BDNF and Alcohol Addiction

Information

  • Research Project
  • 8242771
  • ApplicationId
    8242771
  • Core Project Number
    R01AA016848
  • Full Project Number
    5R01AA016848-05
  • Serial Number
    016848
  • FOA Number
    PA-07-070
  • Sub Project Id
  • Project Start Date
    4/1/2008 - 16 years ago
  • Project End Date
    6/30/2013 - 11 years ago
  • Program Officer Name
    CUI, CHANGHAI
  • Budget Start Date
    4/1/2012 - 12 years ago
  • Budget End Date
    6/30/2013 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    05
  • Suffix
  • Award Notice Date
    4/2/2012 - 12 years ago

BDNF and Alcohol Addiction

DESCRIPTION (provided by applicant): Our long-term goal is to test the hypothesis that endogenous systems counteract the adverse actions of alcohol and prevent or delay the development of alcohol addiction. We further hypothesize that malfunction of such pathways increases susceptibility for the development of alcoholism. This hypothesis is based on our recent studies demonstrating a homeostatic brain-derived neurotrophic factor (BDNF)-mediated signaling pathway that is upregulated by acute and intermittent exposure to moderate concentrations of ethanol, both in slices and in vivo, and suppresses sensitivity of mice to ethanol [3, 8]. For example, we observed that voluntary ethanol consumption in mice increases the expression of BDNF specifically in the dorsal striatum, a brain region that controls habit learning, and global reduction of the BDNF gene or inhibition of the BDNF pathway increases ethanol-drinking behaviors [3, 8]. Using a combination of molecular and behavioral approaches, we plan to: 1) Determine whether endogenous dorsal striatal BDNF and its downstream effectors, the dopamine D3 receptor and the neuropeptide, dynorphin, are part of a regulatory mechanism controlling motivation to consume ethanol in rats. 2) Test whether a single nucleotide polymorphism in the BDNF gene that has been shown to impair BDNF function, and is linked to increased risk for various psychiatric disorders and addiction in humans, leads to a breakdown of this protective pathway in the dorsal striatum, and increases sensitivity of mice to the adverse actions of ethanol. 3) Determine whether chronic exposure to excessive levels of ethanol is associated with the inhibition of the BDNF pathway ex vivo and in vivo. Alcoholism is a devastating disease that manifests itself as uncontrolled drinking. Understanding the molecular mechanisms that control this phenotype are therefore of great interest and will likely lead to the identification of new targets for medication development to treat alcoholism, and may lead to the identification of genetic risk factors for the disease. This proposal is aimed to determine whether BDNF and its down-stream effectors, the dopamine D3 receptor and the neuropeptide Dynorphin, are part of an endogenous anti-addiction cascade. Our hypothesis further suggests that behavioral adaptations that result in addictive phenotypes, such as compulsive alcohol consumption, occur when this protective pathway is down-regulated, and/or when the BDNF gene is mutated. Alcohol dependence is a widespread problem in our society, and despite decades of research, very few medications exist to treat the disease. Results generated from this study could lead to the identification of new targets for medication development to treat alcoholism and to the identification of genetic risk factors for the disease.

IC Name
NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM
  • Activity
    R01
  • Administering IC
    AA
  • Application Type
    5
  • Direct Cost Amount
    214107
  • Indirect Cost Amount
    143023
  • Total Cost
    357130
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    273
  • Ed Inst. Type
  • Funding ICs
    NIAAA:357130\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    ERNEST GALLO CLINIC AND RESEARCH CENTER
  • Organization Department
  • Organization DUNS
    173995366
  • Organization City
    EMERYVILLE
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    946082007
  • Organization District
    UNITED STATES