and cellular assay, compared to examples with other rings as ring A (i.e., examples A8a, G92-R, G94-R, G95-R and G96-R with phenyl rings as ring A, and C3, G30-a, G30-b, G1 Ob-a, G10b-b, G24b-a, G24b-b, G9-a, G9-b, G8-a. G8-b, G107-a, G107-b, G90-a, and G90-b with hexene rings as ring A, and D2b-S and G76-S, G77-S with hexane rings as ring A). Compounds in the current patent show unexpected SAR, which can be further explained by an additional sulfur-pi interaction with Met115 in co-crystal of compound F22 having a spiro ring as ring A with bcl-2 protein compared to those of compounds G10b-a, G10b-b having hexene rings as ring A with bcl-2 protein.


Examples F21, F22, F23, F24, F25, F26, F34, F37, F38, F40, F41, F43-F48, F62-F64, F90, F91 b, F92, F99, F104, F106, F109, F111, F120, F126, F130 and F132b with spiro rings as ring A are 3 to >10 fold more potent than ABT-199 and Example 8 from CN106749233 Å in biochemical assay using method B, and >1 to >8 fold more potent than ABT-199 in cellular assay. Moreover, the selectivity of examples with spiro ring as ring A against Bcl-x1 is better than that of ABT-199 in biochemical assay or cellular assay. Further, the unexpected SAR also happened on the chiral center of pyrrolidine ring. The more potent isomer in example with phenyl ring as ring A has R configuration (i.e., examples G92-R, G94-R, G95-R, G96-R, G118, G122 and G124), while the more potent isomer in example with hexane, hexane or spiro ring as ring A has S configuration.












TABLE 3B









Biochemical activity
Cellular activity




(IC50, nM)
(IC50, nM)












Example

Bcl-2
Bcl-x
RS 4; 11
Molt-4















A8A

7.2
900
48
7584


A8a

1.9
162
19
1870


(faster







isomer)A







G92-RA

1.8
198
8.2
1266


G92-RB

1.1
ND
ND
ND


G94-RA

2.7
157
12
1423


G94-RB

1.5
ND
ND
ND


G95-RA

3.5
110
16
1439


G95-RB

1.6
ND
ND
ND


G96-RA

4.9
227
29
2065


G118

0.068
17
2.8
>10000


G122

0.053
19
1.6
>10000


G124

0.063
22
3.8
>10000


C3A

7.3
1816
56
7722


G30-aA

4.5
1362
22
4607


G30-bA

3.4
1362
13
4157


G10b-aA

4.6
5372
14
4112


G10b-bA

3.0
5125
10
4086


G24b-aA

3.6
1508
10
4583


G24b-bA

2.6
1052
4.9
4045


G9-aA

7.1
1491
42
>10000


G9-bA

5.9
1727
28
6450


G8-aA

5.3
884
15
5645


G8-bA

4.3
868
10
4754


G107-aA

1.6
1646
18
7251


G107-bA

1.2
1944
11
>10000


G90-aA

3.3
1344
25
3218


G90-bA

2.3
1135
16
4655


D2b-SA

4.0
949
19
5745


G76-SA

4.2
1099
38
8091


G77-SA

3.1
720
35
7397


F21A

1.6
ND
ND
ND


F21B

0.022
24
1.1
2035


F22A

1.7
ND
ND
ND


F22B

0.032
26
1.3
2825


F23A

1.7
ND
ND
ND


F23B

0.039
35
2.2
3736


F24B

0.078
58
5.9
2848


F25B

0.042
36
2.0
4411


F26B

0.034
43
1.9
>10000


F34B

0.042
74
6.7
7417


F37B

0.041
20
2.8
1442


F38B

0.07
38
3.8
1745


F40B

0.045
18
2.7
2702


F41B

0.059
22
4.5
4302


F43B

0.015
18
0.41
2520


F44B

0.048
61
1.1
1378


F45B

0.036
46
1.0
5979


F46B

0.052
28
0.4
2847


F47B

0.038
34
0.7
1468


F48B

0.074
132
1.8
3753


F62B

0.023
29
1.4
991


F63B

0.021
17
0.8
6819


F64B

0.02
28
0.8
2442


F90B

0.094
99
3.6
>10000


F91bB

0.063
27
0.38
957


F92B

0.025
22
1.2
1370


F99B

0.024
52
2.6
3080


F104B

0.055
86
0.4
1490


F106B

0.021
67
0.7
1206


F109B

0.039
167
1.2
3847











F111B
















F120B

0.025
37
2.7
2520


F126B

0.076
50
7.5
>10000


F130B

0.021
23
0.5
7350


F132bB

0.015
7.1
0.49
4260





ABT- 199A ABT- 199B


embedded image


2.3 0.34
ND 190
ND 9.5
ND 3166






Venetoclax







(ABT-199, GDC-0199)









F133

49
>10000
ND
ND





Example 8 from CN- 106749233 AB


embedded image


84
>10000
ND
ND






ABiochemical data using method A;




BBiochemical data using method B.







Table 3C describes compounds with spiro ring as ring A and their activity in both of biochemical assay (using method B) and cellular assay. As can be seen from the table, inserting —CH2— between ring A(spiro ring) and ring B (pyrrolidine ring) dramatically reduced the potency, which is consistent with the unexpected structure-activity relationship (SAR). For example, the F115 shows >100 folds and 50 folds less potent than its analog F23 in biochemical assay and cellular assay respectively. F113 and F114 show 28 to 80 folds and 15 to 22 folds less potent than their analog F34 in biochemical assay and cellular assay, respectively.


Moreover, all these compounds are much more potent than Example 8 from CN106749233 Å and F133 in biochemical assay, which may be attributed to the optimum combination of the spiro moiety and the 2-(2-substituted phenyl)pyrrolidin-1-yl moiety or 2-(2-substituted phenyl)-4-alkylpiperazin-1-yl moiety of the compounds disclosed herein.












TABLE 3C#







Biochemical
Cellular




activity #
activity




(IC50, nM)
(IC50, nM)


Example

Bcl-2
RS4;11


















F23

0.039
2.2


F90

0.094
3.6


F115

6.4
123


F34

0.042
6.7


F113

7.8
103


F114

2.6
152


F133

49
ND





Example 8 from CN106749 233A


embedded image


84
ND










Protein Purification and Co-Crystallization of 3Bcl2 with A4a


Recombinant Bcl-2 protein with GST tag was expressed in E. coli BL21 (DE3), induced with 0.1 mM IPTG for 16 h at 16° C. The cells were harvested by centrifugation at 5,000 g for 15 min, re-suspended in lysis buffer containing 20 mM Tris, pH 8.0 and 300 mM NaCl, and lysed by sonication. After centrifugation at 20,000 g for 40 min, the supernatant was incubated with Glutathione S-transferase resin at 4° C. for 30 min. The resin was rinsed three times with the lysis buffer, followed by treatment with PreScission protease at 40° C. overnight. The flow through was concentrated and sequentially applied to a size-exclusion chromatography column (Superdex-75, GE Healthcare) in a buffer containing 20 mM Tris, pH 8.0 and 150 mM NaCl. The peak was collected and concentrated to approximately 10 mg/ml. Protein solution was incubated with A4a for 30 min at 40° C., and then mixed with a reservoir solution containing 0.1 M Bis-Tris, pH 6.6 and 25% PEG 3.350. Co-crystals of Bcl-2 with A4a were obtained by vapor diffusion from hanging drops cultured at 20° C.


