Beam and telescopic connector shelving system

Information

  • Patent Grant
  • 5002248
  • Patent Number
    5,002,248
  • Date Filed
    Friday, July 14, 1989
    35 years ago
  • Date Issued
    Tuesday, March 26, 1991
    33 years ago
Abstract
A shelving assembly having vertical standards and brackets thereon suspending shelves therebetween by steel mounting pins projecting from channels in reinforcing beams recessed into the bottom of the shelves. The mounting pins extend into openings in the brackets. These openings, when in the form of recesses in the upper edge of the brackets, are configured with an overhand lip to prevent shelf tipping. These openings, when in bookend brackets are in alternate pairs to allow the shelf to be horizontal or tilted diagonally.The pins have a steel core, preferably jacketed with polymer having an integral peripheral flexible fin for a friction fit in the channels. These pins have peripheral grooves configured to interengage with plate type brackets. The pins have three such grooves so that they can serve to support one end of one shelf on the bracket or the adjacent ends of two shelves on a common bracket.Glass shelves can be mounted using pin socket shelf mounts having a pin receiving socket in a body, an outer shelf support surface, and a resilient clip for attachment to the shelf.
Description

BACKGROUND OF THE INVENTION
This invention relates to a shelving assembly employing vertical slotted standards and cantilever brackets attached thereto. These systems normally have each shelf resting on top of two or more brackets. Placing two shelves somewhat end-to-end requires at least four standards and four brackets in two spaced and separate side-by-side assemblies. It would be advantageous to have end-to-end shelves in one set, using a common bracket, and to have potential for different types of shelves, e.g., of wood, glass, etc. in the same set, mounted end-to-end.
Cantilever shelving systems are usually mounted in garages, recreation rooms and the like, but not in living rooms, dining rooms and offices where the setting is more dressy. It would be desirable, therefore, to have a cantilever shelving system with hardware that is either not visible or is stylish, so as to be readily useable in such settings without detracting from the decor.
Another limitation of present structures as known is the limited usage of pressed particle board for shelving. Such particle board can, as is known, be formed from scrap materials which are readily available, in place of valuable lumber. Yet, these materials typically have little resistance to bending and warping under load.
RELATED APPLICATIONS
This application is related to copending applications Ser. No. 381,149, filed July 14, 1989, entitled AESTHETIC SHELVING SYSTEM Ser. No. 381,160, filed July 14, 1989, entitled SHELVING MOUNT SYSTEM Ser. No. 381,148, filed July 14, 1989, entitled INTERLOCK SHELVING BRACKET AND STANDARD COVER, Ser. No. 381,122, filed July 14, 1989, entitled BOOK END BRACKET AND SHELVING SYSTEM; and Ser. No. 381,150, filed July 14, 1989, entitled PIN AND CLIP SHELF MOUNTING.
SUMMARY OF THE INVENTION
The present invention provides a novel system of cantilever shelving with the shelves being suspended between brackets by telescopic connectors, preferably mounting pins, that slidably extend telescopically into openings at the ends of the shelves. For wood shelves, the openings are shown in channels of reinforcing beams in the shelving, or for glass shelves in sockets of special shelf mounts that support and attach to the shelf. The mounting connectors preferably have a steel core and a polymeric jacket, with a resilient friction element on the periphery of the jacket to telescopically engage the channel or socket. The friction element is preferably an integral flexible fin to engage the channel or socket. Each pair of connectors can suspend one end of one shelf, or both adjacent ends of two end-to-end shelves, whether of wood, glass or other material. Moreover, by using a novel bracket, the adjacent shelves can be optionally placed horizontally or on a diagonal slope. The interfit of the mounting pins with the brackets effects lateral stability by locking the shelf and brackets against side shift, and inhibits accidental tilting of the shelves with force on the front edge of the shelf.
These and other advantages and features of the invention will be apparent upon studying the following detailed description in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front elevational view of a shelving assembly employing components of this invention;
FIG. 2 is a top plan view of the assembly in FIG. 1;
FIG. 3 is a side elevational view of a shelving assembly of somewhat differently arranged components than shown in FIGS. 1 and 2;
FIG. 4 is a bottom view of a wood shelf of this invention.
