Meldal et al., A Chemically Inert Hydrophillic Resin for Solid Phase Organic Synthesis, Tetrahedron Letters 39 (1998) 8695-8698.* |
Adams, J. et al., “A Reinvestigation of the Preparation, Properties, and Applications of Aminomethyl and 4-Methylbenzhydrylamine Polystyrene Resins”, J. Org. Chem., vol. 63, No. 11, pp. 3706-3716 (May 29, 1998). |
Auzanneau, F. et al., “Synthesis, Characterization and Biocompatibility of PEGA Resins”, Jrl. of Peptide Science, vol. 1, pp. 31-44 (1995). |
Becker, H. et al., “Polyethyleneglycols Grafted onto Crosslinked Polystyrenes: A New Class of Hydrophilic Polymeric Supports for Peptide Synthesis”, Makromol. Chem., vol. 3, pp. 217-223 (1982). |
Buchardt, J. et al., “A Chemically Inert Hydrophilic Resin for Solid Phase Organic Synthesis”, Tetrahedron Letters, vol. 39, No. 47, pp. 8695-8698 (1998). |
Burger, M. et al., “Enzymatic, Polymer-Supported Formation of an Analog of the Trypsin Inhibitor A90720A: A Screening Strategy for Macrocyclic Peptidase Inhibitors”, J. Am. Chem. Soc., vol. 119, No. 51, pp. 12697-12698 (Dec. 24, 1997). |
Cilli, E. et al., “Correlation between Solvation of Peptide-Resins and Solvent Properties”, J. Org. Chem., vol. 61, No. 25, pp. 8992-9000 (Dec. 13, 1996). |
Gotfredsen, C. et al., “Single-bead structure elucidation. Requirements for analysis of combinatorial solid-phase libraries by Nanoprobe MAS-NMR spectroscopy”, J. Chem. Soc., Perkin Trans. 1, pp. 1167-1171 (2000). |
Graven, A. et al., “Towards peptide isotere libraries: aqueous aldol reactions on hydrophilic solid supports”, J. Chem. Soc., Perkin Trans 1., pp. 955-962 (2000). |
Grotli, M. et al., “Physical Properties of Poly(ethylene glycol) (PEG)—Based Resins for Combinatorial Solid Phase Organic Chemistry: A Comparison of PEG-Cross-Linked and PEG-Grafted Resins”, J. Comb. Chem., vol. 2, No. 2, pp. 108-119 (Mar./Apr. 2000). |
Hellermann, H. et al., “Poly(ethylene glycol)s Grafted onto Crosslinked Polystyrenes, 2). Multidetachably Anchored Polymer Systems for the Synthesis of Solubilized Peptides”, Makromol. Chem., pp. 2603-2617 (1983). |
Itsuno, S. et al., “New Solid-Phase Catalysts for Asymmetric Synthesis: Cross-Linked Polymers Containing a Chiral ShiffBase-Zinc Complex”, J. Org. Chem., vol. 55, No. 1, pp. 304-310 (1990). |
Kanda, P. et al., “Synthesis of polyamide supports for use in peptide synthesis and as peptide-resin conjugates for antibody production”, Int. J. Peptide Protein Res., vol. 38, No. 4, pp. 385-391 (Oct. 1991). |
Leon, S. et al., “Evaluation of Resins for on--bead Screening:: A Study of Papain and Chymotrypsin Specificity Using PEGA-Bound Combinatorial Peptide Libraries”, Bioorganic & Medicinal Chemistry Letters, vol. 8, pp. 2997-3002 (1998). |
Mayes, A. et al., “Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase”, Anal. Chem., vol. 68, No. 21, pp. 3769-3774 (Nov. 1, 1996). |
Munzer, M. et al., “5. Polymerizations in Suspension”, Polymerization Processes, vol. 29, pp. 106-142 (1977). |
Porco, J., Jr. et al., “Automated chemical synthesis: From resins to instruments”, Molecular Diversity, vol. 2, No. 4, pp. 197-206 (Apr. 1997). |
Pursch, M. et al., “Monitoring the Reaction Progress in Combinatorial Chemistry: H MAS NMR Investigations on Single Macro Beads in the Suspended State”, Angew. Chem. Int. Ed. Engl., vol. 35, No. 23/24, pp. 2867-2869 (Jan. 3, 1997). |
Rademann, J. et al., “SPOCC: A Resin for Solid-Phase Organic Chemistry and Enzymatic Reactions on Soild Phase”, J. Am. Chem. Soc., vol. 121, No. 23, pp. 5459-5466 (Jun. 16, 1999). |
Rademann, J. et al., “Solid-Phase Synthesis of Peptide Isosters by Nucleophilic Reactions with N-Terminal Peptide Aldehydes on a Polar Support Tailored for Solid-Phase Organic Chemistry”, Chem. Eur. J., vol. 5, No. 4, pp. 1218-1225 (1999). |
Rapp, W. et al., “Polystyrene-Polyoxyethylene Graftcopolymers for High Speed Peptide Synthesis”, Peptides 1988—Proceedings of the 20th European Peptide Symposium, pp. 199-201 (Sep. 4-9, 1988). |
Renil, M. et al., “POEPOP and POEPS: Inert Polyethylene Glycol Crosslinked Polymeric Supports for Solid Synthesis”, Tetrahedron Letters, vol. 37, No. 34, pp. 6185-6188 (1996). |
Sarkar, S. et al., “An NMR Method to Identify Nondestructively Chemical Compounds Bound to a Single Solid-Phase-Synthesis Bead for Combinatorial Chemistry Applications”, J. Am. Chem. Soc., vol. 118, No. 9, pp. 2305-2306 (Mar. 6, 1996). |
Schleyer, A. et al., “Direct Solid-Phase Glycosylations of Peptide Templates on a Novel PEG-Based Resin”, Angew. Chem. Int. Ed. Engl., vol. 36, No. 18, pp. 1976-1978 (1997). |
Smith, H. et al., “Comparison of Resin and Solution Screening Methodologies in Combinatorial Chemistry and the Identification of a 100 nM Inhibitor of Trypanothione Reductase”, J. Comb. Chem., vol. 1, No. 4, pp. 326-332 (Jul./Aug. 1999). |
Wilson, M. et al., “Solvent and Reagent Accessibility within Oligo(ethylene glycol) Ether [PEG] Cross-Linked Polystyrene Beads”, J. Org. Chem., vol. 63, pp. 5094-5099 (1998). |