X-Ray Data Collection and Structural Determination

Nylon loops were used to harvest the co-crystals and then immersed the crystals in the reservoir solution supplemented with 20% glycerol for 10 sec. Diffraction data were collected on Eiger 16M detector at BL17U1, Shanghai Synchrotron Radiation Facility, and were processed with XDS program. The phase was solved with program PHASER using the Bcl-2 crystal structure (PDB code 4MAN) as the molecular replacement searching model. Phenix refine was used to perform rigid body, TLS, restrained refinement against X-ray data, followed by manually adjustment in COOT program and further refinement in Phenix refine program.


Data Collection and Refinement Statistics
Data Collection


















Data collection




Beamline
BL17U1



Space group
P 1 21 1



Cell dimensions (Å)
a = 31.90 b = 40.60 c = 53.81



Angles (°)
α = 90.00 β = 103.66 γ = 90.00



Resolution (Å)
32.07-1.60 (1.63-1.60)



Total number of reflections
111450 (3130)



Number of unique reflections
17216 (709)



Completeness (%)
 96.7 (82.3)



Average redundancy
 6.5 (4.4)



Rmergea
 0.074 (0.619)



I/sigma (I)
 12.5 (1.9)



Wilson B factor (Å)
22.8



Refinement




Resolution (Å)
31.00-1.60



Number of reflections
17200



rmsd bond lengths (Å)
0.006



rmsd bond angles (°)
0.991



Rworkb (%)
18.19



Rfree c (%)
22.27



Average B-factors of protein
33.360



Ramachandran plot (%)




Favored
99.26



Allowed
0.74



Outliers
0.00







Values in parentheses refer to the highest resolution shell.




aRmerge = Σ Σi|I(h)i custom-character I(h)custom-character |/Σ Σi|I(h)i|, where custom-character I(h)custom-character  is the mean intensity of equivalent.





bRwork = Σ|Fo − Fc|/Σ|Fo|, where Fo and Fc are the observed and calculated structure factor amplitudes, respectively.





c Rfree = Σ|Fo − Fc|/Σ|Fo|, calculated using a test data set, 5% of total data randomly selected from the observed reflections.







The absolute stereochemistry of the more potent compound A4a in enzymatic and cellular assays is assigned as (S)-configuration on the chiral carbon atom based on its co-crystal structure with Bcl-2 protein. The binding pose of A4a is distinct from that of ABT-199 analog (compound structure see table 3, PDB code; 4MAN) to Bcl2 protein. Compared to ABT-199 analog. 2-(2-chlorophenyl)-pyrrolidinyl moiety of A4a induces a different conformation of the residues around p2 pocket of Bcl-2, such as Phe112, Met115, Glu136 and Phe153, which results in a larger and flatter pocket on the surface of the protein.


Co-Crystal Structure of Bcl-2 with F22


As shown in FIGS. 4, and 5., binding pose of F22 is distinct from that of ABT-199 analog (PDB code: 4MAN). Compared to ABT-199 analog, 2-(2-cyclopropylphenyl)-pyrrolidinyl moiety of F22 induces a different conformation of the residues around p2 pocket of Bcl-2, such as Asp111, Phe112 and Met115, which create an extra sub-pocket. Hydrophobic interaction between 2-cyclopropylphenyl with the surrounding residues contributes to the better potency of F22.


As shown in FIG. 6, water bridge is observed between nitrogen atom of F22 pyrrolidinyl ring and backbone carbonyl of Val133 through 2 water molecules in the crystal structure. This water bridge contributes to a more stable interaction between F22 and Bcl-2 protein, while no such water bridge can be observed between ABT-199 analog and Bcl-2. As shown in FIG. 7, optimal sulfur-n interaction between Met115 and 2-cyclopropylphenyl of F22 is observed in the crystal structure. Similar interaction can also be observed in the crystal structure of ABT-199 analog (PDB code: 4MAN), but the interaction is not optimal in that crystal structure.


In summary, based on the crystal structure of F22, hydrophobic interaction between the cyclopropyl group and induced sub-pocket, water bridge with Val133 and sulfur-n interaction with Met115 all contribute to the better potency of F22.


Protein Purification and Co-Crystallization of Bcl-2 with F22


Protein was purified as described previously. Protein solution was incubated with F22 by a molar ratio 1:2 for 30 min at 4° C., and then mixed with a reservoir solution containing 0.2 M ammonium acetate, 0.1 M Bis-Tris, pH 5.5 and 25% PEG 3,350. Co-crystals were obtained by vapor diffusion from hanging drops cultured at 20° C.


X-Ray Data Collection and Structural Determination

Nylon loops were used to harvest the co-crystals and then immersed the crystals in the reservoir solution supplemented with 20% glycerol for 10 sec. Diffraction data were collected at home lab diffractometer, and were processed with XDS program. The phase was solved with program PHASER using the Bcl-2_G10B-a in house crystal structure as the molecular replacement searching model. Phenix refine was used to perform rigid body, TLS, restrained refinement against X-ray data, followed by manually adjustment in COOT program and further refinement in Phenix refine program.


Data Collection and Refinement Statistics


















Data collection




Beamline
Home lab diffractometer



Space group
P 21 21 21



Cell dimensions (Å)
a = 32.91 b = 45.73 c = 98.95



Angles (°)
α = 90.00 β = 90.00 γ = 90.00



Resolution (Å)
41.51-2.60 (2.72-2.60)



Total number of reflections
46305 (5642) 



Number of unique reflections
4831 (561) 



Completeness (%)
97.5 (95.4)



Average redundancy
 9.6 (10.1)



Rmergea
0.065 (0.478)



I/sigma (I)
28.1 (4.7) 



Wilson B factor (Å)
16.14



Refinement




Resolution (Å)
33.58-2.60



Number of reflections
4805



rmsd bond lengths (Å)
0.003



rmsd bond angles (°)
0.612



Rworkb (%)
18.90



Rfree c (%)
23.20



Average B-factors of protein
20.74



Ramachandran plot (%)




Favored
96.75



Allowed
3.25



Outliers
0.00







Values in parentheses refer to the highest resolution shell.




aRmerge = Σ Σi|I(h)i custom-character I(h)custom-character |/Σ Σi|I(h)i|, where custom-character I(h)custom-character  is the mean intensity of equivalent.





bRwork = Σ|Fo − Fc|/Σ|Fo|, where Fo and Fc are the observed and calculated structure factor amplitudes, respectively.





c Rfree = Σ|Fo − Fc|/Σ|Fo|, calculated using a test data set, 5% of total data randomly selected from the observed reflections.