FIG. 5 is a fragmentary sectional enlarged view of a portion of the shelf in FIG. 4 taken on plane V--V;
FIG. 6 is a greatly enlarged elevational view of a preferred form of telescopic connector pin of this invention;
FIG. 7 is a longitudinal sectional view through the pin in FIG. 6;
FIG. 8 is an elevational view of an alternative embodiment of connector pin;
FIG. 9 is an enlarged elevational view of a polymeric ring forming part of the alternative embodiment in FIG. 8;
FIG. 10 is a fragmentary enlarged view of a portion of one of the cantilever brackets;
FIG. 11 is a side elevational view of a book end bracket for this invention;
FIG. 12 is an end elevational view of the book end bracket in FIG. 11;
FIG. 13 is an enlarged end elevational view of a shelf lip for this invention;
FIG. 14. is an end elevational view of the shelf lip in FIG. 13 an attached to the edge of a shelf;
FIG. 15 is a side elevational view of a connector socket shelf mount;
FIG. 16 is a top view of the connector socket shelf mount;
FIG. 17 is an end elevational view taken on plane XVII--XVII of FIG. 16;
FIG. 18 is a sectional view taken on plane XVIII--XVIII of FIG. 17;
FIG. 19 ia a sectional view taken on plane XIX--XIX of FIG. 15;
FIG. 20 is a sectional view taken on plane XX--XX of FIG. 15;
FIG. 21 is a greatly enlarged sectional horizontal view of the connection between one bracket and one end of a wood shelf;
FIG. 22 i a greatly enlarged horizontal sectional view of one bracket and the adjacent ends of two wood shelves connected thereto;
FIG. 23 is an enlarged sectional elevational view of one bracket, one end of a wood shelf on one side thereof and a connector socket mount and glass shelf on the other side thereof;
FIG. 24 is an elevational view of a wood shelf with a book end support attached thereto;
FIG. 25 a sectional elevational view taken on plane XXV--XXV of FIG. 24 but with the shelf removed;
FIG. 26 an enlarged fragmentary view of a bottom portion of the book end support in FIG. 24; and
FIG. 27 is a greatly enlarged view of the interconnection of the bottom portion of the book end support in FIG. 24 with the beam in the shelf.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now specifically to FIGS. 1 and 2, there is disclosed a set of three vertical slotted standards mounted to the wall as by screws (not shown) in parallel relationship to each other, three sets of brackets, with three plate brackets in each set, one set at each standard, and telescopic connectors supporting three pairs of shelves on the brackets. The complete assembly 10 is shown mounted to wall W to support a variety of shelving units in a set. Only three standards are needed to support one pair or several pairs of shelves with each pair of end-to-end shelves requiring only three brackets. These shelves may be positioned in a variety of end-to-end arrangements in an attractive, finished assembly. The three vertical standards 12, 12' and 12" are shown as basically U-shaped standards of conventional type, having a plurality of vertically elongated and vertically spaced slots with intermediate webs in its front face, shown in FIG. 2, in phantom in FIG. 11, and shown more specifically in copending application Ser. No. 381,149, filed July 14, 1989, entitled AESTHETIC SHELVING SYSTEM, incorporated by reference herein. The front face of each standard has these vertical slots for attachment of the cantilever brackets thereto. Spaced integral side faces of the standards have their rear edges abutting wall W.
Extending over the length of each vertical standard is a dress and stabilizing cover 14, 14' and 14" respectively. This dress cover is preferably of the type taught in the above identified copending application. It includes a pair of legs which resiliently engage the side faces of the standards, and project forwardly in front of the standard an amount at least about the dimension of the standard thickness from its front face to the wall. Each of the dress covers includes an elongated vertical central space 14a, 14a' and 14a" respectively, each space defined by a pair of flanges which engage the opposite side faces of brackets inserted through this space and through the standard slots into engagement with the standard webs with hook type lugs.
