Some aspects of technologies and related art that may be useful in understanding the background of the present disclosure are described in the following publications:
Power beaming is an emerging method of transmitting power to places where it is difficult or inconvenient to access wires, by transmitting a beam of electromagnetic energy to a specially designed receiver which converts it to electricity. Power beaming systems may be free-space (where a beam is sent through atmosphere, vacuum, liquid, or other non-optically-designed media), or power-over-fiber (“PoF”), where the power is transmitted over an optical fiber. The latter may share certain disadvantages with wires in some circumstances, but may also offer increased transmission efficiency, electrical isolation, and/or safety. Free-space power beaming may be more flexible, but may also offer more challenges for accurate targeting of receivers and avoiding hazards such as reflections and objects intruding on the power beam.
All of the subject matter discussed in the Background section is not necessarily prior art and should not be assumed to be prior art merely as a result of its discussion in the Background section. Along these lines, any recognition of problems in the prior art discussed in the Background section or associated with such subject matter should not be treated as prior art unless expressly stated to be prior art. Instead, the discussion of any subject matter in the Background section should be treated as part of the inventors' approach to the particular problem, which in and of itself may also be inventive.
A power beam will generally have some amount of inhomogeneity in its intensity profile when it impinges on a power receiver, and its shape may also not perfectly match a receiver's geometry. Knowing the approximate beam profile on a power converter array, and knowing its position relative to the array, can be useful for goals such as feedback in beam steering, optimizing power extraction, and safety sensing. The Power Beam Monitor described herein determines an approximate beam profile by monitoring light response of individual power converters (or groups of power converters) and/or by monitoring photodiodes or the like positioned to monitor light falling on the power converter array.
In one aspect, a method of determining a power beam position on an array includes directing a power beam at an array of power converters (e.g., photovoltaic (PV) cells) including one or more subgroups of power converters, each subgroup having a position, determining a response to the power beam for each subgroup of the one or more subgroups, and combining the determined response of each subgroup and the position of each subgroup to calculate a nominal center of the power beam. The response may be output current, output voltage, output power, or power converter temperature. The array may include a target location, and the method may further include steering the power beam in a direction that moves the determined nominal location closer to the target location, in which case the method may further include communicating the determined location and/or a desired direction of beam movement (e.g., a direction from the determined nominal center to the target location) to a beam steering mechanism. The method may include communicating a determined response of each subgroup to a source location of the power beam. Calculating a nominal location may include determining weighted centroid of the response, simple centroid of the response, extent of the response, second moment of the response, or location of peak intensity of the response.
In another aspect, a power beaming control method includes monitoring at least one response parameter (e.g., output current, output voltage, output power, or temperature) for each member of a plurality of subgroups of power converters (e.g., PV cells) on a receiver, using the monitored response parameter to determine a location of a power beam on the receiver, and transmitting an instruction to a beam steering system in response to the monitored response parameter. The instruction may include a direction and/or a distance to move the laser power beam, the determined location of the laser power beam, and/or the monitored response parameter for each of the plurality of subgroups of power converters on the receiver.
In another aspect, a power beaming system includes a power transmitter configured to transmit a power beam; a power receiver including a plurality of power converter structures, the power converter structures configured to convert the transmitted power beam to electrical energy; a sensor configured to monitor a response of each of one or more subgroups of the power converter structures (e.g., output current, output voltage, output power, or power receiver temperature); a processor configured to use the monitored response to determine a nominal location of the power beam on the power receiver; and a communication transmitter configured to communicate an indicator of the nominal location to the power transmitter. If the processor is co-located with the receiver, the indicator may be a nominal location of the power beam, a direction from a nominal location of the power beam to a target location, or a distance from a nominal location of the power beam to a target location. If the processor is co-located with the power transmitter, the indication may include monitored response data from the sensor. Determining a nominal location of the power beam may include determining weighted centroid of the response, simple centroid of the response, extent of the response, second moment of the response, or location of peak intensity of the response. The method may further include responding to a communication of the indicator of the nominal location by changing a direction of the power beam.
In another aspect, a method of determining an orientation of a power receiver having at least three beacons thereon includes determining a first average position of the beacons by monitoring an electromagnetic frequency emitted by the beacons, signaling the power receiver to disable a selected one or more of the beacons, determining a second average position of the plurality of beacons by monitoring the electromagnetic frequency emitted by the beacons after the power receiver has disabled the selected one or more beacons, and calculating an orientation of the power receiver by comparing the first average position with the second average position, wherein the calculated orientation will have the second average position further away from the selected one or more beacons than the first average position.
