The present disclosure relates to beacon devices and beacon communication systems including the beacon devices.
The inability during reconnaissance operations to distinguish between friend and foe in low light or total darkness is a major failing of battlefield and law enforcement operations. In these types of lighting conditions, not only does the probability of fratricide (the inadvertent killing of friendly forces by other friendly forces) increase, but time and resources are wasted during attempts to confirm identification. Furthermore, during the heat of battle, mistakes in identification are more likely to occur. Accordingly, there is a need to facilitate effortless and accurate nighttime identification and classification of a distant target or location by a remote sensor.
To this end, beacons have been used in conjunction with night vision equipment including light-intensifying systems that operate by amplifying visible and near infrared light. Beacons emit unique flashing infrared or thermal signatures referred to as signaling programs that are distinguished from operational surroundings by means of intense concentrated energy pulses. Although invisible to the naked eye, signaling programs emitted by beacons can be seen through fog, smoke, and darkness when viewed through night vision or thermal imaging forward looking infrared (FLIR) observation devices.
In order to change the signaling programs or other settings of beacons, the beacons need to be physically connected to a servicing facility, so that it is nearly impossible to control the beacons in the battlefield or during law enforcement operations in real time.
According to an embodiment of the disclosure, a beacon device for control by a beacon controller external to the beacon device is provided. The beacon device includes a beacon emitter configured to emit beacon signals, a microcontroller coupled to control the beacon emitter, and a communication module coupled to the microcontroller and configured to transfer signals between the beacon device and the beacon controller.
According to another embodiment of the disclosure, a beacon controller for controlling a beacon device over a network is provided. The beacon controller includes a radio frequency transceiver configured to transfer radio frequency signals between the beacon controller and the beacon device for controlling the beacon device.
According to still another embodiment of the disclosure, a relay device for relaying communication between a beacon device and a beacon controller via an external network is provided. The relay device includes a network interface configured to facilitate transfer of signals between the network and the relay device, and a beacon interface configured to facilitate transfer of signals between the relay device and the beacon device.
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate disclosed embodiments and, together with the description, serve to explain the disclosed embodiments.
Reference will now be made in detail to the present embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The present disclosure relates to a beacon system including at least one beacon device which is capable of recording a user entered signaling code and emitting beacon signals having the recorded signaling code. The beacon device is also capable of communicating with other beacon devices using peer-to-peer non-contact optical communication means, to transfer its signaling code and synchronization information to the other beacon devices. After a transfer, all beacon devices identically flash the same signaling code at the same time which, to an observer, will be seen as a stronger signal. Detailed descriptions related to the structure and operation of beacon devices are provided in U.S. patent application Ser. No. 15/239,963, the entire contents of which are incorporated herein by reference.
Programming relatively simple signaling patterns and functions on one or a small group of beacon devices can be accomplished while the beacon devices are deployed in a battle field or during law enforcement operations. More complex signaling patterns and functions that rely on synchronized signals from a multiplicity of beacon devices may require programming in a coordinated manner that is better implemented with the use of a servicing facility that can send commands to all the beacon devices of one or more groups that are to be deployed and can receive responses from the beacon devices indicating that these commands have been received and are being executed. To perform such programming, any number of different communication methods and protocols may be employed as best suited to meet the communication distance needs and communication environment considerations. Devices embodying capabilities to practice such communication methods are described in more detail below.
A group of beacon devices can be programmed and controlled by various methods. In some embodiments consistent with the present disclosure, the group of beacon devices can be programmed and controlled while being deployed in the field by beacon-to-beacon communication. The beacon-to-beacon communication can be achieved by using infra-red signals, which is a line of sight method. Alternatively, the beacon-to-beacon communication can be achieved by using any other communication methods such as, for example, local radio, etc. The configuration of devices having such beacon-to-beacon communication capability enabling programming is described more fully below.
In some other embodiments consistent with the present disclosure, the group of beacon devices can be programmed or controlled with the use of a servicing facility. Such programming and control rely on a more complex infra-structure of, at least, the beacon device, but also offers advantages of control of many beacon devices and groups of beacon devices, making quick changes in programming possible upon detecting adverse external conditions such as jamming, or imitation by hostile forces, and/or in order to re-program, in real time, signaling patterns customized for friendly forces.
The specific method for programming and controlling beacon devices can be chosen from a plurality of methods disclosed herein, in real time, i.e., while the beacon devices are deployed, in response to changes in the operating environment of the beacon devices.
As illustrated in
Housing 110 can be made of any solid material for containing a power source such as, for example, an AA battery, of beacon 100. Program button 130 disposed on one side of housing 110 is used for a program operation of beacon 100, which will be explained in more detail with reference to
Solid cap 120 includes a first opening 122 disposed on a top side of solid cap 120 and a second opening 124 disposed on a front side of solid cap 120. When solid cap 120 is disposed on the top of housing 110, solid cap 120 is in close contact with an upper edge 110b of housing 110, such that beacon signals emitted from IR emitter LEDs 170 can only pass through first and second openings 122 and 124 with a reduced intensity. However, IR signals emitted from an external IR emitter, such as a beacon signal emitted from an IR emitter LED of another beacon, or an IR-link signal emitted from an IR emitter of another beacon, cannot pass through first and second openings 122 and 124. Therefore, an IR-link detector disposed inside solid cap 120 can be protected by solid cap 120 from interference by unintended IR signals.
In some embodiments, rotary switch 150 can be a two-position rotary switch that includes an “on” position and an “off” position. Rotary switch 150 is formed with protrusions 150a on opposite sides. The positions of protrusions 150a can be easily recognized by an operator, such that the operator can rotate rotary switch 150 to the “on” position or the “off” position without visual verification. Once rotary switch 150 is rotated to the “on” position, components of beacon 100 are connected to be supplied with electric power from the power source contained in housing 110 to turn on beacon 100. Once rotary switch 150 is rotated to the “off” position, the electric power is disconnected from the components of beacon 200.