The top pair of shelves 16 and 16' are supported on three plate brackets 18, 18' and 18". The top three brackets in the assembly in FIG. 1 are of the type shown at the top of FIG. 3. On the brackets of this type, there is at least a pair of lugs which extend rearwardly and downwardly from one end thereof comparable to the lower set of lugs on the bookcase bracket depicted in FIG. 11. For purposes of clarity, and to illustrate the versatility of the present invention, FIG. 3 shows a slightly different arrangement of shelving brackets and shelves than FIG. 1. Brackets 18, 18' and 18" have an upper surface configuration like that depicted in FIG. 10. More specifically, in at least two areas of this plate type metal bracket, the upper surface 18a has special recesses 18b and 18c which are generally V-shaped in configuration but preferably have an undercut area at 18b' and 18c' sloping downwardly inwardly toward the end that is secured to the standard, i.e., the end with the lugs thereon, to form overhanging retention lips 18b" and 18c". The purpose of these lips will be explained hereinafter. Thus, the generally V-shaped pockets or recesses can be considered more specifically as having a y-shape. These pockets are spaced from each other an amount equal to the spacing of the openings and cooperative telescopic connectors on the shelves to be described hereinafter.
Interconnecting the left end of shelf 16 with end bracket 18, the right end of shelf 16' with end bracket 18", and the adjacent right end of shelf 16 and left end of shelf 16' with the middle or intermediate bracket 18', are a plurality of like telescopic connectors 20 preferably of the type depicted in FIGS. 6 and 7. Optionally the type depicted in FIG. 8 or the equivalent can be employed. Each telescopic connector is preferably, therefore, a specially configurated pin which has an elongated cylindrical steel core 22 surrounded by an integral polymeric jacket 24. This polymeric jacket includes a central annular cavity 26 of sufficient width to receive and interfit with one of the plate type brackets, and a pair of annular cavities 26' toward the ends of the connector to optionally receive and interfit with a bracket in the manner to be explained hereinafter. Protruding circumferentially from both end portions of the body are resilient polymeric flexible annular fins 28 and 28', respectively. It will be noted that these fins protrude circumferentially further than the remaining body of the connector. The body is of a diameter just smaller than the orifice or opening into which it telescopically fits to readily slide into a desired position. The protruding fins peripherally engage the walls of the opening to be deformed thereby, for frictional retention characteristics. In the illustrative drawings, the right end of this telescopic connector is shown to be convexly rounded whereas the left end is shown to be flat. This is an optional feature. The flat end takes less space and allows another component to be placed closely thereto. These telescopic connectors interfit with orifices or openings in the ends of a shelf, such as reinforcing beams of a wood shelf, or in separate support socket mounts 42 of the type in FIGS. 15-20 and preferably used with glass shelves. The connectors can interconnect with either the type of bracket depicted at 18 (FIG. 3) or the special book end bracket in FIG. 11, as will be explained.
An alternative telescopic pin connector is depicted in FIGS. 8 and 9. It includes a main body 120, preferably of steel, having a plurality of three annular grooves around its periphery, such grooves being 126 in the center thereof and 126' at the ends thereof. Any one of these three grooves is of a width slightly greater than the width of the plate brackets to receive and interengage with the brackets. Also, for a friction fit within the openings, i.e., in the beams 30 or in the socket mount 42, resilient rings 128 as of rubber are placed in the selected groove or grooves. These rings as depicted more specifically in FIG. 9, preferably have a circular outer configuration and a polygonal, e.g., triangular, internal opening. Alternatively a simple conventional 0-ring may be employed for this purpose. Thus in the illustrative embodiment of FIG. 8, ring 128 is placed in the left hand groove to be inserted into a cavity. Either of the other two grooves can be employed to interengage a bracket.