Cytochrome P450 Inhibition Assay in Human Liver Microsomes

Method: The five isoform-selective probe substrate (in a cocktail manner) was used as a measure of activity for the individual cytochrome P450 (CYPs) in a pool of human liver microsomes, i.e., phenacetin for CYP1A2, diclofenac for CYP2C9, S-Mephenytoin for CYP2C19, dextromethorphan for CYP2D6, midazolam for CYP3A. Test compounds, at 7 concentration levels including zero, were incubated in human liver microsomes (HLM) together with the 5 probe substrate (in a cocktail manner). IC50 was determined by monitoring the reduction of the CYP activity as a function of test compound concentration and quantified by product formation using LC-MS/MS. Ketoconazole for CYP3 Å was included as quality control. All incubations were performed in singlet. The final incubation conditions are listed













Reaction Component
Final Concentration







HLM
0.1 mg · mL−1


Buffer
Phosphate Buffer (100 mM, pH 7.4)


Test Compound
7 Concentration Points Including Zero (0~30



μM or 0~10 μM, as requested)


Positive Control
Ketoconazole for CYP3A (7 Concentration



Points Containing Zero, 0~0.3 μM)


Probe Substrate
Phenacetin for CYP1A2 (10 μM)


(in a cocktail manner)
Diclofenac for CYP2C9 (5 μM)



S-Mephenytoin for CYP2C19 (30 μM)



Dextromethorphan for CYP2D6 (5 μM)



Midazolam for CYP3A (2 μM)


NADPH
1 mM


Incubation Time
15 min


MgCl2
3 mM









Data Analysis: The uninhibited fraction of CYP activity (remaining activity fraction) will be calculated as









(


A
M

/

A
IS


)

I



(


A
M

/

A
IS


)

0


,




where AM and AIS denote the peak areas of the probe metabolites and IS, respectively, and “1” and “0” represent the incubations in the presence and absence of the test compound, respectively. The IC50 value of test compound will be determined as appropriate by fitting a curve of uninhibited fraction versus concentration of the test compound, using the following four-parameter model (Hill equation).






y
=

Bottom
+


Top
-
Bottom


1
+


(


IC

50

x

)

S








where Top, Bottom, S, x and y donate the experimentally maximum remaining enzyme activity (%), the experimentally minimum remaining enzyme activity (%), the slope factor, the test compound concentration, and the uninhibited fraction (%), respectively.


In the case that no significant inhibition is observed over the concentration range (the uninhibited fraction does not reach 50% even at the highest test compound concentration), the IC50 will not be calculated.


The general criteria to evaluate the potential risk of drug-drug interaction (DDI) is as followed

    • IC50>10 μM: low CYP inhibition;








μ

M

<

IC

50

<

10

μ

M
:

moderate


CYP


inhibition


;






    • IC50<3 μM: high CYP inhibition.












TABLE 5







list IC50 of Cytochrome P450 2C9 for representiative compounds.










Compound/Example
CYP 2C9 (IC50 μM)














ABT-199
1.77



ABT-263
1.50



G2
16.8



G12
6.25



G10b-b
6.85



G24b-b
8.21



G35b
8.86



G77-S
17.5



F21
>30



F26
>30



F37
15.9



F43
>30



F44
>10



F45
8.9



F106
6.3



F107
7.4



G122
>10



G124
>10










Compared with Compound ABT-199 (Venetoclax) and ABT-263 (Navitoclax) showing high CYP 2C9 inhibition, representative compounds disclosed herein, for example, Compounds G2, G12, G10b-b, G24b-b, G35b, G77-S, F21, F26, F37, F43, F44, F45, 1F106, F107, G122 and G124 showed much lower CYP 2C9 inhibition, indicating the compounds disclosed herein have lower potential risk of drug-drug interaction (DDI).


It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art in any country.


The disclosures of all publications, patents, patent applications and published patent applications referred to herein by an identifying citation are hereby incorporated herein by reference in their entirety.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is apparent to those skilled in the art that certain minor changes and modifications will be practiced. Therefore, the description and Examples should not be construed as limiting the scope of the invention.