In some embodiments, rotary switch 150 can be a three-position switch that includes a third position in addition to the “on” position” and the “off” position. The third position can be a spring loaded momentary position past the “on” position. Once rotary switch 150 is in the “on” position, rotary switch 150 can be further rotated from the “on” position, in a direction opposite to the “off” position, to the third position by a rotational force applied by an operator. However, if the rotational force is withdrawn by the operator, rotary switch 150 will rotate back to the “on” position by force of a spring (not shown) connected to rotary switch 150. The third position can be used for initiating various control functions such as, for example, a program control, a synchronization control, a power adjustment control, etc.
IR emitter LEDs 170 can be controlled by a microcontroller (not shown) included on control circuit 190 to emit a beacon signal in the infrared spectrum. The beacon signal can be configured to flash on and off according to a predetermined sequence or pattern that makes up a signaling code.
Indicator LEDs 180 can be controlled by the microcontroller to emit a light signal in the visible light spectrum. Indicator LEDs 180 can be color coded such as, for example, red, green, and yellow. Indicator LEDs 180 can be configured to demonstrate a signaling code of the beacon signal to an operator, indicate whether a factory-installed signaling code or an operator-entered signaling code has been selected, indicate when beacon 100 cannot store additional signaling codes, or indicate that beacon 100 is turned on.
Control circuit 190 can be formed with various electronic components for controlling the operation of beacon 100. The various electronic components can include a power management module including a step-up converter, a communication module including an IR-link detector and an IR-link emitter, the microcontroller mentioned above, a clock module, a voltage driver module, and a current monitor module, which will be explained in more detailed with reference to
One skilled in the art will now appreciate that beacon 100 can be implemented in a number of different configurations without departing from the scope of the present disclosure. For example, in one embodiment, transparent cap 160 in which IR emitter LEDs 170, indicator LEDs 180, and control circuit 190 are disposed, can be disposed on a side of housing 110 instead of on the end of housing 110 as illustrated in
Power source module 210 includes a power source 212, a step-up converter 214, and an on/off switch 216. Power source 212 supplies an output voltage used to power the other components of beacon 200. Power source 212 can be any power source having an output voltage, such as, for example, a single AA battery having an output voltage of 1.1-1.5 Volts (as illustrated in
Operator interface module 220 includes a program (“PROG”) control switch 222, a synchronization (“SYNC”) control switch 224, and one or more indicator LEDs 226, and allows an operator to interact with beacon 200 to perform various functions. Program control switch 222 and synchronization control switch 224 can be any type of switch, such as a pushbutton switch that is electrically connected to microcontroller 240 such that microcontroller 240 senses when program control switch 222 or synchronization control switch 224 are operated. For example, program control switch 222 can be implemented as program button 130 of
Communication module 230 includes an IR-link detector 232 and an IR-link emitter 234, and is used for communicating data carried by IR-link signals with one or more external devices such as, for example, another beacon or a calibration device. IR-link detector 232 can be any type of IR receiver, and is configured to receive an IR-link signal having a predetermined frequency (e.g., 37 KHz) transmitted from an external device, and send the received IR-link data carried by the IR-link signal to microcontroller 240. IR-link emitter 234 can be any type of IR transmitter, and is configured to frequency-modulate a signal by using a modulation signal having the predetermined frequency, and transmit the frequency-modulated signal as an IR-link signal to an external device. The modulation signal can be produced by clock module 250. In some embodiments, the IR-link signal emitted by IR-link emitter 234 is orthogonal to the beacon signal emitted by IR emitter LEDs 270, and has a relatively long wavelength and relatively low power compared to the beacon signal. Therefore the IR-link signal does not noticeably interfere with the beacon signal.
Microcontroller 240 can be any device that ties together and drives the other elements of exemplary beacon 200. Microcontroller 240 includes a processor 242 and a memory 244. Processor 242 can be one or more processing devices, such as a central processing unit (CPU), which executes program instructions to perform various functions, such as the processes described in more detail below with respect to
Clock module 250 includes an oscillator 252, an oscillator tuning potentiometer 254, and a clock microcontroller 256. Oscillator 252 is configured to generate an oscillating signal with a precise frequency, and supply the oscillating signal to microcontroller 240 and clock microcontroller 256. Oscillator tuning potentiometer 254 is controlled by microcontroller 240 to provide an output voltage to oscillator 252 for adjusting the frequency of the oscillating signal generated by oscillator 252.
Clock microcontroller 256 is configured to generate a clock cycle signal based on the oscillating signal supplied from oscillator 252, and supply the clock cycle signal to microcontroller 240. The clock cycle signal has a fixed clock cycle period, and is used for the timing of the signals to be transmitted from beacon 200, e.g., the beacon signals to be emitted by IR emitter LEDs 270, or the IR-link signals to be emitted by IR-link emitter 234. For example, microcontroller 240 can be configured to transmit signals to IR emitter LEDs 270 or IR-link emitter 234 at a starting time of every clock cycle period indicated by the clock cycle signal. In order to generate the clock cycle signal, clock microcontroller 256 can include a first frequency divider for dividing the frequency of the oscillating signal. For example, if the frequency of the oscillating signal generated by oscillator 252 is 16.32 MHz, then, in order to generate a clock cycle signal with a clock cycle period of 9.9 seconds, the first frequency divider is configured to divide the frequency of the oscillating signal by 161,568,000:1.