Shelves 16 and 16' are preferably of wood material and may be of pressed wood rather than finished lumber. Each of these shelves, as in FIGS. 4 and 5, is shown to include a pair of parallel elongated reinforcing beams 30 spaced from each other, extending lengthwise of the shelf, and recessed into a groove in the bottom of the shelf (FIG. 5). Each beam preferably comprises a tubular type member having an internal hollow area 30a and an elongated slot-like opening 30b at the bottom thereof straddled by a pair of edge flanges 30c. The peripheral configuration is preferably generally rectangular as depicted, although other configurations may be employed. This beam is open on its ends to form orifices, i.e. openings into which the telescopic connectors are inserted. More specifically, the generally cylindrical telescopic connector 20 has one end inserted into one end of a respective beam, with fin 28 being slightly larger in its diameter than the internal diameter or width of space 30a so that the fin is flexed back resiliently when the connector is inserted. This provides a frictional fit. The amount which the connector is inserted is determined by whether the connector is to be used to support one end of one shelf or two ends of two adjacent end-to-end shelves. Thus, to support the left end of shelf 16 and the right end of shelf 16' , two connectors are inserted into the respective shelf about two-thirds of the length of the connector, so that end groove 26' will interengage with the bracket by receiving the plate bracket. However, the opposite ends of the central pair of connectors for the right end of shelf 16 and the left end of shelf 16' are inserted only about one-half of the way into each of these two shelves, so that the central groove 26 of each connector pin interengages with a common bracket 18' by receiving it. The telescopic connectors are interfitted with the recesses 18b and 18c (FIG. 10) of the brackets, and particularly the undercut portion 18c' thereof. The overlying lips 18b" and 18c" prevent the pins and thus the rear portion of the shelves from inadvertently being dislodged upwardly by downward vertical pressure on the front of the shelves. Likewise, the lips at the front recesses on the brackets prevent the shelves from being inadvertently dislodged by upward vertical force on the outer edge of the shelves.
FIGS. 21 and 22 show the connections enlarged to assure complete understanding of this assembly operation. In FIG. 21 is depicted the left end of shelf 16 with connector 20 and bracket 18. In FIG. 22 is an enlarged view of shelves 16, 16', connector 20 and bracket 18'. The shelves are astraddle this central bracket. These can be put together in various combinations in the set.
Particularly, in FIG. 1, the central pair of shelves illustrate how a glass shelf can be mounted side-by-side with, and at the same level as, a wood shelf, utilizing just three brackets and three standards. More specifically, wood shelf 36' is basically like shelf 16' thereabove and shown end-to-end with glass shelf 36, both mounted on three brackets 38, 38'and 38" which are like brackets 18, 18' and 18" thereabove. Glass shelf 36 is supported on two pairs of socket mounts 40 and 40' which are alike except in mirror image position.
Each of these socket mounts preferably comprises an integral polymeric structure composed of a main elongated body 42 (FIG. 15) defining an internal socket 42' (FIG. 18) and having an opening on one end to receive the telescopic connector pin. Preferably, this opening is generally cylindrical with a diameter substantially the same as the diameter of a fin, e.g. 28 on pin connector, but also including a chordal flat 42a to bend a portion of the resilient fin for creating a friction fit. If desired, this chordal flat need not be used, but the diameter of cavity 42' made slightly smaller than the diameter of the fin. However, it has been determined upon testing that, in such an instance, it is difficult at times to flex the fin into the opposite direction after insertion, thereby rendering removal difficult. On the upper surface of body 42 is a shelf support surface 44 parallel to the socket axis, and upon which the glass shelf rests. Generally parallel to this surface, but sloped slightly theretowards, and spaced therefrom, is a resilient clip formed of a first leg 46 joined at one end thereof by a second leg 48 to body 42. Leg 48 is at the end where the opening to cavity 42' is located. Because the outer free end of leg 46 is slightly closer to support surface 44 than the thickness of the shelf to be inserted, this leg must be deflected away from the body a small amount, against its inherent bias, when the shelf is inserted, thereby subsequently applying a resilient biasing pressure against the shelf to retain it against support surface 44. Thus, by inserting shelf 36 into the clips of the respective connectors 40 and 40', and then inserting the telescopic connector pins 20 into the outer ends of sockets 42', the shelf can be securely mounted on brackets 38 and 38'. In FIG. 1 as depicted, connector pin 20 is inserted about two-thirds of its length into the socket so that the outer exposed end has its groove 26' engaging with bracket 38. However, the connector pin for mount 40' is inserted approximately one-half of its length into the socket so that central groove 26 receives bracket 38', and the other end of connector 20 is inserted about one-half of its length into the opening of beam 30 for wood shelf 36'. The opposite end of shelf 36' is supported in the same fashion as shelf 16' thereabove.
FIG. 23 illustrates the details of a glass shelf with its socket mount, a wood shelf with a support beam and mounted end-to-end to the glass shelf, and common bracket therebetween. This is comparable to the middle pair of shelves in FIG. 1, but with the position of the two shelves reversed.
Shelves 36 and 36' are supported in such fashion with the common mounting pins that their upper surfaces are substantially coplanar. The two adjacent ends of the shelf, therefore, are not only immediately adjacent each other, but also are aligned with each other.