Claims
  • 1. A compound of Formula (I)
  • 2. The compound of claim 1, wherein Ra, Rb, Rc and Rd, at each occurrence, are independently hydrogen or C1-6alkyl, preferably hydrogen or methyl.
  • 3. The compound of claim 1, wherein L3 is a direct bond, —(CRaRb)t—, —O—, —S—, —S(O)—, —SO2—, —C(O)—, C(O)O—, —OC(O)—, or —NRa—, wherein Ra, Rb and t are defined as with Formula (I). Preferably, Ra and Rb are independently hydrogen or C1-6alkyl, and t is 1 or 2.
  • 4. The compound of claim 3, wherein L3 is —O—, —CH2—, —NRa—, a direct bond, or —C(O)—.
  • 5. The compound of claim 3, wherein L3 is —O—.
  • 6. The compound of claim 1, wherein R3 is heteroaryl optionally substituted with one or two substituents R3a as defined with Formula (I).
  • 7. The compound of claim 6, wherein R3 is heteroaryl optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.
  • 8. The compound of claim 6, wherein R3 is a 5 to 7-membered nitrogen-containing monocyclic heteroaryl optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.
  • 9. The compound of claim 6, wherein R3 is tetrazolyl, trizolyl, pyrazolyl, pyrrolyl, pyridinyl, pyrimidinyl, each of which optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.
  • 10. The compound of claim 6, wherein R3 is a 8- to 12-membered bicyclic heteroaryl comprising 1 or 2 or 3 nitrogen atoms.
  • 11. The compound of claim 10, wherein R3 is indolyl, pyrrolopyridinyl, or pyrazolopyridinyl, each of which optionally substituted with one or two substituents R3selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3care independently hydrogen, or —C1-8alkyl.
  • 12. The compound of claim 11, wherein R3 is indol-4-yl, pyrrolo[2,3-b]pyridin-5-yl, pyrazolo[4,3-b]pyridin-1-yl.
  • 13. The compound of claim 6, wherein R3 is 11- to 14-membered tricyclic heteroaryl comprising 1 or 2 or 3 or 4 or 5 nitrogen atoms optionally substituted with one or two substituents R3a selected from halogen, —C1-8alkyl, or —NR3bR3c, wherein R3b and R3c are independently hydrogen, or —C1-8alkyl.
  • 14. The compound of claim 1, wherein L3 is —O—, and R3 is pyrrolo[2,3-b]pyridin-5-yl.
  • 15. The compound of claim 1, wherein L4 is —C(O)NRaSO2—, wherein Ra is hydrogen and C1-6alkyl; is preferably hydrogen.
  • 16. The compound of claim 1, wherein ring A is cycloalkyl, cycloalkenyl, aryl, heterocyclyl, or heteroaryl, each of which is optionally substituted with 1 to 4 substituents R2.
  • 17. The compound of claim 16, wherein R2 is hydrogen, halogen (e.g., F, Cl or Br) or C1-6alkyl (e.g., methyl) optionally substituted with halogen (e.g., F, Cl or Br)
  • 18. The compound of claim 16, wherein ring A is a phenyl ring, which is 1,2-phenylene, 1,3-phenylene, or 1,4-phenylene.
  • 19. The compound of claim 16, wherein ring A is a cycloalkyl ring which is C3-8cycloalkyl.
  • 20. The compound of claim 19, wherein A is selected from cyclobutyl, cyclopentyl, cyclohexyl, or cycloheptyl.
  • 21. The compound of claim 20, wherein ring A is 1,2-cyclobutylene, 1,3-cyclobutylene, 1,2-cyclopentylene, 1,3-cyclopentylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 1,2-cycloheptylene, 1,3-cycloheptylene or 1,4-cycloheptylene.
  • 22. The compound of claim 16, wherein ring A is C3-8cycloalkenyl, preferably cyclohexenyl, more preferably cyclohex-3-enyl or cyclohex-2-enyl.
  • 23. The compound of claim 16, wherein ring A is a monocyclic 5- or 6-membered heteroaryl comprising one or two or three or four heteroatoms selected from nitrogen, oxygen, and sulfur, or 8- to 12-membered bicyclic heteroaryl ring.
  • 24. The compound of claim 16, wherein ring A is heterocyclyl, which is selected from a) monocyclic 4 to 9-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur as ring member;b) 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members;c) 5 to 12-membered fused heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members; andd) 5 to 12-membered bridged heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members.
  • 25. The compound of claim 24, wherein ring A is heterocyclic which is piperidine, pyrrolidine, and azetidine; 7-azaspiro[3.5]nonane, 2-azaspiro[3.5]nonane, 8-azabicyclo[3.2.1]octane; tetrahydrothienopyridine (e.g., 4,5,6,7-tetrahydrothieno[2,3-c]pyridine), tetrahydropyrrolopyrazine (e.g., 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine), tetrahydropyrrolopyrazine (e.g., 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine), hexahydroindolizine (e.g., 1,2,3,5,8,8a-hexahydroindolizine), dihydropyrrolothiazole (e.g., 5,6-dihydro-4H-pyrrolo[3,4-d]thiazole), or isoindoline; or ring A is 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members: preferably ring A is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members; more preferably ring A is
  • 26. The compound of claim 20, wherein ring A is selected from the group consisting of:
  • 27. The compound of claim 20, wherein ring A is
  • 28. The compound of claim 1, wherein Ring B is heterocyclyl, each of which is optionally substituted with 1 to 4 substituents R1; R1 is selected from the group consisting of halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, heteroaryl, oxo, —CN, or —OR1a; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents R1d,R1a is hydrogen, or —C1-8alkyl, said —C1-8alkyl is optionally substituted with halogen, hydroxy or —C1-8alkyoxy;R1d, at each occurrence, is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd;RBa and RBb are each independently hydrogen, —C1-8alkyl, cycloalkyl, or aryl, each of said —C1-8alkyl, cycloalkyl, or aryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;RBd, at each occurrence, is independently hydrogen, halogen, —CN, —C1-8alkyl, —C2-8alkynyl, cycloalkyl, or aryl, each of said —C1-8alkyl, —C2-8alkynyl, or aryl is optionally substituted with halogen, hydroxy, —C1-8alkyoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl.
  • 29. The compound of claim 1, wherein ring B is heterocyclyl which is monocyclic 4 to 9-membered heterocyclyl, a 5 to 20-membered spiro heterocyclyl, a 5 to 20-membered fused heterocyclyl, or a S to 20-membered bridged heterocyclyl, each of which is optionally substituted with 1 to 4 substituents R1.
  • 30. The compound of claim 29, wherein said monocyclic heterocyclyl is a monocyclic 4 to 9-membered heterocyclyl comprising one or more heteroatoms selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members.
  • 31. The compound of claim 29, wherein said monocyclic heterocyclyl is a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member.
  • 32. The compound of claim 30, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is C-linked or N-linked.
  • 33. The compound of claim 30, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is saturated.
  • 34. The compound of claim 33, wherein said saturated heterocyclyl is a N-linked saturated heterocyclyl.