Clock microcontroller 256 is also configured to generate a modulation signal with a fixed frequency, and transmits the modulation signal to IR-link emitter 234 for frequency modulation. Clock microcontroller 256 can include a second frequency divider for generating the modulation signal. For example, if the frequency of the oscillating signal generated by oscillator 252 is 16.32 MHz, then, in order to generate a modulation signal with a frequency of 37 KHZ, the second frequency divider is configured to divide the frequency of the oscillating signal by 441:1.
Clock microcontroller 256 is further configured to, in response to a clock reset command received from microcontroller 240, wait for a predetermined period of time and restart the clock cycle period of the clock cycle signal from 0.
Voltage driver module 260 can be any device or combination of devices that can supply a variable voltage to drive IR emitter LEDs 270. Voltage driver module 260 includes an output voltage controller 262 and a step-up converter 264. Output voltage controller 262 receives a command from microcontroller 240 and transmits an output voltage control command to step-up converter 264. Step-up converter 264 receives an input voltage from power source module 210 and the output voltage control command from output voltage controller 262, and converts the input voltage to a voltage level to drive IR emitter LEDs 270 according to the output voltage control command.
IR emitter LEDs 270 can be one or more IR LEDs that emit a beacon signal at a selected or range of frequencies and which can be driven to flash on and off according to a predetermined sequence or pattern that makes up a signaling code. IR emitter LEDs 270 are driven by a voltage supplied from step-up converter 264, and can draw a current that can be monitored by current monitor module 280.
Current monitor module 280 can include any device or combination of devices that monitors the current through IR emitter LEDs 270. Because the current through infrared emitter LEDs 270 cannot be measured directly, current monitor module 280 converts the current flowing through IR emitter LEDs 270 to a current feed-back signal using well-known techniques. This current feed-back signal is sent to microcontroller 240 for power management of beacon 200.
When beacon 100 or 200 is manufactured, the beacon can be configured as a synchro beacon or a cascade beacon. A more detailed description of the synchro beacon will be provided with reference to
A synchro beacon is capable of being synchronized with a “leader” beacon such that, after synchronization, a set of synchro beacons can emit synchronized beacon signals, i.e., beacon signals with the same signaling code in unison.
Deploying a set of synchro beacons requires that at setup, one synchro beacon is selected as a leader beacon and then its signaling code and clock synchronization information are communicated to all the other beacons (hereinafter referred to as follower beacons) of the set of synchro beacons. Any follower beacon, once synchronized to the leader beacon, can be then used to synchronize any additional beacons. There is a very small timing error introduced by every synchronization transfer. However, the timing error is small enough that multiple promulgations of synchronization can be performed without compromising the integrity of the beacon signals emitted by the set of synchro beacons.
Referring to
When the operator of leader beacon 401 operates a synchronization control switch (e.g., synchronization control switch 224 of
Step 412 is triggered by the operator of leader beacon 401 operating the synchronization control switch of leader beacon 401. Specifically, when the microcontroller of leader beacon 401 detects that the synchronization control switch of leader beacon 401 is operated, the microcontroller waits for the starting time ts of the next clock cycle immediately following the current clock cycle, and transmits the IR-link data packet to the IR-link emitter at the starting time ts of the next clock cycle. The IR-link emitter modulates the IR-link data packet by a modulation signal to generate an IR-link signal, and then emits the IR-link signal. Because the IR-link signal is emitted at about the starting time ts of the next clock cycle, the IR-link signal inherently includes clock synchronization information of leader beacon 401. In some embodiment, before the microcontroller transmits the IR-link data packet to the IR-link emitter, the microcontroller also encrypts the IR-link data packet using a special encryption method known by follower beacon 402.
In order to successfully transmit the IR-link signal, the operator of leader beacon 401 can orient and point the IR-link emitter of leader beacon 401 towards follower beacon 402, and an operator of follower beacon 402 can orient and point an IR-link detector (e.g., IR-link detector 232) of follower beacon 402 towards leader beacon 401.
Then, when the clock of leader beacon 401 indicates that it is the starting time ts of a clock cycle immediately following the clock cycle where leader beacon 401 transmits the IR-link data packet, leader beacon 401 immediately starts emitting a beacon signal in successive clock cycles, starting from the starting time ts (step 414). Specifically, the microcontroller of leader beacon 401 transmits the signaling code to a voltage driver module (e.g., voltage driver module 260 of
Meanwhile, follower beacon 402 receives the IR-link signal transmitted from leader beacon 401 (step 450). Specifically, when an IR-link detector (e.g., IR-link detector 232 of
Then, follower beacon 402 verifies the data included in the IR-link signal received from leader beacon 401 (step 452). Specifically, a memory (e.g., memory 244 of
Assuming the data included in the IR-link signal is verified, the microcontroller of follower beacon 402 immediately changes the operation of follower beacon 402 as instructed by the data received from leader beacon 401.
In particular, follower beacon 402 adjusts a clock (e.g., clock module 250 of
Follower beacon 402 also stores the signaling code included in the received IR-link data packet into the memory of follower beacon 402 (step 456). Successful receipt of the signaling data and the clock synchronization data and changing the operation of follower beacon 402 can be indicated to the operator of follower beacon 402 by a “Victory” flashing pattern emitted by indicator LEDs (e.g., indicator LEDs 226 of
When the clock of follower beacon 402 indicates that it is the starting time ts of a clock cycle, follower beacon 402 immediately starts emitting a beacon signal in successive clock cycles, starting from the starting time ts (step 458). Specifically, the microcontroller of follower beacon 402 transmits the signaling code and a clock cycle signal generated by the clock of follower beacon 402 to a voltage driver module (e.g., voltage driver module 260 of
Leader beacon 401 and follower beacon 402 can continue to emit beacon signals in unison independently for approximately 24 hours or until power is interrupted. After synchronization, there is no need for any further communication between leader beacon 401 and follower beacon 402.
