The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and more particularly to systems and methods for RF MIMO systems using RF beamforming and/or digital signal processing, to augment the receiver performance.
Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.
The term “MIMO” as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
The term “beamforming” sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity.
The term “beamformer” as used herein refers to RF circuitry that implements beamforming and usually includes a combiner and may further include switches, controllable phase shifters, and in some cases amplifiers and/or attenuators.
The term “Receiving Radio Distribution Network” or “Rx RDN” or simply “RDN” as used herein is defined as a group of beamformers as set forth above.
The term “hybrid MIMO RDN” as used herein is defined as a MIMO system that employs two or more antennas per channel (N is the number of channels and M is the total number of antennas and M>N). This architecture employs a beamformer for each channel so that two or more antennas are combined for each radio circuit that is connected to each one of the channels.
In hybrid MIMO RDN receiving systems, when the phases of the received signals from each antenna are properly adjusted or tuned with respect to one another, the individual signals may be combined and result in an improved performance of the receiving system.
Embodiments of the present invention address the challenge of aligning the phases in the receive antennas coupled to the beamformers in the hybrid MIMO RDN architecture, in order to mitigate the combiners losses caused by misaligned phases.
Embodiments of the present invention are based on seeking maximization of the total power received from all transmitted layers as measured by the MIMO's baseband; the summation includes all transmitting antennas signals, as viewed by all receiving RDN antennas, which are equipped with phase shifters.
The received powers may be measured via channel estimation of individual antennas thru their respective beamformers, radios and baseband circuitry.
Different metrics are provided to quantify the said total received power:
wherein Pj,k denotes power associated with each one of received signals Sj,k so that Pj,k=[abs(Sj,k)]2 j=1, 2 . . . M, k=1, 2 . . . L.
It would be therefore advantageous to find a way to use a single degree of freedom i.e. the need to choose or select one phase in aligning a beamformer that serves 2, 4, or more different phase setting, stemming from the fact that multiple incoming signals have each a specific possible phase alignment for the beamformer.
The requirement for optimal alignment of phases for all transmitted layers appears also in higher MIMO ranks and in various RDN configurations. A general optimization process is addressed in embodiments of the invention described herein.
For a better understanding of the invention and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections. In the accompanying drawings:
The drawings together with the following detailed description make the embodiments of the invention apparent to those skilled in the art.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
Before explaining the embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Without losing generality, and for the sake of simplified explanation, it is assumed herein that the base station transmits each layer over one Tx antenna.
The Hybrid MIMO RDN can provide an additional gain however, as the combiners 30-1 and 30-2 are serving two different Tx antennas with only one phase shifter, it is possible that the diversity parameters (e.g., phase) that are used to optimize the reception of Tx1 are not the same as those needed for receiving Tx2. This is especially true if the antennas are not correlated from one to another.
As seen in
If the case using four 90° phase shifts is compared to align the signals from Tx1, it is apparent that there are three possible outcomes for the Tx2 signal:
The first outcome is that the signals arrive at the antennas A1 and A2 with a similar phase differences as for the Tx1 transmission so the same phase setting used to enhance the reception of Tx1 will also enhance Tx2. (25%);
The second outcome is that the resulting Tx2 signals to A1 and A2 are +/−90° from each other and will produce zero diversity gain for this process. (50%); and
The third outcome is that the resulting Tx2 signals are 180° from each other and can cancel each other or produce a negative diversity gain depending on their relative amplitudes. (25%).
When the result is the aforementioned third outcome, the system must choose to sacrifice diversity gain for Tx1 in order to avoid the total loss of the Tx2 signal. This would result in low diversity gain (˜0 dB) for both Tx1 and Tx2.
The algorithm offered by embodiments of the invention results in phase optimization based on seeking maximization of the total power received from all transmitted layers as measured by the MIMO's baseband; the summation includes all transmitting antennas signals, as viewed by all receiving RDN antennas, which are equipped with phase shifters. The aforementioned received powers are measured via channel estimation of individual antennas thru their respective beamformers, radios and baseband circuitry.
In accordance with some embodiments of the present invention, a multiple inputs multiple outputs (MIMO) receiving system having number N channels is provided. The MIMO receiving system may include a radio distributed network (RDN) having number N beamformers, each having number KN antennas. The MIMO system may further include at least one phase shifter associated with one or more of the N beamformers. Additionally, the MIMO receiving system is configured to: (a) select one phase that optimizes performance of multiple layers, via channel estimation of each layer as seen (e.g, taking into account the gain and phase affected by the physical location) by each receiving antenna, and (b) maximize a total received power from all transmitted signals.
For the sake of simplicity, it is assumed that each receive antenna provides the same amplitude and a randomly selected phase out of 4 alternatives. It is also assumed that the amplitudes power is 0.33 (for the sake of the example).
As the signals are fed into an RF combiner, the translation into voltage of each signal provides a combined result as described herein below:
In
As can be seen, the seven combinations described in
It can be easily seen that while configuration 501 yields 4.77 dB gain, configuration 502 yields a lesser yet still positive gain of 2.22 dB. Configurations 503-505 on the other hand, yield a negative gain of −4.77 dB.