Non-limiting and non-exhaustive embodiments are described with reference to the following drawings, wherein like labels refer to like parts throughout the various views unless otherwise specified. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements are selected, enlarged, and positioned to improve drawing legibility. The particular shapes of the elements as drawn have been selected for ease of recognition in the drawings. Featured of the depicted embodiments that are not directly relevant to the novel elements discussed may be omitted for clarity. One or more embodiments are described hereinafter with reference to the accompanying drawings as follows.
A more particular description of certain embodiments of a Power Beam Monitor may be had by reference to the embodiments described below, and those shown in the drawings that form a part of this specification, in which like numerals represent like objects. It is understood that the description and drawings represent example implementations and are not to be understood as limiting. Drawings are not drawn to scale unless otherwise noted herein.
In order to determine a placement of the beam on receiver 108, receiver 108 may incorporate electronic systems that monitor an intensity of power beam 102 by any of a variety of means. In one implementation, intensity may be inferred by monitoring a current, voltage, or power produced by PV cells 202. The monitored property may be produced by the main beam, or by a less intense or different frequency beam, for example one that is used for aligning the system during startup or for checking safety of the system before applying full power. The less intense beam may be used for aiming to avoid misdirecting an intense power beam onto electronics that may not be expecting to receive a high light flux, or to avoid unexpected reflections or misalignment that could compromise eye safety. The current, voltage, or power may be monitored for each PV cell 202 individually, or cells may be monitored as virtual groups which each report a single aggregate current, voltage, or power, as further discussed below in connection with
At typical operating loads, current, voltage, and power output of a PV cell will usually all monotonically increase as the amount of light impinging on the cell increases, sometimes with a high slope (sensitive to changes in intensity) and sometimes with a relatively slight response, depending on the amount of power and on other factors such as cell temperature. Voltage, in particular, is relatively insensitive to light intensity in most parts of the operating range, which may preferably be relatively close to a maximum power point. In implementations where the PV cell outputs are used for beam position monitoring, it may be most accurate to use the parameter that has the strongest response to light intensity in the expected range, which will often, but not always, be the current. Because power is equal to the product of the voltage and the current, in other implementations it may be convenient to monitor power for cells or groups of cells. While the description below will refer to the current when describing the Power Beam Monitor, it will be understood that in some implementations, power or voltage could instead be monitored to achieve similar results.
By measuring the current generated by each PV cell 202 or group of PV cells, the system can determine a nominal location 210 (e.g., a center) for the power beam, such as a simple centroid, a weighted centroid (for example, the center of intensity), an intensity peak, or other known methods for identifying centers of distributions. In some implementations, the system may also determine a range of the beam width, such as extents, second moment, or other properties of the beam intensity distribution. These determination steps may be performed by a processor located at the receiver, at the transmitter, or elsewhere in the system. Determining the position of the nominal location 210 may involve simply determining whether each cell is above or below a threshold current and averaging the positions of those which are above the threshold, or it may include a more complicated averaging process that weights positions by relative value of the measured current, and possibly by size of the PV cells or groups. In some implementations, especially but not only when operating in a low-power range, rather than simply measuring the current, voltage, or power generated by a cell or group of cells, it may be preferable to vary the light intensity or the receiver load and use the change in monitored parameter, rather than its absolute value, to determine a beam location. Other parameters that could affect PV cell response, such as temperature of the cell, may also be monitored, for example so that their effects can be compensated for. In other implementations, especially but not necessarily at high power, cell temperature could be monitored as a measure of beam position, without monitoring an electrical property of the PV cells.
In other implementations, receiver 108 may use photodiodes 206 and/or photoresistors (not shown) to identify a nominal location of power beam 102. Similar to monitoring current as discussed above, the processor may simply average the positions of all photodiodes/photoresistors that are illuminated by the power beam to calculate a nominal location 210, or it may use a weighted average that takes into account component spacing and light intensity as sensed by each component. In implementations that have photodiodes or photoresistors placed in spaces between PV cells, it may be preferred to split the power beam so that most of the beam impinges on the PV cells, rather than some of the beam impinging between them, as more fully described in commonly owned provisional patent application No. 62/851,037, filed May 21, 2019 and entitled “Remote Power Beam-Splitting,” and commonly owned PCT application entitled “Remote Power Beam-Splitting” being filed on even date herewith, with attorney docket no. P016.WO, both of which are incorporated by reference herein to the extent not inconsistent herewith. In order to use the methods described herein to find a location of the power beam, it is preferred that some amount of the light originating from the power beam reach photodiodes 206, but it is possible that this will be primarily scattered and/or reflected light.