In the embodiment illustrated in
As described above, when a beacon is manufactured in a factory, the beacon can be configured as a synchro beacon or a cascade beacon. A cascade beacon is capable of delaying emission of its beacon signal from the starting time of each clock cycle by a fixed delay time, such that a set of cascade beacons can emit cascading beacon signals with an identical signaling code but delayed from each other. In such manner, the set of cascade beacons create a pattern of a moving light pulse. To create this effect, the set of cascade beacons emit the same beacon signal, but delayed by a time interval relative to the beacon signals emitted from their respective adjacent beacons. The delay time of a cascade beacon can be pre-stored in an internal memory and can be indicated on a label (e.g., label 110a of
Any beacon in the set of cascade beacons can act as a leader. However, just as with the synchro beacons, all cascade beacons must be synchronized to each other. Once synchronized, then when the beacons are arranged sequentially according to the unit numbers and spaced along a line or circle with more or less the same separation, the effect of a moving light pulse will be created.
Leader beacon 601 and follower beacon 602 can be any one of beacon units 0 through 9 illustrated in
First, leader beacon 601 acquires a signaling code of beacon signals to be emitted by both of leader beacon 601 and follower beacon 602 (step 610). The manner of performing step 610 is similar to that of step 410. Therefore, detailed description of step 610 is not repeated.
When the operator of leader beacon 601 operates a synchronization control switch (e.g., synchronization control switch 224 of
Then, when the clock of leader beacon 601 indicates that it is the starting time ts of a clock cycle immediately following the clock cycle where leader beacon 601 transmits the IR-link data packet, leader beacon 601 starts emitting a beacon signal with a delay time relative to the starting time ts of the clock cycle (step 614). The delay time is stored in the memory of leader beacon 601. For example, if leader beacon 601 is beacon unit 1 of
Follower beacon 602 receives the IR-link signal from leader beacon 601 (step 650). Specifically, an IR-link detector of follower beacon 602 detects the IR-link signal from leader beacon 601 and then transmits the IR-link signal to the microcontroller of follower beacon 602.
Then, follower beacon 602 verifies the data included in the IR-link signal received from leader beacon 601 (step 652). The manner of performing step 652 is similar to that of step 452. Therefore, detailed description of step 652 is not repeated.
Assuming the data included in the IR-link signal is verified, the microcontroller of follower beacon 602 immediately changes the operation of follower beacon 602 as directed by the data received from leader beacon 601.
In particular, follower beacon 602 adjusts the clock (e.g., clock module 250 of
In addition, follower beacon 602 stores the signaling code received from leader beacon 601 into the memory of follower beacon 602 (step 656).
When the clock of follower beacon 602 indicates that it is the starting time ts of a clock cycle, follower beacon 602 starts emitting a beacon signal with a delay time relative to the starting time ts of the clock cycle (step 658). The delay time is stored in the memory of follower beacon 602. For example, if follower beacon 602 is beacon unit 2 of
In one embodiment, a set of beacons includes a plurality of subsets of beacons. The beacons in each subset of beacons are synchronized with each other, i.e., can emit synchronized beacon signals. The beacon signals emitted by each subset of beacons are cascaded with the beacon signals emitted by their neighboring subsets of beacons. In order to realize such a scenario, for example, each subset of beacons include a sub-leader beacon which is a cascade beacon having a delay time, and a plurality of synchro beacons synchronized to the sub-leader beacon.
In both of the synchro beacons and the cascade beacons, the clock cycle signals of the beacons are synchronized with each other. Only when their clock cycle signals are synchronized with each other, can the synchronized effect or the cascading effect of beacon signal transmission be realized. However, the clock cycle signals are generated from the oscillating signals generated by the oscillator (e.g., oscillator 252 of
Referring to
Beacon 701 then converts the oscillating signal to a signal having a frequency which is proportionally lower than the frequency of the oscillating signal (step 712). For example, the microcontroller of beacon 701 includes a digital or analog frequency divider that is configured to generate a signal (hereinafter referred to as the “converted signal”) having a frequency that is a fraction of the frequency of the oscillating signal.
Beacon 701 then transmits the converted signal via an IR-link emitter of the beacon (step 714). For example, the clock microcontroller of beacon 701 transmits the converted signal to the IR-link emitter (e.g., IR-link emitter 234 of
Calibration device 702 receives the converted signal from beacon 701 via an IR-link detector of calibration device 702 (step 716). Calibration device 702 then measures a frequency of the received converted signal (step 718), and determines whether the oscillator of beacon 701 needs to be adjusted. If the oscillator of beacon 701 needs to be adjusted, calibration device 702 determines frequency adjustment data based on the frequency of the received signal (step 720). Next, calibration device 702 transmits an IR-link signal including the frequency adjustment data determined at step 720 to beacon 701 (step 722).
Beacon 701 receives the IR-link signal transmitted from calibration device 702 via an IR-link detector (e.g., IR-link detector 232) of beacon 701 (step 724). For example, the IR-link detector of beacon 701 receives the IR-link signal and transmits the IR-link signal to the microcontroller.
Beacon 701 then adjusts the oscillator according to the frequency adjustment data included in the IR-link signal (step 726). For example, the microcontroller of beacon 701 parses the IR-link signal to obtain the frequency adjustment data, and, according to the frequency adjustment data, controls an oscillator tuning potentiometer (e.g., oscillator tuning potentiometer 254 of
In the present embodiment, by converting the oscillating signal and transmitting the converted signal via the IR-link emitter to calibration device 702 for calibration, and adjusting the oscillator based on frequency adjustment data determined by calibration device 702, the oscillator can be tuned without the need of any mechanical or electrical contact.
