Claims
- 1. A bendable beam assembly for use in a paper or board machine having a frame, the beam assembly comprising:a continuous body made of a composite material; end pieces fitted at each end of the body; axle journals fitted on the end pieces, wherein each axle journal is supported on the frame of the machine by a support construction having at least a first bearing member and a second bearing member spaced from one another in a longitudinal direction of the axle journal, the bearing members being fitted in bearing housings; and a bending mechanism mounted to each support construction, by which bending mechanism a torque that bends the body of the beam is applied to the axle journals.
- 2. The beam assembly of claim 1 further comprising:a support sleeve mounted to the first bearing member and the second bearing member supporting one axle journal; and an articulation member connected to an outer face of said one axle journal, the articulation member supporting said one axle journal on an inner face of the support sleeve.
- 3. The beam assembly of claim 2 wherein the articulation member of the one axle journal is located substantially at the first bearing member, and the bending mechanism is mounted substantially in the vicinity of the second bearing member.
- 4. The beam assembly of claim 2, wherein the articulation member of the one axle journal is placed substantially at the second bearing member, and the bending mechanism is mounted substantially in the vicinity of the first bearing member.
- 5. The beam assembly of claim 2, wherein the bending mechanism comprises:portions of the one axle journal defining a bore which extends therethrough; a screw member which passes through the support sleeve and through the one axle journal bore; fastening members connected to the screw member which lock the screw member against movement in the direction of a screw member longitudinal axis, the fastening members being supported against an outer face of the support sleeve, and wherein the screw member has an outside threading substantially over a distance extending through the support sleeve; and wherein the screw member is received within inside threading within the bore in the one axle journal, whereat a torque that bends the body of the beam is applied to the axle journal by means of the screw member.
- 6. The beam assembly of claim 2 wherein the bending mechanism comprises:a screw member having outside threading and moving in the longitudinal direction of the axle journal; a fastening member attached to an inner face of the support sleeve and having an internally threaded bore extending in the longitudinal direction of the one axle journal, the screw member extending into the fastening member bore; a first wedge member movable along the inner face of the support sleeve in the longitudinal direction of the one axle journal, the first wedge member being locked on the inner face of the support sleeve against radial movement, and the first wedge member having a wedge face which faces the one axle journal, and wherein an end of the screw member extends through the fastening member to engage against an end face of the first wedge member; and a second wedge member attached to the axle journal, the second wedge member having a wedge face which engages against the first wedge member wedge face, wherein pushing of the first wedge member onto the second wedge member by adjustment of the screw member applies a torque that bends the body of the beam to the one axle journal.
- 7. The beam assembly of claim 2, wherein the bending mechanism comprises an actuator attached to the support sleeve, and having an extendible rod attached to the one axle journal, wherein movement of the rod perpendicularly to the longitudinal direction of the one axle journal applies a torque that bends the body of the beam to the axle journal.
- 8. The beam assembly of claim 7 wherein the actuator is selected from the group consisting of a hydraulic cylinder, a pneumatic cylinder and a stepping motor.
- 9. The beam assembly of claim 1, wherein for each axle journal: the axle journal has an outer circumference from which the axle journal is directly supported on the bearing members, and the bearing housing of the first bearing member has a bottom portion which is rigidly attached to a base plate which is fixed to the machine frame, and the bearing housing of the second bearing member has a bottom portion which is attached to the base plate by a support member and by a bending mechanism, and wherein a partition piece is attached to the base plate between the bearing housing of the first bearing member and the bearing housing of the second bearing member, wherein the partition piece prevents shifting of the bottom portion of the second bearing housing towards the bottom portion of the first bearing housing in connection with bending of the body of the beam.
- 10. The beam assembly of claim 9, wherein the support member comprises:a pin attached to the base plate, the pin being fitted in a recess opening upwardly from a bottom face of the bottom portion of the second bearing housing, and a spring surrounding the pin and positioned in a space between a top face of the base plate and the bottom face of the bottom portion of the second bearing housing, and wherein the bending mechanism comprises: a screw member which extends through a bore placed in an outer end of the bottom portion of the second bearing housing into a threaded bore that is placed in an outer end of the base plate which receives the screw member, wherein adjustment of the screw changes the distance between the bottom face of the outer end of the bottom portion of the second bearing housing and the top face of the outer end of the base plate to displace the second bearing housing and apply a torque that bends the axle journal and the body of the beam.