  • 35. The compound of claim 34, wherein said saturated heterocyclyl is aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl.
  • 36. The compound of claim 33, wherein said saturated heterocyclyl is a C-linked saturated heterocyclyl.
  • 37. The compound of claim 33, wherein said saturated heterocyclyl is aziridin-2-yl, azetidin-2-yl, azetidin-3-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, azepan-2-yl, azepan-3-yl, azepan-4-yl, azocan-2-yl, azocan-3-yl, azocan-4-yl, or azocan-5-yl.
  • 38. The compound of claim 30, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is unsaturated.
  • 39. The compound of claim 38, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member contains one carbon-carbon double bond.
  • 40. The compound of claim 38, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom as the ring member is dihydropyrrole, e.g., 2,3-dihydro-1H-pyrrole and 2,5-dihydro-1H-pyrrole, or tetrahydropyridine group.
  • 41. The compound of claim 29, wherein said monocyclic heterocyclyl is a monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom and one additional heteroatom selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members.
  • 42. The compound of claim 41, wherein said monocyclic 4 to 9-membered heterocyclyl comprising one nitrogen atom and one additional heteroatom selected from the group consisting of NH, O, S, SO or SO2 heteroatoms as ring members is C-linked or N-linked.
  • 43. The compound of claim 41, wherein said monocyclic heterocyclyl is saturated.
  • 44. The compound of claim 41, wherein said saturated monocyclic heterocyclyl is N-linked or C-linked.
  • 45. The compound of claim 29, wherein ring B is pyrrolidin-1-yl substituted with 1 to 4 substituents R1.
  • 46. The compound of claim 45, wherein R1 is a phenyl group.
  • 47. The compound of claim 29, wherein ring B is aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably pyrrolidin-1-yl, which is substituted with a phenyl group at position 2 and further optionally substituted with 1 or 2 or 3 substituents R1 on the pyrrolidinyl ring, and said phenyl group at position 2 is optionally substituted with R1d as defined with Formula (I).
  • 48. The compound of claim 47, wherein R1 is selected from the group consisting of halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, heteroaryl, oxo, —CN, or —OR1a; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, aryl, or heteroaryl is optionally substituted with 1 to 4 substituents R1d, wherein R1a is hydrogen or C1-8alkyl, preferably methyl, and R1d is halogen or —ORBa, wherein RBa is hydrogen or —C1-8alkyl.
  • 49. The compound of claim 48, wherein R1 is heteroaryl, preferably furanyl, more preferably furan-3-yl.
  • 50. The compound of claim 47, wherein R1d is halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NO2, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd as defined with Formula (I), preferably 1 or 2 substituents RBd as defined with Formula (I).
  • 51. The compound of claim 48, wherein R1d is —C1-8alkyl which is further optionally substituted with 1 to 4 substituents RBd, which is halogen, phenyl, or cycloalkyl (e.g., C3-8cycloalkyl, preferably cyclopropyl).
  • 52. The compound of claim 51, wherein R1d is —C1-8alkyl selected from methyl, ethyl, isopropyl, propyl, tert-butyl, and isobutyl, optionally substituted with R.
  • 53. The compound of claim 50, wherein R1d is cycloalkyl which is further optionally substituted with 1 to 4 substituents RBd, which is halogen, cyano, C2-8alkynyl (preferably ethynyl), or C1-8alkyl optionally substituted with halogen (preferably CF3).
  • 54. The compound of claim 50, wherein R1d is C3-8cycloalkyl selected from cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl, optionally substituted with RcRd.
  • 55. The compound of claim 50, wherein R1d is —C2-8alkenyl which is prop-1-en-2-yl.
  • 56. The compound of claim 50, wherein R1d is —C2-8alkynyl which is ethynyl.
  • 57. The compound of claim 50, wherein in the definition of —ORBa as R1d, RBa is hydrogen, C1-8alkyl (selected from methyl, ethyl, propyl, and isopropyl), C3-8cycloalkyl (preferably cyclopropyl or cyclohexyl), aryl (preferably phenyl), wherein C1-8alkyl, C3-8cycloalkyl and aryl are each independently substituted with halogen, heterocyclyl (preferably monocyclic 4- to 9-membered heterocyclyl, more preferably morpholino), hydroxy, or —C1-8alkoxyl (preferably methoxyl).
  • 58. The compound of claim 50, wherein R1d is aryl which is phenyl.
  • 59. The compound of claim 50, wherein R1d is heterocycle which is monocyclic 4 to 9-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur as ring member, preferably monocyclic 4 to 6-membered heterocyclyl comprising one oxygen atom as ring member or monocyclic 6-membered heterocyclyl comprising one or two nitrogen atoms as ring members.
  • 60. The compound of claim 50, wherein R1d is heteroaryl, preferably thiophenyl or furanyl.
  • 61. The compound of claim 29, wherein ring B is pyrrolidin-1-yl substituted with a naphthyl group, preferably substituted with a naphthyl at position 2.
  • 62. The compound of claim 29, wherein ring B is pyrrolidin-1-yl substituted with a heteroaryl group, preferably substituted with a heteroaryl group at position 2.
  • 63. The compound of claim 62, wherein said heteroaryl is 5- to 6-membered heteroaryl comprising 1-4 heteroatoms selected from nitrogen, oxygen, and sulfur.
  • 64. The compound of claim 62, wherein said heteroaryl is pyridinyl, furanyl, thiophenyl, or pyrazole.
  • 65. The compound of claim 62, wherein said heteroaryl is optionally substituted with halogen or C3-8cycloalkyl (preferably cyclopropyl).
  • 66. The compound of claim 29, wherein ring B is pyrrolidin-1-yl substituted with —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl, preferably substituted with —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl at position 2, each of said —C1-8alkyl, —C2-8alkenyl, or —C2-8alkynyl is unsubstituted or substituted with a phenyl group, said phenyl group is optionally substituted with halogen or C3-8cycloalkyl (preferably cyclopropyl).
  • 67. The compound of claim 66, wherein ring B is pyrrolidin-1-yl substituted with methyl, ethenyl, or ethynyl, each of which is optionally substituted with a phenyl group optionally substituted as above.
  • 68. The compound of claim 66, wherein ring B is pyrrolidin-1-yl, optionally substituted with 1 to 4 substituents R1 as defined with Formula (I).
  • 69. The compound of claim 1 or 29, wherein
  • 70. The compound of claim 1, wherein ring B is a 2-substituted pyrrolidin-1-yl group, L1 is a direct bond, L2 is a direct bond, ring A is a 1,4-phenylene ring or 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members; preferably ring A is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxy en as ring members; more preferably ring A is