Beacons are generally carried by soldiers and law enforcement personnel. In one embodiment, beacons can be carried on the soldier's helmet.
As illustrated in
In another embodiment, beacons can be mounted to MOLLE (MOdular Lightweight Load-carrying Equipment) systems. A MOLLE system consists of rows and/or columns of heavy-duty nylon straps interleaved together and attached/stitched to a solider's garment (e.g., vest, jacket, pants) or backpack for mounting various MOLLE compatible accessories.
As illustrated in
As described above, systems and methods consistent with the present disclosure provide a synchro beacon that can be synchronized with a “leader” beacon and can emit synchronized beacon signals with the “leader” beacon. The systems and methods consistent with the present disclosure also provide a cascade beacon that can emit a cascaded beacon signal with respect to a “leader” beacon.
For purposes of explanation only, certain aspects and embodiments are described herein with reference to the components illustrated in
Further, the sequences of events described in
Beacon device 100 disclosed in the embodiment illustrated in
The beacon devices described in the embodiments above can be configured to emit beacon signals having predetermined signal programs and frequencies. In addition, a group of beacon devices can be configured to emit synchronized beacon signals or cascading signals. To this end, programming and control of the beacon devices are achieved via beacon-to-beacon communication, or when the beacon devices are physically connected to a servicing facility. According to the following description, programming and control of the beacon devices can also be achieved remotely via wireless communication.
Power source module 1010 includes a power source 1012, a step-up or step-down converter 1014, and an on/off switch 1016. Power source 1012 supplies an output voltage used to power the other components of beacon device 1000. Power source 1012 can be any power source having an output voltage, such as, for example, a single AA battery having an output voltage of 1.1-1.5 Volts (as illustrated in
Operator interface module 1020 includes a program (“PROG”) control switch 1022, a synchronization (“SYNC”) control switch 1024, and one or more indicator LEDs 1026, and allows an operator to interact with beacon device 1000 to perform various functions. The function and operation of operator interface module 1020 are similar to those described above for operator interface module 220, and thus detailed description of operator interface module 1020 is not repeated.
Communication module 1030 includes a link detector 1032 and a link emitter 1034, and is used for communicating data carried by link signals with one or more external devices such as, for example, another beacon device or a calibration device. The data carried by link signals can be signaling code, synchronization information, etc. The link signals can be configured to have a predetermined modulation frequency for improvement of communication reliability. For example, the link signals can be infrared (IR) signals having a predetermined modulation frequency of, for example, 37 KHz. Alternatively, the link signals can be optical signals having a predetermined wavelength of, for example, 950 nm. Link detector 1032 can be any type of receiver, and is configured to receive the link signal having the predetermined modulation frequency, and send link data carried by the received link signal to microcontroller 1040. Link emitter 1034 can be any type of transmitter, and is configured to frequency-modulate a signal by using a modulation signal having the predetermined frequency, and transmit the frequency-modulated signal as a link signal to an external device. The modulation signal can be produced by clock module 1050. In some embodiments, the link signal emitted by link emitter 1034 is orthogonal to the beacon signal emitted by beacon emitter 1070, and has a relatively longer wavelength and relatively low power compared to the beacon signal. Therefore the link signal does not noticeably interfere with the beacon signal. In some embodiments, communication module 1030 can include link emitters and link detectors for other types of communication, such as Bluetooth®, Wifi®, radio communication, etc. The link emitters and link detectors can be implemented based on radio frequency identification (RFID) technology, ultra-wideband (UWB) technology, Bluetooth® technology, and other technologies. In some embodiments, communication module 1030 can further include an encryption unit for encrypting signals to be emitted by the link emitters, and a decryption unit for decrypting signals received by the link detectors.
Microcontroller 1040 can be any device that ties together and drives the other elements of exemplary beacon device 1000. Microcontroller 1040 includes a processor 1042 and a memory 1044. Processor 1042 can be one or more processing devices, such as a central processing unit (CPU), which executes program instructions to perform various functions. Memory 1044 can be one or more storage devices that maintain data (e.g., instructions, software applications, information used by and/or generated during execution of instructions or software applications, etc.) used by processor 1042. For example, memory 1044 can store one or more factory-installed signaling codes or operator-entered signaling codes. Memory 1044 can also store a factory-installed delay time when beacon device 1000 functions as a cascade beacon. Further, memory 1044 can store one or more computer programs that, when executed by processor 1042, perform one or more processes consistent with the present disclosure. Memory 1044 can also store information used by and/or generated during execution, by processor 1042, of programs that perform the one or more processes consistent with the present disclosure. Memory 1044 can include any kind of storage devices that maintain data. For example, memory 1044 can include one or more of ROM, RAM, flash memory, or the like. In some embodiments, microcontroller 1040 can be controlled by an external controller (e.g., smart phone, tablet computer, personal computer) via a wired or wireless network based on a communication standard, such as Bluetooth®, Wifi®, 2G, 3G, or 4G, or a combination thereof. For example, a user of the external controller can operate the external controller to configure or enter information such as signaling code, delay time, etc., for storage, in memory 1044 under control of processor 1042. In some embodiments, the operation of microcontroller 1040 can be verified by the external controller with the wireless network. In some embodiments, microcontroller 1040 can be configured to change the signaling code or the frequency of the beacon signal over time, such that the beacon signal is more complex and difficult to detect and/or duplicate.
Clock module 1050 includes an oscillator 1052, an oscillator tuning means such as a potentiometer 1054, and a clock microcontroller 1056. The function and operation of clock module 1050 are similar to those described above for clock module 250, and therefore detailed description of clock module 1050 is not repeated.