Once a location 210 of the light beam has been determined, that location may be fed back to steering mirror 106 to adjust the laser position, for example by radio frequency (RF) or optical transmission, either as its own dedicated signal or part of a telemetry stream. This transmission may, for example, be done manually as part of an initial laser setup, automatically at the start of power beaming, or dynamically during the power beaming process. The latter option may be preferable during a power beaming session where laser 100 or receiver 108 may move or where ambient conditions may change (e.g., due to thermal expansion of an optical element or differential refraction due to air turbulence), while the former two options may be adequate for systems where a path of the laser beam is expected to stay fixed. For example, as shown in
In some implementations, the target location might move in a dynamic way, for example to minimize overheating of certain PV cells in the array. In accordance with general engineering principles, those of ordinary skill in the art will understand that in a dynamic system, the recurrence and power of feedback signals should be selected to avoid either overshooting or undershooting beam position adjustments. The data gathered describing beam intensity may also be used by an adaptive optics system at the transmitter to shape the outgoing beam to change the intensity profile at the receiver. For example, the beam might be shaped to produce a more uniform profile at the receiver, or to reduce the intensity at a PV cell that may be performing poorly, or to cover a larger or smaller area of the receiver.
As shown in
In other implementations, rather than separate beacons, light emitters such as the “light curtain” emitters described in commonly owned U.S. Patent Application Publication Nos. 2018/0136364, 2019/0064353, and 2018/0131449, which are incorporated by reference herein to the extent not inconsistent herewith, may be used to perform the same function. In still other implementations, beacons may not be powered at all, but may simply be fiducial marks on the surface, reflectors, or retroreflectors, which may be asymmetric in order to allow the system to determine rotation as well as distance. Of course, combinations of the above systems may also be used, such as using “light curtain” emitters for determining distance and a single beacon for determining orientation, or using beacons for an initial determination of a coordinate transformation and “light curtain” emitters for dynamic adjustment during operation.
As discussed above, the response determined in step 304 may be any measurable response to laser light being directed onto PV cells 202 of a subgroup. For example, the measured response may be current, voltage, power, temperature, or rate of change of any of the above parameters. The system combines the monitored response with a known position for each subgroup to infer relative light intensity at each position (step 304).
It will be understood that in array subgroups having different areas or different PV cells, the monitored response may need to be adjusted accordingly. For example, consider an array divided into five subgroups of PV cells as shown in
Once the system has determined a response to incident light for each subgroup (step 304), adjusting for subgroup areas and/or individual cell responses as described above if appropriate, it uses the responses and their locations to determine a location of the power beam (step 306). For example, the system may determine a simple centroid of the response across the cells, or it may use any of the foregoing methods for identifying the beam location. Optionally, after the beam position has been located in step 308, the system may further determine that the power beam is not optimally positioned, and may direct the beam steering mechanism to adjust it (step 310). For example, the receiver may determine (using a processor) that the power beam needs to move in a given direction (and optionally also a distance to move), and may transmit the desired adjustment to the transmitter as described above. In other implementations, the receiver may transmit raw or processed response data to the transmitter or elsewhere in the system, and beam adjustment may be calculated and applied there. After the optional position adjusting step has been completed, the system may return to the beginning of the flow chart to continue measuring for further adjustment. In other implementations, the position adjustment may be applied only once, and the method may terminate.
While the foregoing has described what are considered to the best mode and/or other examples, it is understood that various modifications may be made therein, and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications, and variations that fall within the true scope of the present teachings.
The scope of protection is limited solely by the claims that now follow. That scope is intended to be as broad as is consistent with the ordinary meanings of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows and to encompass all structural and functional equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirements of Sections 101, 102, or 103 of the Patent Act, nor should they be interpreted in such a way. Any unintended embracement of such subject matter is hereby disclaimed.
Except as stated in the previous paragraph, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, objects, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
Unless defined otherwise, the technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the relevant art. Although any methods and materials similar or equivalent to those described herein may also be used in the practice or testing of the present claims, a necessarily limited number of the exemplary methods and materials are described herein. Relational terms such as first and second and the like may be used solely to distinguish one entity from another without necessarily implying any relationship or order between such entities. The terms “comprise” and “include,” in all their grammatical forms, are intended to cover a non-exclusive inclusion, so that a process, method, article, apparatus, or composition of matter that comprises or includes a list of elements may also comprise or include other elements not expressly listed. The term “or,” without additional explanation, is to be interpreted inclusively as “and/or.” An element preceded by “a” or “an” does not, without further constraints, preclude the existence of additional identical or similar elements.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features may be grouped together in various examples for the purpose of clarity of explanation. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Furthermore, features from one example may be freely included in another, or substituted for one another, without departing from the overall scope and spirit of the instant application.
This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/851,029, filed May 21, 2019, which is incorporated herein by reference to the extent not inconsistent herewith.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/034095 | 5/21/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62851029 | May 2019 | US |