  • 71. The compound of claim 1, wherein ring B is a 2-(substituted phenyl)pyrrolidin-1-yl group, L1 is a direct bond, ring A is a 1,4-phenylene ring or 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3, 9-div, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl, L2 is a direct bond.
  • 72. The compound of claim 1, wherein ring B is a 2-(2-substituted phenyl)pyrrolidin-1-yl or 2-(3-substituted phenyl)pyrrolidin-1-yl group, L1 is a direct bond, ring A is a 1,4-phenylene ring or 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3, 9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl, L2 is a direct bond, wherein the phenyl group at position 2 of the pyrrolindin-1-yl is substituted with 1 to 4 substituents R1d as defined with Formula (I).
  • 73. The compound of claim 1, wherein ring B is a 2-(2-substituted phenyl)pyrrolidin-1-yl or 2-(3-substituted phenyl)pyrrolidin-1-yl group, L1 is a direct bond, ring A is a 1,4-cyclohexylene ring or 1,4-cyclohex-3-enyl or 1,4-cyclohex-2-enyl or 1,4-cyclohex-1-enyl or 7-azaspiro[3.5]nonan-2,7-diyl, 2-azaspiro[3.5]nonan-2,7-diyl, 3-azaspiro[5.5]undecan-3, 9-diyl, 2-azaspiro[3.3]heptan-2,6-diyl, 8-azaspiro[4.5]decan-2,8-diyl, or 2-azaspiro[4.5]decan-2,8-diyl, L2 is a direct bond, wherein the phenyl group at position 2 of the pyrrolindin-1-yl is substituted with 1 to 4 substituents R1d as defined with Formula (I).
  • 74. The compound of claim 1, wherein m is 1.
  • 75. The compound of claim 1, wherein L5 is a direct bond, —(CRaRb)t— or —NRa—, wherein t is a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)t— are un-replaced or replaced with one or more moieties selected from O and NRa, wherein Ra and Rb are defined as with Formula (I).
  • 76. The compound of claim 73, wherein L5 is a direct bond, —(CRaRb)1-4—, —O—(CRaRb)1-3—, —NH—(CRaRb)1-3, or —NH—, wherein Ra and Rb are defined as with Formula (I).
  • 77. The compound of claim 73, wherein L5 is a direct bond, —(CH2)1-4—, —O—(CH2)1-3—, —NH—(CRaRb)—(CH2)2—, or —NH—, wherein Ra is hydrogen and Rb is C1-8alkyl optionally substituted with phenyl-S—.
  • 78. The compound of claim 1, wherein CyC is cycloalkyl, or heterocyclyl, each of which is optionally substituted with one or two substituents R5a; R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, -cycloalkyl, or heterocyclyl, each of said —C1-8alkyl, and heterocyclyl is optionally substituted with one or two substituents R5c which is selected from hydrogen, halogen, cyano, —OR5f, —C1-8alkyl, -cycloalkyl, or heterocyclyl; wherein R5b, and R5c are each independently hydrogen, —C1-8alkyl or heterocyclyl, said —C1-8alkyl is optionally substituted with one or two substituents R5c which is hydrogen, —NR5fR5g, or -cycloalkyl; R5f and R5g are each independently hydrogen or —C1-8alkyl;or, two adjacent R5 on the phenyl ring together with the phenyl ring form a benzo ring, said ring is optionally substituted with heteroaryl.
  • 79. The compound of claim 78, wherein CyC is cycloalkyl selected from monocyclic C3-8cycloalkyl or bridged cycloalkyl
  • 80. The compound of claim 79, wherein CyC is cyclopentyl or cyclohexyl, each of which is optionally substituted with one or two substituents R5a.
  • 81. The compound of claim 78, wherein CyC is heterocyclyl selected from: a) monocyclic 4 to 9-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member,b) monocyclic 4 to 9-membered heterocyclyl groups containing two heteroatoms selected from oxygen, sulfur and nitrogen as ring members; andc) 5 to 20-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members,each of which is optionally substituted with one or two R5a.
  • 82. The compound of claim 80, wherein CyC is monocyclic 4 to 6-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member.
  • 83. The compound of claim 82, wherein Cyc is selected from oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, azetidinyl, pyrrolidinyl, and piperdinyl.
  • 84. The compound of claim 82, wherein CyC is selected from oxetan-2-yl, Oxetan-3-yl, tetrahydrofuran-4-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, azetidin-3-yl, azetidin-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperdin-4-yl, piperdin-2-yl, and piperdin-3-yl.
  • 85. The compound of claim 82, wherein CyC is monocyclic 6-membered heterocyclyl group containing two heteroatoms selected from oxygen and nitrogen as ring members.
  • 86. The compound of claim 85, wherein CyC is dioxanyl, morpholino, morpholinyl, or piperzinyl.
  • 87. The compound of claim 84, wherein CyC is 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,4-dioxan-2-yl, morpholin-1-yl, morpholin-2-yl, or morpholin-3-yl.
  • 88. The compound of claim 80, wherein CyC is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members.
  • 89. The compound of claim 88, wherein CyC is
  • 90. The compound of claim 81, wherein R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, monocyclic C3-8cycloalkyl, or monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members, each of said —C1-8alkyl and monocyclic 4 to 9-membered heterocyclyl group is optionally substituted with one or two substituents R.
  • 91. The compound of claim 90, wherein cycloalkyl as R5a is C3-6cycloalkyl; more preferably cyclopropyl.
  • 92. The compound of claim 90, wherein heterocyclyl as R5a is 4 to 6-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members.
  • 93. The compound of claim 90, wherein heterocyclyl as R5a is oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, piperzinyl, or morpholinyl.
  • 94. The compound of claim 90, wherein heterocyclyl as R5a is oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydro-2H-pyran-4-yl, or morphin-4-yl.
  • 95. The compound of claim 90, wherein heterocyclyl as R5c is monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members.
  • 96. The compound of claim 90, wherein heterocyclyl as R5c is tetrahydro-pyran-4-yl.
  • 97. The compound of claim 90, wherein R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is heterocyclyl.
  • 98. The compound of claim 90, wherein R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is tetrahydro-pyran-4-yl.
  • 99. The compound of claim 90, wherein R5a is —NR5bR5c, wherein R5b and R5c are each independently hydrogen or —C1-6alkyl substituted with cycloalkyl, preferably —C1-6alkyl substituted with monocyclic C3-8cycloalkyl.
  • 100. The compound of claim 90, wherein R5a is —OR5b or —SO2R5b, wherein R5b is hydrogen or C1-8alkyl, preferably methyl.
  • 101. The compound of claim 90, wherein R5a is —COR5b, wherein R5b is hydrogen or C1-8alkyl optionally substituted with —NR5fR5g, wherein R5f and R5g are each independently hydrogen or C1-8alkyl, preferably methyl.
  • 102. The compound of claim 1, wherein two adjacent R5 on the phenyl ring together with the phenyl ring form indazolyl which is substituted with tetrahydropyranyl.