Voltage driver module 1060 can be any device or combination of devices that can supply a variable voltage to drive beacon emitter 1070. Voltage driver module 1060 includes an output voltage controller 1062 and a step-up or step-down converter 1064. Output voltage controller 1062 receives a command from microcontroller 1040 and transmits an output voltage control command to step-up or step-down converter 1064. Step-up converter or step-down 1064 receives an input voltage from power source module 1010 and the output voltage control command from output voltage controller 1062, and converts the input voltage to a voltage level to drive beacon emitter 1070 according to the output voltage control command.
Beacon emitter 1070 can include one or more light emitting diodes (LEDs) that emit a beacon signal at a selected or range of frequencies and which can be driven to flash on and off according to a predetermined sequence or pattern that makes up a signaling code. Beacon emitter 1070 is driven by a voltage supplied from step-up or step-down converter 1064, and can draw a current that can be monitored by current monitor module 1080.
Current monitor module 1080 can include any device or combination of devices that monitors the current through beacon emitter 1070. Because the current through beacon emitter 1070 cannot be measured directly, current monitor module 1080 converts the current flowing through beacon emitter 1070 to a current feed-back signal using well-known techniques. This current feed-back signal is sent to microcontroller 1040 for power management of beacon device 1000.
According to the embodiments of the disclosure, Internet communication or another other type of wireless communication is utilized to enable control of all functions of beacon devices at any distance with the use of any type of devices that are capable of connection to the Internet or other types of wireless networks, such as a smart phone, personal computers, or by an intelligent software program running on a system without need for human intervention. One approach for achieving this capability is the application of a relay device to bridge communications between the Internet or other types of wireless networks and the beacon devices that are to be controlled.
Beacon controllers 1110, 1112, 1114, and 1116 can be any type of devices that are capable of connection to network 1120. For example, beacon controllers 1110, 1112, 1114, and 1116 can include a tablet computer 1110, a laptop computer 1112, a smart phone 1114, or a personal computer 1116. Beacon controllers 1110, 1112, 1114, and 1116 can receive various control commands from a user, and transmit the control commands to relay device 1130 via network 1120. Alternatively, beacon controllers 1110, 1112, 1114, and 1116 can automatically generate various control commands by an intelligent software program installed on the controllers, and transmit the control commands to relay device 1130 via network 1120. Beacon controllers 1110, 1112, 1114, and 1116 can also receive various update information from beacon devices 1140, 1142, 1144, and 1146 via network 1120, and generates control commands based on the update information.
Network 1120 can be any type of network that facilitates communication between remote components, such as beacon controllers 1110, 1112, 1114, and 1116 and relay device 1130. For example, network 1120 can be a local area network (LAN), a wide area network (WAN), a virtual private network, a dedicated intranet, the Internet, a cellular network, and/or a wireless network.
Relay device 1130 can be any type of device that relays communications between beacon controllers 1110, 1112, 1114, and 1116 and beacon devices 1140, 1142, 1144, and 1146. Relay device 1130 can be configured to receive control commands from beacon controllers 1110, 1112, 1114, and 1116 via network 1120, and forward the control commands to beacon devices 1140, 1142, 1144, and 1146. Relay device 1130 can be configured to receive update information from beacon devices 1140, 1142, 1144, and 1146, and transmit the update information to beacon controllers 1110, 1112, 1114, and 1116 via network 1120. Detailed description of a relay device suitable for implementation as relay device 1130 will be provided with respect to
Any one of more of beacon devices 1140, 1142, 1144, and 1146 can be controlled remotely by any one of beacon controllers 1110, 1112, 1114, and 1116. For example, any one or more of beacon devices 1140, 1142, 1144, and 1146 can receive signaling codes from any one of beacon controllers 1110, 1112, 1114, and 1116, and emit beacon signals according to the signaling codes. As another example, any one or more of beacon devices 1140, 1142, 1144, and 1146 can receive commands to change one or more of their functions, such as the frequency or magnitude of the beacon signals. Beacon devices 1140, 1142, 1144, and 1146 can have unique identifications and can be individually controlled, or can be controlled as a group by beacon control signals from any of beacon controllers 1110, 1112, 1114, and 1116.
The arrangement illustrated in
Network interface 1210 includes one or more of a satellite/GPS transceiver 1212, a radio frequency (RF) transceiver 1214, a Wifi® transceiver 1216, and a hard wire connector 1218. Satellite/GPS transceiver 1212 is connected to a satellite antenna 1213 to transmit or receive satellite internet signals to and from network 1120. Satellite/GPS transceiver 1212 is also configured to receive and decode GPS satellite signals for obtaining geographic location information and ultra-precise clock time. Satellite/GPS transceiver 1212 can be implemented by All in One GSM/GRPS Q52 transceiver manufactured by Wavecom®, and/or Antenova® M10478-A1 transceiver manufactured by Antenova®. RF transceiver 1214 is connected to an RF antenna 1215 to transmit and receive RF signals configured with pre-established protocol. The RF signals can be transmitted to and from a beacon controller installed with a similar RF transceiver. RF transceiver 1214 can be implemented by MTCMR-C1-N3 transceiver manufactured by Multi-Tech Systems Inc. WiFi® transceiver 1216 is configured to transmit and receive signals based on a WiFi® standard. WiFi® transceiver 1216 can be implemented by RN1810-I/RM100 transceiver manufactured by Microchip Technology Inc. Hard wire connector 1218 can be directly connected to a land line or switched public networks via a local area network (LAN) 1219.