Also positioned on shelf 36' (FIG. 1) is a pair of book end supports 50 of the type shown in FIGS. 24-27 and also shown as the second from the bottom arrangement in FIG. 3. This book end support is shown to include a flat member configurated into an inverted generally U-shaped loop to form an upright retainer 50'. It also has a lower resilient U clip 52 which extends around the edge of a shelf, here shown to be the rear edge. This clip has a leg 56 under the shelf, resiliently biased toward the main body portion of the book end support. The unit depicted is a modified book end from that illustrated in U.S. Pat. No. 4,327,838. That is, leg 56 has a key or protrusion 54 on its upper surface, of a width slightly less than opening slot 30b (FIG. 5) in the bottom of the shelf beam, to fit therein. This elongated key 54 stabilizes the book end support against twisting on the shelf. Hence, upon installation, leg 56 is deflected from its at rest position shown in dotted lines in FIG. 24, against its inherent bias, to its extended installed position, and then snapped into position with key 54 in slot 30b a shown in solid lines.
The bottom pair of end-to-end shelves in FIG. 1 illustrates the capacity of having one shelf 66 in a tilted display position and the adjacent shelf 66' in a horizontal orientation. Shelf 66 is shown mounted on two specially configurated book end brackets 70 of the type in FIGS. 3, 10, 11 and 12. These book end brackets are formed of plate stock like the other brackets, but are configurated differently such that there is an upstanding, inverted, generally U-shaped portion and an integral, lower, horizontal base portion 70" terminating at the rear edge thereof (FIG. 11) in a pair of hook type lugs 72 to engage with the front panel of a slotted standard 12 shown in dotted lines. These lugs extend rearwardly and downwardly and are preferably of the type set forth in the above identified copending application, to engage behind webs between the slots of the standard. Also protruding rearwardly from upstanding portion 70' is a rear extension 70" parallel to the base of the book end bracket and having another pair of lugs 72' thereon for engaging another pair of slots in standard 12.
This book end bracket is shown to have two pairs of openings, the openings in each pair being spaced an equal distance apart. Specifically, openings 74 and 74' in the first pair are spaced a distance from each other equal to the spacing of the openings and telescopic connectors on the ends of the shelves. Opening 74 is intermediate the ends of the base of book end bracket 70 and opening 74' is out toward the outer edge thereof. A second pair of openings 76 and 76' are on a diagonal plane relative to each other, sloping downwardly and outwardly. They are spaced apart a distance equal to the distance between openings 74 and 74'. Conceivably openings 74' and, 76' could be the same opening, either of this same size or enlarged, to cooperate with the other openings 74 and 76. The purpose of these openings is to receive the ends of the telescopic connector pins 20 in a manner that the annular groove on the pins receives the bracket portion at the bottom of the bracket opening, to interconnect. The diameter of the circular openings is slightly larger than the circular ends of the connector pins to be able to receive such and thereafter interengage at the lower edge of openings 74 etc. with the selected annular groove 26 or 26' of the connector pin 20.
Of the two shelves at the bottom of FIG. 1, the shelf at the left, i.e., 66, is shown slanted for a display arrangement as is the middle shelf depicted in FIG. 3. At the right side of the bottom of FIG. 1, shelf 66' is shown in the horizontal arrangement. This is also depicted second from the top in FIG. 3. The left slanted shelf 66 in FIG. 1 is supported on a pair of the special book end brackets 70 and 70', while the right horizontal shelf 66' is supported on the left side by book end bracket 70' and on the right side by a bracket 78 comparable to bracket 18. The sloped shelf 66 has a pair of telescopic pin connectors 20 engaged in openings 76 and 76'. Shelf 66' has its pin connectors 20 in the two horizontal openings 74 and 74' at the centrally placed book end bracket 70'.