- 11. The beam assembly of claim 9, wherein the support member and the bending mechanism comprise:a wedge member having a straight face and a wedge face, the wedge member being positioned between the top face of the base plate and the bottom face of the bottom portion of the second bearing housing; and a screw member acting upon said wedge member, wherein the wedge member is supported by its straight face against the bottom face of the bottom portion of the second bearing housing and by means of its wedge face against a wedge-shaped top face of the outer end of the base plate, and wherein the screw member is supported in a bore with inside threading in a fastening member fixed to the outer end of the base plate, the end of the screw member being positioned against an outer end of the wedge member, as a result of which the wedge member is shiftable in the longitudinal direction of the axle journal, the second bearing housing being displaced as a consequence, in which connection a torque that bends the body of the beam is applied to the axle journal.
- 12. The beam assembly of claim 10, wherein the bending mechanism comprises an actuator having an extendible rod which is attached to the outer end of the bottom portion of the second bearing housing, the actuator rod extending through bores in the outer end of the bottom portion of the second bearing housing and in the outer end of the base plate into a recess formed into the bottom face of the base plate, in which recess the rod is attached to the bottom face of the base plate by a fastening member, in which connection a movement of the rod perpendicularly to the longitudinal direction of the axle journal displaces the second bearing housing, in which connection a torque that bends the body of the beam is applied to the axle journal.
- 13. The beam assembly of claim 12 wherein the actuator is selected from the group consisting of a hydraulic cylinder, a pneumatic cylinder and a stepping motor.
- 14. The beam assembly of claim 1 further comprising an element mounted to the continuous body, said element being selected from the group consisting of a doctor blade, a measurement device, an induction device, and a coating device.
- 15. The beam assembly of claim 1 wherein the continuous body is not cylindrical.
- 16. A bendable beam assembly for use in a papermaking machine having a frame, the beam assembly comprising:a continuous body made of a composite material; end pieces fitted at each end of the body; axle journals fitted on the end pieces, wherein each axle journal is supported on the frame of the machine by a support construction having at least a first bearing member and a second bearing member spaced from one another in a longitudinal direction of the axle journal, the bearing members being fitted in bearing housings; and means for applying a torque to the axle journals to bend the body of the beam.
- 17. A bendable beam assembly for use in a papermaking machine having a frame, the beam assembly comprising:a continuous non-cylindrical body made of a composite material and having a first end and a second end; a first end piece fitted to the first end of the body, and a second end piece fitted to the second end of the body; a first axle journal connected to the first end piece, and a second axle journal connected to the second end piece; a first support construction having at least a first bearing member and a second bearing member spaced from one another in a longitudinal direction of the first axle journal, the bearing members being connected to bearing housings, the first axle journal being supported by the two first support construction bearing members; a second support construction having at least a first bearing member and a second bearing member spaced from one another in a longitudinal direction of the second axle journal, the bearing members connected to bearing housings, the second axle journal being supported by the two second support construction; and a first bending mechanism mounted to the first support construction, and a second bending mechanism mounted to the second support construction, each bending mechanism applying a torque to one of the axle journals to bend the body of the beam.
- 18. The beam assembly of claim 17 wherein each of the first support construction and the second support construction further comprises:a support sleeve mounted to the first bearing member and the second bearing member, the support sleeve supporting one of the first and second axle journals; and an articulation member connected to an outer face of said one axle journal, the articulation member supporting said one axle journal on an inner face of the support sleeve.
- 19. The beam assembly of claim 18 wherein the articulation members of the axle journals are located substantially at the first bearing members, and each bending mechanism is mounted substantially in the vicinity of one of the second bearing members.
- 20. The beam assembly of claim 18, wherein the articulation members of the one axle journals are placed substantially at the second bearing members, and each bending mechanism is mounted substantially in the vicinity of one of the first bearing members.
- 21. The beam assembly of claim 18, wherein each of the first bending mechanism and the second bending mechanism comprises:portions of one axle journal defining a bore which extends therethrough; a screw member which passes through the support sleeve and through the one axle journal bore; fastening members connected to the screw member which lock the screw member against movement in the direction of a screw member longitudinal axis, the fastening members being supported against an outer face of the support sleeve, and wherein the screw member has an outside threading substantially over a distance extending through the support sleeve; and wherein the screw member is received within inside threading within the bore in the one axle journal, whereat a torque that bends the body of the beam is applied to the axle journal by means of the screw member.
- 22. The beam assembly of claim 18 wherein each of the first bending mechanism and the second bending mechanism comprises:a screw member having outside threading and moving in the longitudinal direction of one axle journal; a fastening member attached to an inner face of the support sleeve and having an internally threaded bore extending in the longitudinal direction of the one axle journal, the screw member extending into the fastening member bore; a first wedge member movable along the inner face of the support sleeve in the longitudinal direction of the one axle journal, the first wedge member being locked on the inner face of the support sleeve against radial movement, and the first wedge member having a wedge face which faces the one axle journal, and wherein an end of the screw member extends through the fastening member to engage against an end face of the first wedge member; and a second wedge member attached to the axle journal, the second wedge member having a wedge face which engages against the first wedge member wedge face, wherein pushing of the first wedge member onto the second wedge member by adjustment of the screw member applies a torque that bends the body of the beam to the one axle journal.