Beacon interface 1220 includes one or more of an RF transceiver 1222, a Bluetooth® transceiver 1224, an optical transceiver 1226, and a hard wire connector 1228. RF transceiver 1222 is connected to an RF antenna 1223 to transmit and receive RF signals having a predetermined frequency such as, for example, 2.4 GHz. The 2.4 GHz operating frequency makes it possible to configure very compact electronics and requires a relatively short antenna. However, with such a high operating frequency, the transmission is limited to mostly line-of-sight, making it susceptible to blockage by topography, buildings, vehicles, and other impediments. Therefore, in some applications, the RF signals can have a lower operating frequency, i.e., a longer wavelength, or a frequency other than 2.4 GHz. The RF signals can be transmitted to and from one or more of beacon devices 1140, 1142, 1144, and 1146. Bluetooth® transceiver 1224 is configured to transmit and receive signals to and from one or more of beacon devices 1140, 1142, 1144, and 1146 in accordance with the Bluetooth® wireless communication standard. Bluetooth® communication technology makes it possible to configure very compact electronics, requires less power, needs only a very small antenna, and uses a standardized communication protocol which is now in wide usage. These advantages do, however, come at a price of greatly shortened communications range. For beacon applications, Bluetooth® may be usable where its very compact size, and omnidirectional capability can provide advantages when the required communication distance is short. Bluetooth® transceiver 1224 can be implemented by CC2564MODNCMOET transceiver manufactured by Texas Instrument. Optical transceiver 1226 is configured to transmit and receive optical link signals to and from one or more of beacon devices 1140, 1142, 1144, and 1146. The optical link signal can have a predetermined wavelength such as, for example, 950 nm. The present embodiment is not limited to the 950 nm wavelength, but extends both to longer as well as shorter wavelengths to provide greater range as well as immunity to noise. Optical transceiver 1226 can be implemented by RPM5537-H14E2A transceiver manufactured by Rohm Semiconductor. Hard wire connector 1228 can be directly connected to one or more of beacon devices 1140, 1142, 1144, and 1146.
Relay device 1200 can be powered by an internal electrical power source such as a battery, external sources such as power from a vehicle or power line, or by solar power. As relay device 1200 may be configured as is a pass-through device that requires no operator action, it is a desirable application for powering by use of solar power. In such case, relay device 1200 can further include a solar panel.
In some embodiments. all or portions of the functions of relay device 1200 can be integrated with one or more of beacon devices 1140, 1142, 1144, and 1146, giving the beacon device the ability to connect to network 1120 directly without the need for a relay device.
Communication module 1330 facilitates the transfer of signals between beacon device 1300 and relay device 1200, or between beacon device 1300 and another beacon device having a similar structure as beacon device 1300. Communication module 1330 includes one or more of an RF transceiver 1332, a Bluetooth® transceiver 1334, an optical transceiver 1336, and a hard wire connector 1338. RF transceiver 1332 is connected to an RF antenna 1333 to transmit and receive RF signals having the pre-determined frequency to and from RF transceiver 1222 of relay device 1200, or to and from an RF transceiver 1332 of the other beacon device. Bluetooth® transceiver 1334 is configured to transmit and receive signals in accordance with the Bluetooth® wireless communication standard to and from Bluetooth® transceiver 1224 of relay device 1200, or to and from a Bluetooth® transceiver of the other beacon device. Optical transceiver 1336 is configured to transmit and receive optical link signals having a predetermined wavelength (e.g., 950 nm) to and from optical transceiver 1226 of relay device 1200, or to and from an optical transceiver of the other beacon device. In order to transmit or receive optical link signals to or from another optical transceiver, optical transceiver 1336 is required to be pointed at the other optical transceiver. The high directionality of such optical link communication makes it nearly impossible for hostile forces to detect or jam. Hard wire connector 1338 can be connected to hard wire connector 1218 of relay device 1200, or to a hard wire connector of the other beacon device.
In some embodiments, the signals transmitted to and from communication module 1330 can be encrypted. Such encryption makes beacon device 1300 more difficult to copy by makers of counterfeit devices, or makes difficult the use of any devices that may have fallen into hostile possession.
Operator interface module 1320 is configured to receive input of an operation as sensed data. Operator interface module 1320 can transmit the sensed data to microcontroller 1340 so that microcontroller 1340 can control the function of beacon device 1300 based on the sensed data. Operator interface module 1320 can include one or more of a touch screen 1321, a graphic driver and touch decoder 1322, a capacitive sensor 1324, a resistive sensor 1326, and a magnetic sensor 1328. Touch screen 1321 uses transparent materials that couple effectively with a display made of either a matrix of individual LEDs or a screen with full graphic capability. With such a display, cues to an operator can be presented in real time to guide the operator through complex functions that are beyond the complexity of non-interactive methods. Graphic driver and touch decoder 1322 is configured to supply power and signals to touch screen 1321. Capacitive sensor 1324 is configured to sense variations of a capacitance. Capacitive sensor 1324 uses non-mechanical sensing technology to sense an operator's input. Capacitive sensor 1324 is intrinsically water proof but less robust, as dirt and water when in significant amounts can confuse detection electronics. Resistive sensor 1326 is configured to sense variations of a resistance due to the point of pressure of an operator. Greatly increased functional capabilities are possible as the input of sliding motion creates a multiplicity of points that can be decoded as gestures that seem very natural and, with the proliferation of smartphones, familiar to a user. Magnetic sensor 1328 is configured to sense variations of a magnetic field that may be generated by a magnet that is moved by the operator or an external device such as a solenoid that generates the magnetic field electrically and that is controlled by the operator around beacon device 1300. Magnetic sensor 1328 is intrinsically water proof and less sensitive to dirt than mechanical contact switches. In most situations, stray magnetic fields are not strong enough to cause misoperation. Operator interface module 1320 can transmit the sensed data to microcontroller 1040 so that microcontroller 1040 can control the function of beacon device 1000 based on the sensed data.