  • 103. The compound of claim 1, wherein m is 1 and -L5-CyC is selected from the group consisting of:
  • 104. The compound of claim 1, selected from: A1, A2, A3, A4, A4a, A4b, A5, A6, A7, A8, A8a, A8b, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, A33, A35, A46, A47, A54, A55, A56, A57, A61, A62, A63, A64, A65, A67, A68, A69, A70, A73, A74, A75, A76, A77, A79, A80, A81, A82, A83, A84, A85, B1, B2, B3, B4, B5, B6, B8, B12, B17, B18, B21, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C21, C22, C24a, C24b, C26a, C26b, C28, C31, C36, C37, C39, C40, C41, C-42, C45, C46, C47, C48, C51, C52, C53, C54, C55, C57, C60, C62, C63, C66, C67, C69, C81, C86, C87, C88a, C88b, C89, C90, C99, C118, C125, C126, C127, C128, C129, C131, C132, C133, C134, C135, C136, C137, C138, C139, C140, C141, C142, C143, C144, C145, C146, C152, C161, C162, C163, C164, C165, C166, C167, C168, C169, C170, C171, C172, C173, C174, C175, C176, C177, C178, C179, C180, C181, C182, C183, C184, C185, C186, C187, C-189, C190, C191, C192, C193, C194, C195, D1a, D1b, D2a, D2b, D2a-S, D2b-S, D2a-R, D2b-R, D3a, D3b, D4a, D4b, D5, D6, D13-1a, D13-1b, D14-1a, D14-1b, D63a, D63b, D96, D97a, D97b, D99, D100, D101, D102, D103, D104, D105, D106, E1, E2, E3, E4, E12, E13, F1, F2, F5, F9, F11, F30, F31, F32, F33, F36, G1, G1C, G2, G2C, G3, G4, G5, G6, G7, G8, G8-S, G8-a, G8-b, G9, G9-a, G9-b, G9-S, G10a, G10b, G10b-S, G10b-a, G10b-b, G11, G12, G13, G16, G18, G20, G24b, G24b-S, G24b-a, G24b-b, G26, G27, G30, G30-S, G30-a, G30-b, G30-R, G31, G32, G35-S, G35-a, G35-b, G36, G37, G39, G63, G64, G70, G72, G73, G75-a, G75-b, G75, G76, G76-S, G77, G77-S, G80a, G80b, G81a, G81b, G84, G85-S, G85-R, G86, G87, G88-S, G89-S, G90-S, G90-a, G90-b, G91-R, G92-R, G92-S, G93-R, G93-S, G94-R, G94-S, G95-R, G95-S, G96-R, G96-S, G97-R, G97-S, G98, G100a, G100b, G103, G104, G105, G106, G107-a, G107-b, G43a, G43b, G108a, G108b, G109, G110a, G110b, G110b-a, G110b-b, G111, G112, G113, G114, G115, G116, G117, H3a, H3, I7, I8, I9, I10, A37, A66, A72, A78, A86, A87, A68-S, A68-R, A88, A89, A90, A91, A93, A94, A95, A96, A97, A98, A99, A100, A101, A102, A103, A104, A105, A106, A107, A108, A109, A110, A111, A112, A113, A114, A115, A116, A117a, A117b, A118a, A118b, A119, A120, A121, A122, A123, A124, A125, A126, A127, A128, A129, A130, A131, A132, A133, A134, A135, A136, A137, A138, At 39, A140, A141, A142, A143, A144, A145a, A145b, A145c, A145d, A146, A147a, A147b, A148, A149, A150, A151, A152, A153, A154, A155, A156, A157, A158, B13, B14, B15, B16, B19a, B19b, B20a, B20b, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32, B33, B34, B35, B36, B37, B38, B39, B40, D107a, D107b, F23, F22, F21, F24, F25, F26, F27, F28, F29, F34, F35, F37, F38, F39a, F39b, F40, F41, F42, F43, F44, F45, F46, F47, F48, F49, F50, F51, F52, F53, F54, F55, F56, F57, F58, F59, F60, F61, F62, F63, F64, F65, F66, F67, F68, F69, F70, F71, F72a, F72b, F73, F74a, F74b, F75, F76, F77, F78, F79, F80, F81, F82, F83, F84, F85, F86, F87, F88, F89, F90, F91a, F91b, F92, F93, F94, F95, F96, F97, F98, F99, F100, F101a, F101b, F102, F103, F104, F105, F106, F107, F108, F109, F110, F111, F112, F113, F114, F115, F116, F117, F118, F119, F120, F121, F122, F123, F124a, F124b, F125, F126, F127, F128, F129, F130, F131a, F131b, F132a, F132b, G99, G101a, G101b, G102, G118, G119, G120, G121, G122, G123, G124, G125, G126, G127, G128, G129, G130, G131, G132a, G132b, G133, G134, or G135.
  • 105. A method for treating dysregulated apoptotic diseases, comprising administering a subject in need thereof a therapeutically effective amount of the compound of any one of claims 1-112, or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof.
  • 106. The method of claim 105, wherein the dysregulated apoptotic disease is neurodegenerative condition, proliferative diseases and pro-thrombotic conditions.
  • 107. A pharmaceutical composition comprising the compound of any one of claims 1-105, or a pharmaceutically acceptable salt thereof, or a stereoisomer thereof, and a pharmaceutically acceptable carrier.
  • 108. A compound selected from:
  • 109. A compound of Formula (II)
  • 110. The compound of claim 109, wherein ring A is 1,4-phenylene.
  • 111. The compound of claim 109, wherein ring A is 5 to 12-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members; preferably ring A is 4-membered/4-membered, 3-membered/5-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered, or 5-membered/6-membered mono-spiro heterocyclyl comprising one or two nitrogen or oxygen as ring members.
  • 112. The compound of claim 111, wherein ring A is
  • 113. The compound of claim 109, wherein ring B is aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably pyrrolidin-1-yl, which is substituted with a phenyl group at position 2 and further optionally substituted with 1 or 2 or 3 substituents R1 on the pyrrolidinyl ring, and said phenyl group at position 2 (i.e., ortho position) is optionally substituted with R1d as defined with Formula (I).
  • 114. The compound of claim 109, wherein the compound has the following formula (III)
  • 115. The compound of claim 114, wherein ring A is
  • 116. The compound of claim 115, wherein the compound is represented by the following subgenus formulas (III-A), (III-B), (III-C), (III-D) or (III-E)
  • 117. The compound of any one of claims 109-116, wherein R2 is hydrogen.
  • 118. The compound of any one of claims 109-116, wherein R1d is defined with formula (I), preferably, R1d, when substituted on the phenyl group at position 2 of ring B (including the aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, piperidin-1-yl, azepan-1-yl, or azocan-1-yl, preferably the pyrrolidin-1-yl group), is independently halogen, —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, —CN, —ORBa, —SO2RBa, —CONRBaRBb, —NO2, —NRBaRBb, —NRBaCORBb, or —NRBaSO2RBb; wherein said —C1-8alkyl, —C2-8alkenyl, —C2-8alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl are each independently optionally substituted with 1 to 4 substituents RBd as defined with Formula (I), preferably 1 or 2 substituents RBd as defined with Formula (I). In another aspect, one R1d is at position 2 of the phenyl ring at position 2 of ring B.
  • 119. The compound of claim 118, wherein RId is methyl, ethyl, isopropyl, propyl or methoxymethyl, or two methyl at position of the phenyl ring; or propenyl; or cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; or ethoxy or isopropoxy; or amino or dimethylamino.
  • 120. The compound of any one of claims 109-119, wherein the 2-(2-substituted phenyl)pyrrolidin-1-yl moiety as ring B is selected from the group consisting of:
  • 121. The compound of any one of claims 109-120, wherein m is 1; and L5 is a direct bond, —(CRaRb)t— or —NRa—, wherein t is a number of 1 to 7, and one or two CRaRb moieties in —(CRaRb)t— are un-replaced or replaced with one or more moieties selected from O and NRa, wherein Ra and Rb are defined as with Formula (I).