A retention lip 80 is employed on the lower outer edge of sloped shelf 66 to prevent articles from falling off the shelf. This retention lip 80 (FIG. 1 at the lower left, FIG. 3 in the center, and shown in greater detail in FIGS. 13 and 14) is an elongated element, preferably extruded of a polymeric material An upstanding, generally U-shaped inverted retainer 80d protrudes above the edge of the shelf. An upper leg 80a engages the upper edge of the shelf, a vertical face 80b engages the front edge of the shelf, and a lower resilient leg 80c is integrally attached to the bottom of face 80b to engage the bottom edge of the shelf. In the free form of this unit 80, lower leg 80c is at an upwardly rearwardly oriented angle relative to leg 80a, but is resiliently deflectable away to a generally horizontal orientation parallel to leg 80a as shown in FIG. 14 when installed on the shelf. Thus, by pulling down on the lower edge and inserting shelf 66, the retention lip is resiliently gripped onto the front edge of the shelf. This gripping action is aided by the downwardly protruding elongated tooth 80e on leg 80a, and the upwardly engaging elongated tooth 80f on lower leg 80c. This member is shown to have an elongated ribbed surface on its exterior for decorative purposes. Obviously this could be smooth or of other surface configurations. Likewise, cover 14 previously described and the end caps 15 could have various decorative surface configurations as best suits the environment in which the apparatus is being installed. Similarly, a plurality of two decorative collars 17 are shown at the top in FIG. 3, and three such collars 17 at the bottom, for merely illustrative purposes. No collars need be used or a selected number inserted all as explained in the above identified copending application.
From the illustrative embodiments depicted, it is apparent that a variety of shelving configurations of attractive nature can be readily assembled as desired for the particular use involved. Utilizing three standards and three brackets, any pair of shelves can be mounted end-to-end. If it is desired to have more end-to-end shelves, four or more standards could be employed. These shelves can be of wood, plastic or some other material having the end orifices receiving the telescopic connectors. The shelving is secure against vertical displacement by an inadvertent force applied thereto. It is also stable against lateral movement. The assembly is aesthetically appealing with practically no hardware visible. Hence, it can be employed in offices, in living rooms and in other areas, rather than just in garages, recreation rooms and the like where prior slotted standard hardware is typically found. Its assembly is simple, allowing customers with no particular mechanical experience or aptitude to readily assemble desired components in the final needed configurations.
Those skilled in this art, when studying this disclosure, will readily see additional advantages to those specifically recited above. A variety of alterations could conceivably be applied to the preferred embodiments depicted, to suit a particular situation, and without departing from the unique concept presented. Hence, the invention is not intended to be limited to the specific preferred illustrative embodiments, but only by the scope of the appended claims and the reasonably equivalent structures to those defined therein.
Claims
  • 1. A shelf and mounting assembly for mounting the shelf on a pair of brackets comprising:
  • a shelf body having length, depth and thickness dimensions;
  • said shelf having reinforcing beams at its underside, extending in said length dimension;
  • said beams having channels therein;
  • connectors having a portion thereof in said channels and a portion thereof extending from said channels beyond the ends of said shelf;
  • said connectors being configurated in said extending portions to removably interengage with brackets for mounting said shelf on a pair of brackets;
  • said connectors being pins having a telescopic sliding friction fit in said channels;
  • said connectors having a groove in the periphery of said extending portions of a width to receive a plate type bracket therein, whereby said connectors can be telescopically interfit with said shelf body followed by connection of said connectors to a pair of brackets.
  • 2. The assembly in claim 1 wherein said connectors which are telescopically fit into said channels have a peripheral protuberance to cause said friction fit in said channels.
  • 3. The assembly in claim 2 wherein said protuberance is a flexible polymeric fin on said pin.
  • 4. The assembly in claim 2 wherein said protuberance is a polymeric ring on said pin.
  • 5. The assembly in claim 3 wherein said pin has a metal core, and a polymeric jacket with which said fin is integral.
  • 6. The assembly in claim 1 wherein said connectors are mounting pins having three grooves in the periphery thereof, one in the central region of the pin and one toward each end of the pin, whereby the pins can mount one shelf by engagement of one end groove with a bracket, or can mount two shelves end-to-end astraddle a bracket by engagement of the central groove with a bracket.
  • 7. A shelf, mounting connector and bracket assembly comprising:
  • a shelf body having length, depth and thickness dimensions;
  • said shelf having reinforcing beams in its underside, extending in said length dimension;
  • said beams having channels therein;
  • mounting connectors having a portion thereof in said channels and a portion thereof extending from said channels beyond the ends of said shelf, and being spaced from each other at each end of said shelf;
  • said mounting connectors having configurated portions to interengage with brackets for mounting said shelf on brackets;
  • cantilever brackets for attachment to vertical standards, said brackets having recesses in the top thereof;
  • said recesses being spaced from each other an amount comparable to the spacing of said connectors from each other;
  • said brackets positioned at the ends of said shelf; and
  • said configurations of said connectors interfitting with said recesses in said brackets to support said shelf on said brackets.