- 23. The beam assembly of claim 18, wherein each of the first bending mechanism and the second bending mechanism comprises an actuator attached to the support sleeve, and having an extendible rod attached to one axle journal, wherein movement of the rod perpendicularly to the longitudinal direction of the one axle journal applies a torque that bends the body of the beam to the axle journal.
- 24. The beam assembly of claim 17, wherein for each axle journal: the axle journal has an outer circumference from which the axle journal is directly supported on the bearing members, and the bearing housing of the first bearing member has a bottom portion which is rigidly attached to a base plate which is fixed to the machine frame, and the bearing housing of the second bearing member has a bottom portion which is attached to the base plate by a support member and by a bending mechanism, and wherein a partition piece is attached to the base plate between the bearing housing of the first bearing member and the bearing housing of the second bearing member, wherein the partition piece prevents shifting of the bottom portion of the second bearing housing towards the bottom portion of the first bearing housing in connection with bending of the body of the beam.
- 25. The beam assembly of claim 24, wherein the support member comprises:a pin attached to the base plate, the pin being fitted in a recess opening upwardly from a bottom face of the bottom portion of the second bearing housing; and a spring surrounding the pin and positioned in a space between a top face of the base plate and the bottom face of the bottom portion of the second bearing housing, and wherein the bending mechanism comprises: a screw member which extends through a bore placed in an outer end of the bottom portion of the second bearing housing into a threaded bore that is placed in an outer end of the base plate which receives the screw member, wherein adjustment of the screw changes the distance between the bottom face of the outer end of the bottom portion of the second bearing housing and the top face of the outer end of the base plate to displace the second bearing housing and apply a torque that bends the axle journal and the body of the beam.
- 26. The beam assembly of claim 24, wherein the support member and the bending mechanism comprise:a wedge member having a straight face and a wedge face, the wedge member being positioned between the top face of the base plate and the bottom face of the bottom portion of the second bearing housing; and a screw member acting upon said wedge member, wherein the wedge member is supported by its straight face against the bottom face of the bottom portion of the second bearing housing and by means of its wedge face against a wedge-shaped top face of the outer end of the base plate, and wherein the screw member is supported in a bore with inside threading in a fastening member fixed to the outer end of the base plate, the end of the screw member being positioned against an outer end of the wedge member, as a result of which the wedge member is shiftable in the longitudinal direction of the axle journal, the second bearing housing being displaced as a consequence, in which connection a torque that bends the body of the beam is applied to the axle journal.
- 27. The beam assembly of claim 25, wherein the bending mechanism comprises an actuator having an extendible rod which is attached to the outer end of the bottom portion of the second bearing housing, the actuator rod extending through bores in the outer end of the bottom portion of the second bearing housing and in the outer end of the base plate into a recess formed into the bottom face of the base plate, in which recess the rod is attached to the bottom face of the base plate by a fastening member, in which connection a movement of the rod perpendicularly to the longitudinal direction of the axle journal displaces the second bearing housing, in which connection a torque that bends the body of the beam is applied to the axle journal.
- 28. The beam assembly of claim 17 further comprising an element mounted to the continuous body, said element being selected from the group consisting of a doctor blade, a measurement device, an induction device, and a coating device.
Priority Claims (1)
Number |
Date |
Country |
Kind |
982585 |
Nov 1998 |
FI |
|
CROSS REFERENCES TO RELATED APPLICATIONS
This application is a continuation of PCT Application No. PCT/FI99/00986, and claims priority on Finnish Application No. 982585, filed Nov. 30, 1998, the disclosures of both of which applications are hereby incorporated by reference herein.
US Referenced Citations (8)
Foreign Referenced Citations (4)
Number |
Date |
Country |
965285 |
Dec 1996 |
FI |
980464 |
Oct 1998 |
FI |
982294 |
Oct 1998 |
FI |
PCTFI9800623 |
Feb 1999 |
WO |
Non-Patent Literature Citations (5)
Entry |
International Search Report issued in Patent Application No. PCT/FI99/00986, Mar. 22, 2000. |
Official Action dated Nov. 15, 1999 with translation issued in Finnish Priority Application No. 982585. |
Official Action of Approval dated Feb. 2, 2000 with translation issued in Finnish Priority Application No. 982585. |
National Board of Patents and Registration Communication dated Mar. 28, 2000 with translation issued in Finnish Priority Application No 982585. |
U.S. Application No. 09/425,708—Doctor Beam Fitted in Connection with a Roll or a Cylinder in a Paper Machine or a Board Machine—Oct. 22, 1999. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/FI99/00986 |
Nov 1998 |
US |
Child |
09/867105 |
|
US |