Traditionally, operator interfaces have been implemented as mechanical switching devices such as push-buttons, rotary switches, and slide switches. Such traditional means offer simplicity, low cost, and tactile feel, but can become large and costly when the information to be communicated is complex. Since beacon device 1300 may be used in applications where robustness is an important requirement, such traditional switching devices require sealing and protection in an adverse environment such as may be encountered in law enforcement or battle field applications. Increased robustness and capability benefits can be realized by the use of one or more advanced input means, such as touch screen 1321, capacitive sensor 1324, resistive sensor 1326, and/or magnetic sensor 1328. These advanced input means can be completely integrated into beacon device 1300, and can be supported by external controllers with coupling software and/or hardware.
In system 1100, relay device 1130 is needed to bridge communications between beacon controllers 1110, 1112, 1114, and 1116 and beacon devices 1140, 1142, 1144, and 1146. In some other embodiments, portions or all of the functions of relay device 1130 can be integrated into one or more beacon devices 1140, 1142, 1144, and 1146, such that there is no need for an additional relay device.
Communication module 1530 facilitates the transfer of signals between beacon device 1500 and network 1420, or between beacon device 1500 and another beacon device having a similar structure as beacon device 1500. In the embodiment shown in
Sensor and detector module 1580 can include any type of device that is capable of detect local conditions of beacon device 1500. For example, sensor and detector module 1580 can include an optical sensor for detecting the ambient light level and/or visibility of beacon device 1500. As another example, sensor and detector module 1580 can include a temperature transducer for sensing the ambient temperature of beacon device 1500.
In some embodiments, beacon controllers, such as beacon controllers 1110, 1112, 1114, and 1116 in
In particular, the beacon devices according to some embodiments of the present disclosure can transmit signals containing beacon information to the beacon controller. In one embodiment, a beacon device can be configured to report its location to a beacon controller based on GPS signals acquired by the beacon device, e.g., by means of satellite/GPS transceiver 1531 and satellite antenna 1537. In another embodiment, a beacon controller can remotely change the signaling pattern of one or more beacon devices in real time, to further enhance positive identification to friendly forces by individual beacon devices or groups of beacon devices. For example, such further enhanced position identification may take the form of a mimicking capability by which the beacon device or a display device in an aircraft is used to display exactly the same signaling pattern as a beacon on the ground. Such an enhanced capability can help to prevent a criminal or hostile entity equipped with similar devices from imitating a friendly entity. In another embodiment, a beacon controller can control a group of beacon devices to emit synchronized signaling patterns to increase the angular emission range as well as the strength of the composite signal to thereby increase the visible range of the group of beacon devices. In still another embodiment, sensor and detector module 1580 of beacon device 1500 can access local conditions such as the ambient light level, visibility, temperature, precipitation, etc., and to report the local conditions to a beacon controller, for assessment and adaptation. In still another embodiment, an integrated field information system can send warning or alert signals to individual beacon devices of individual law enforcement personnel or soldiers. In still another embodiment, a beacon controller can remotely deactivate any beacon device that cannot be accounted for or where the beacon device may have fallen into hostile hands. In still another embodiment, a beacon controller can remotely update beacon firmware of a beacon device without need to return the beacon device to a servicing facility.
System 1600 can be configured to self create an adaptive network of communications. In particular, each one of beacon devices 1620, 1622, 1624, 1626, 1628, and 1630 can be configured to forward messages and/or commands to all other beacon devices within radio range which are programmed to monitor any communication signals that contain pre-assigned identifications codes. For example, beacon controller 1610 transmits a control signal to one of beacon devices 1620, 1622, 1624, 1626, 1628, and 1630, e.g., beacon device 1620, via its RF transceiver. In response to receiving the control signal, beacon device 1620 transmits the control signal to beacon device 1622 via its RF transceiver, beacon device 1622 then transmits the control signal to beacon device 1624 via its RF transceiver, and so on. In such manner, radio communication distance can be extended. In addition, self-healing can be provided around any non-working beacon device or a beacon device whose transmission is blocked by topography, buildings, vehicles, or other impediments.
Network interface 1710 facilitates transfer of signals between beacon controller 1700 and an external network, such as network 1640 in
Microcontroller 1720 can be any device that coordinates and selectively controls operation of other elements of beacon controller 1700. Power source module 1730 supplies power to microcontroller 1720 and other components of beacon controller 1700. In the embodiment of
In some embodiments, beacon device 1300/1500 can further include a battery condition testing unit that is coupled to power source module 1310 or 1510. The battery condition testing unit can test the battery condition and transmit the test result to a power manager, so that the power manager can manage the power supply for beacon device 1300/1500 based on the test result.
In some embodiments, a group of beacon devices 1300/1500 can be respectively carried by a group of law enforcement personnel or soldiers. Beacon devices 1300/1500 so carried can be either synchro beacons or cascade beacons. When beacon devices 1300/1500 are cascade beacons, the law enforcement personnel or soldiers carrying beacon devices 1300/1500 are required to be positioned according to beacon unit numbers of beacon devices 1300/1500.
In some embodiments, a group of beacon devices 1300/1500 can be carried by a single user on various parts of the body. For example, a lead beacon device can be carried on the helmet of a soldier, while some follower beacon devices can be carried on the vest, sleeves, or backpack of a soldier. In such manner, light emission coverage is enhanced.
In some embodiments, beacon devices 1300/1500 can be automatically deactivated after emitting beacon signals for a predetermined period of time, or after receiving the last control signal from an operator for a predetermined period of time. When beacon device 1300/1500 is deactivated, it can be re-activated by an operator (e.g., a soldier) or by a remote controller.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 15435689 | Feb 2017 | US |
Child | 15970228 | US |