  • 8. The assembly in claim 7 wherein said cantilever brackets have mounting lugs on one end thereof, and wherein said recesses are configurated to slope downwardly inwardly toward said one bracket end and have a lip thereover, to cause said connectors to be beneath said lips for resisting tilting of said shelf by force applied to the outer front edge of the shelf.
  • 9. The assembly in claim 7 wherein said configurated mounting connector portions are in at least two positions along said connectors in a manner enabling said connectors when in one position in said channels to support an end of one shelf on one side of a bracket and, when in a second position in said channels, to support the ends of two shelves on opposite sides of a bracket.
  • 10. The assembly in claim 9 wherein said connectors are pins having three peripheral grooves forming mounting portions, one groove centrally of the pin and the other two grooves toward the opposite ends of the pin.
  • 11. A shelf and mounting pin assembly for mounting the ends of the shelf on a pair of brackets comprising:
  • a shelf body having length, depth and thickness dimensions;
  • pin-receiving openings in said shelf at the ends of said shelf body, said openings being oriented in the direction of said shelf body length;
  • mounting pins telescopically extending from said openings and the ends of said shelf, each said pin being configuration with at least one groove to interfit with a plate type bracket, and each pin having a metal core, a polymeric jacket and a sliding axial fit in said openings.
  • 12. The assembly in claim 11 wherein said pins have a sliding friction fit in said openings.
  • 13. The shelf in claim 12 wherein each said pin has a flexible resilient protuberance at its periphery to cause said friction fit in said channels.
  • 14. The shelf in claim 13 wherein said protuberance is a flexible polymeric integral fin on said pin.
  • 15. The shelf in claim 13 wherein said protuberance is a polymeric ring on said pin.
  • 16. The shelf in claim 11 wherein there are two flexible polymeric fins integral with said polymeric jacket, and located toward the two ends of the pin.
  • 17. The shelf in claim 11 wherein there are three of said grooves which are annular grooves to receive a cantilever bracket, one in the central region of the pin and the other two toward the opposite ends thereof, to alternatively mount the end of one shelf on a bracket or the ends of two shelves placed end-to-end astraddle a bracket.
  • 18. A shelf and mounting assembly for mounting the shelf on a pair of brackets comprising:
  • a shelf body having length, depth and thickness dimensions;
  • said shelf having reinforcing beams at its underside, extending in said length dimension;
  • said beams having channels therein;
  • connectors having a portion thereof in said channels and a portion thereof extending from said channels beyond the ends of said shelf;
  • said connectors being configurated in said extending portions to removably interengage with brackets for mounting said shelf on a pair of brackets;
  • said channels having an open area in the bottom thereof;
  • and said assembly including a bookend support;
  • said bookend support having an upright retainer to extend above said shelf, and having a resilient U clip to fit around an edge of said shelf and partially beneath said shelf, and extending to open of said channels;
  • key means on said clip to fit into said channel open area for stabilizing said bookend support on said shelf.
  • 19. A shelf assembly comprising:
  • three vertical slotted standards for mounting in spaced relationship to each other to a vertical support surface, and for receiving cantilever brackets;
  • at least three cantilever brackets each having mounting lugs at one end thereof in engagement with respective ones of said slotted standards, in horizontal alignment and spaced relationship with each other so as to have two outer brackets and an intermediate bracket between said two;
  • a pair of shelves, each being between one of said outer rackets and said intermediate bracket;
  • each of said brackets being configurated to receive connectors;
  • pairs of telescopic connectors at the ends of said shelves including first and second pairs in the outer ends of said two shelves, and a third pair in the inner ends of both shelves;
  • said first and second pairs interengaged with said two outer brackets respectively, and said third pair interengaged with said intermediate bracket, whereby said shelves are mounted in end to end relationship astraddle said intermediate bracket;
  • at least one of said shelves is glass and includes pairs of attachable socket shelf mounts at the ends thereof;
  • said mounts each comprising a body having a socket for receiving portions of said connectors, and an attachment clip for fastening over the end of said glass shelf.