  • 122. The compound of any one of claims 109-121, wherein L5 is a direct bond, —(CRaRb)1-4—, —O—(CRaRb)1-3—, —NH—(CRaRb)1-3, or —NH—, wherein Ra and Rb are defined as with Formula (I) so that the -L5-CyC moiety is CyC, —(CRaRb)1-4-CyC, —O—(CRaRb)1-3-CyC, —NH—(CRaRb)1-3-CyC, or —NH-CyC, respectively. More preferably, L5 is a direct bond, —(CH2)1-4—, —O—(CH2)1-3—, —NH—(CRaRb)—(CH2)2—, or —NH—, wherein Ra is hydrogen and Rb is C1-8alkyl optionally substituted with phenyl —S— so that the -L5-CyC moiety is CyC, —(CH2)1-4-CyC, —O—(CH2)1-3-CyC, —NH—(CRaRb)—(CH2)2-CyC, or —NH-CyC, respectively. More preferably, L5 is a direct bond, —CH2—, —O—CH2—, —NH—CH2—, or —NH— so that the -L5-CyC moiety is CyC, —CH2-CyC, —O—CH2-CyC, —NH—CH2-CyC, or —NH-CyC, respectively.
  • 123. The compound of any one of claims 109-122, wherein CyC is cycloalkyl, or heterocyclyl, each of which is optionally substituted with one or two substituents R5a; R5a is independently selected from hydrogen, halogen, cyano, oxo, —OR5b, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, -cycloalkyl, or heterocyclyl, each of said —C1-8alkyl, and heterocyclyl is optionally substituted with one or two substituents R5c which is selected from hydrogen, halogen, cyano, —OR5f, —C1-8alkyl, -cycloalkyl, or heterocyclyl; wherein R5b, and R5C are each independently hydrogen, —C1-8alkyl orheterocyclyl, said —C1-8alkyl is optionally substituted with one or two substituents R5c which is hydrogen, —NR5fR5g, or -cycloalkyl; R5f and R5g are each independently hydrogen or —C1-8alkyl;or, two adjacent R5 on the phenyl ring together with the phenyl ring form a benzo ring, said ring is optionally substituted with heteroaryl.
  • 124. The compound of claim 123, wherein CyC is cycloalkyl selected from monocyclic C3-8cycloalkyl or bridged cycloalkyl
  • 125. The compound of claim 123, wherein CyC is heterocyclyl selected from: a) monocyclic 4 to 9-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member;b) monocyclic 4 to 9-membered heterocyclyl groups containing two heteroatoms selected from oxygen, sulfur and nitrogen as ring members; andc) 5 to 20-membered spiro heterocyclyl comprising one or two heteroatoms selected from nitrogen, sulfur and oxygen as ring members,each of which is optionally substituted with one or two R5a.
  • 126. The compound of claim 125, wherein CyC is monocyclic 4 to 6-membered heterocyclyl groups containing one nitrogen or oxygen or sulfur heteroatom as ring member. More preferably, Cyc is selected from oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, azetidinyl, pyrrolidinyl, and piperdinyl. Even more preferably, CyC is selected from □oxetan-2-yl, Oxetan-3-yl, tetrahydrofuran-4-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, azetidin-3-yl, azetidin-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperdin-4-yl, piperdin-2-yl, and piperdin-3-yl.
  • 127. The compound of claim 125, wherein CyC is monocyclic 6-membered heterocyclyl group containing two heteroatoms selected from oxygen and nitrogen as ring members. More preferably, CyC is dioxanyl, morpholino, morpholinyl, or piperzinyl. Even more preferably 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,4-dioxan-2-yl, morpholin-1-yl, morpholin-2-yl, or morpholin-3-yl.
  • 128. The compound of any one of claims 123-125, wherein R5a is independently selected from hydrogen, halogen, cyano, oxo, —ORb, —NR5bR5c, —COR5b, —SO2R5b, —C1-8alkyl, —C2-8alkynyl, monocyclic C3-8cycloalkyl, or monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members, each of said —C1-8alkyl and monocyclic 4 to 9-membered heterocyclyl group is optionally substituted with one or two substituents R5e; preferably, cycloalkyl as R5a is C3-6cycloalkyl; more preferably cyclopropyl; preferably, heterocyclyl as R5a is 4 to 6-membered heterocyclyl groups containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members; more preferably, heterocyclyl as R5a is oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, piperzinyl, or morpholinyl; even more preferably, heterocyclyl as R5a is oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydro-2H-pyran-4-yl, or morphin-4-yl.
  • 129. The compound of any one of claims 123-125, wherein heterocyclyl as R5c is monocyclic 4 to 9-membered heterocyclyl group containing one or two heteroatoms selected from nitrogen or oxygen or sulfur heteroatom as ring members.
  • 130. The compound of claim 129, wherein heterocyclyl as R5c is tetrahydro-pyran-4-yl.
  • 131. The compound of any one of claims 123-125, wherein R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is heterocyclyl.
  • 132. The compound of any one of claims 123-125, wherein R5a is —NR5bR5c, wherein R5b is hydrogen, and R5c is tetrahydro-pyran-4-yl.
  • 133. The compound of any one of claims 123-125, wherein R5a is —NR5bR5c, wherein R5b and R5c are each independently hydrogen or —C1-6alkyl substituted with cycloalkyl, preferably —C1-6alkyl substituted with monocyclic C3-8cycloalkyl.
  • 134. The compound of any one of claims 123-125, wherein R5a is —OR5b or —SO2R5b, wherein R5b is hydrogen or C1-8alkyl, preferably methyl.
  • 135. The compound of any one of claims 123-125, wherein R5a is —COR5b, wherein R5b is hydrogen or C1-8alkyl optionally substituted with —NR5fR5g, wherein R5f and R5g are each independently hydrogen or C1-8alkyl, preferably methyl.
  • 136. The compound of any one of claims 123-125, wherein two adjacent R5 on the phenyl ring together with the phenyl ring form indazolyl which is substituted with tetrahydropyranyl.
  • 137. The compound of any one of claims 123-125, wherein m is 1, and R5 is -L5-CyC selected from the group consisting of:
  • 138. The compound of claim 137, wherein m is 1 and R5 is
  • 139. A compound of formula (I) has the formula (IV)
Priority Claims (2)
Number Date Country Kind
PCT/CN2018/085217 Apr 2018 WO international
PCT/CN2018/107134 Sep 2018 WO international
Parent Case Info

This application is a continuation of U.S. application Ser. No. 17/750,821, filed on May 23, 2022, which is a continuation of U.S. application Ser. No. 17/050,581, filed on Oct. 26, 2020, now U.S. Pat. No. 11,420,968, issued Aug. 23, 2022, which is a United States National Stage Application under 35 U.S.C. § 371 of International Patent Application No. PCT/CN2019/085001, filed on Apr. 29, 2019, which claims the benefit of International Patent Application Nos. PCT/CN2018/085217, filed on Apr. 29, 2018, and PCT/CN2018/107134, filed on Sep. 21, 2018, the disclosures of which are hereby incorporated by reference in their entireties for all purposes.

Continuations (2)
Number Date Country
Parent 17750821 May 2022 US
Child 18745423 US
Parent 17050581 Oct 2020 US
Child 17750821 US