  • 20. The shelf assembly in claim 19 wherein said attachable mounts each include an outer shelf support surface spaced from said socket;
  • said clip has a leg spaced from said support surface; and
  • said socket, said support surface and said leg are generally parallel to each other.
  • 21. The shelf assembly in claim 20 wherein said clip includes a connector portion integrally joining said leg with said body, and said leg extending toward and being resiliently biased toward said support surface for retention of a shelf therebetween.
  • 22. The shelf assembly in claim 20 wherein said end-to-end shelves have substantially coplanar upper surfaces.
  • 23. The shelf assembly in claim 20 wherein said socket has a generally circular cross section of a diameter about that of said annular fin for flexing said fin for frictional engagement, and said fin having a chordal flat for facilitating flexing in opposite directions.
  • 24. The shelf assembly in claim 19 wherein at least one shelf has channels opening at the ends of said shelf, and said connectors being telescopically slidably received in said channels.
  • 25. The shelf assembly in claim 24 wherein said connectors are pins having flexible projections at the periphery causing a friction fit in said channels.
  • 26. The shelf assembly in claim 25 wherein said pins have peripheral portions configurated to interengage with said brackets when in said openings.
  • 27. The shelf assembly in claim 26 wherein said pins comprise a steel core covered by a polymeric jacket.
  • 28. The shelf assembly in claim 27 wherein said polymeric jackets have integral flexible fins at the periphery for frictional engagement with said channels on said sockets.
  • 29. A cantilever shelf support bracket comprising:
  • an elongated plate type bracket body having mounting lugs on one end thereof, and having a top edge;
  • at least two spaced pockets extending into said body from said top edge down, said pockets being generally V-shaped, and there being an undercut extension of the pocket at the bottom apex of said pocket, diagonally downwardly and toward said one end to leave an overlying lip, whereby said pockets can receive slotted, bracket straddling shelf mounts thereover or alternatively can receive grooved shelf mounting pins down through said V shape and into said extension so that said lip will prevent direct vertical movement of the pin.
  • 30. The bracket in claim 29 wherein said pocket is generally y-shaped.
  • 31. The bracket in claim 29 including a shelf mounting connector pin in said undercut extension.
  • 32. The bracket and pin in claim 31 wherein said pin has a groove in its periphery receiving a portion of said plate type body at said extension to interfit therewith, and having an end to telescopically interfit with a shelf.
  • 33. The bracket and pin in claim 32 wherein said pin groove is centrally thereof and said pin has two ends to interfit with two shelves.
US Referenced Citations (31)
Number Name Date Kind
290884 Howe Dec 1883
1084276 Jaminet Jan 1914
1201703 Davidson Oct 1916
1983470 Knape Dec 1934
2576865 Vanderveld Nov 1951
2788902 Nowicki Apr 1957
3088424 Knuth May 1963
3199822 Ruhnke Aug 1965
3265344 Ornstein Aug 1966
3284116 George Nov 1966
3295474 Ornstein Jan 1967
3325017 Tucker Jun 1967
3490393 Nelson Jan 1970
3513786 Kellogg May 1970
3701325 Fenwick Oct 1972
3765344 Ferdinand Oct 1973
3984077 Shine Oct 1976
4067165 Timmons Jan 1978
4098480 Neumann Jul 1978
4183487 Swain Jan 1980
4223966 Winters Sep 1980
4327838 Cooke May 1982
4345525 Poorter Aug 1982
4431155 Engel Feb 1984
4444321 Carlstrom Apr 1984
4615163 Curtis et al. Oct 1986
4624376 Bertram Nov 1986
4641469 Wood Feb 1987
4658969 Mastrodicasa Apr 1987
4736997 Besore Apr 1988
4796845 Regel Jan 1989
Foreign Referenced Citations (4)
Number Date Country
779115 Feb 1968 CAX
80398 Jan 1956 DKX
1289272 Feb 1969 DEX
707694 Apr 1954 GBX
Non-Patent Literature Citations (1)
Entry
Knape & Vogt Catalog KV 72-PB, pp. A13, A14 & A15 Knape & Vogt Sales Literature (2 pages).