As can be seen above in
Similar approaches can be applied to more complex MIMO hybrid RDN configurations, where there are more layers and or more antennas are combined by RF beamformers.
One embodiment of metrics and a procedure for the selection of optimal phase settings to all participating beamformers is described below:
Consider a beamformer with KN receive antennas, each of them receiving signals from N transmit antennas. The channel functions hi,j,k from transmit antenna j, j=1, 2 . . . N, to receive antenna i, i=1, 2 . . . KN, at frequency k, k=1, 2 . . . L (it is assumed the general case of frequency selective channels) are obtained through channel estimation done by the base-band.
Each receive antenna is equipped with a set A of R phase shifters, }, for phase adjustment. The set A of phase shifters could be, for example, to, {0, 90, 180, 270} degrees. The algorithm needs to select the optimal phase φiεA to be applied to receive antenna: i, i=1, 2 . . . KN.
After phase adjusting the KN, receive antennas, the overall channel functions seen by the receiver under consideration are:
A power Pj,k is associated with each one of them:
In one embodiment the algorithm selects phases φiεA, i=1, 2 . . . KN′, so as to maximize the total power PTotal defined as:
In another embodiment, a procedure and metrics is provided wherein the antennas, e.g., antenna phases, are adjusted one by one recursively. As before, φ1 may be set to zero. To calculate φ2 the contributions from only h1,j,k and h2,j,k are considered. The combined channel s2,j,k and channel power p2,j,k for the first two antennas are defined as:
S2,j,k=hi,j,kejφ
p2,j,k=[abs(S2,j,k)]2,j=1,2 . . . N, k=1,2 . . . L
The algorithm selects or chooses φ2εS that maximizes
Continuing in a similar fashion for all antennas, once φi-1 has been calculated or determined, φi is calculated. Define:
Then, similarly, the algorithm selects or chooses φiεS that maximizes
The total number of possible antenna phase combinations for the recursive algorithm is R (KN−1).
Since the order in which the antennas are optimized may affect the outcome, some criterion may be used for numbering of the antennas. For example, in some embodiments the antennas may be sorted or ordered in ascending/descending order based on the total power PAnt
By repeating the aforementioned process for all beamformers in the hybrid MIMO RDN system an optimized overall gain for the entire hybrid MIMO RDN architecture is achieved.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”
In various embodiments, computational modules may be implemented by e.g., processors (e.g., a general purpose computer processor or central processing unit executing code or software), or digital signal processors (DSPs), or other circuitry. The baseband modem may be implanted, for example, as a DSP. A beamforming matrix can be calculated and implemented for example by software running on general purpose processor. Beamformers, gain controllers, switches, combiners, and phase shifters may be implemented, for example using RF circuitries.
The aforementioned flowchart and block diagrams illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions.
It is to be understood that the phraseology and terminology employed herein is not to be construed as limiting and are for descriptive purpose only.
The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.
It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.
Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.
It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.
Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein.
While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
This application is a continuation application of U.S. non-provisional patent application Ser. No. 13/776,204 filed on Feb. 25, 2013, which is a continuation-in-part application of U.S. non-provisional patent application Ser. No. 13/630,146 filed on Sep. 28, 2012, which in turn claims benefit from U.S. provisional patent application Nos. 61/652,743 filed on May 29, 2012; 61/657,999 filed on Jun. 11, 2012; and 61/665,592 filed on Jun. 28, 2012; and U.S. non-provisional patent application Ser. No. 13/776,204 further claims benefit from U.S. provisional patent application Nos. 61/658,015 filed on Jun. 11, 2012; 61/658,010 filed on Jun. 11, 2012; 61/658,012 filed on Jun. 11, 2012; and 61/671,416 filed on Jul. 13, 2012, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4044359 | Applebaum et al. | Aug 1977 | A |
4079318 | Kinoshita | Mar 1978 | A |
4359738 | Lewis | Nov 1982 | A |
4540985 | Clancy et al. | Sep 1985 | A |
4628320 | Downie | Dec 1986 | A |
5162805 | Cantrell | Nov 1992 | A |
5363104 | Richmond | Nov 1994 | A |
5444762 | Frey et al. | Aug 1995 | A |
5732075 | Tangemann et al. | Mar 1998 | A |
5915215 | Williams et al. | Jun 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5940033 | Locher et al. | Aug 1999 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6026081 | Hamabe | Feb 2000 | A |
6046655 | Cipolla | Apr 2000 | A |
6094165 | Smith | Jul 2000 | A |
6101399 | Raleigh et al. | Aug 2000 | A |
6163695 | Takemura | Dec 2000 | A |
6167286 | Ward et al. | Dec 2000 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6226507 | Ramesh et al. | May 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6321077 | Saitoh et al. | Nov 2001 | B1 |
6335953 | Sanderford et al. | Jan 2002 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6377783 | Lo et al. | Apr 2002 | B1 |
6393282 | Iimori | May 2002 | B1 |
6584115 | Suzuki | Jun 2003 | B1 |
6647276 | Kuwahara et al. | Nov 2003 | B1 |
6697622 | Ishikawa et al. | Feb 2004 | B1 |
6697633 | Dogan et al. | Feb 2004 | B1 |
6735182 | Nishimori et al. | May 2004 | B1 |
6834073 | Miller et al. | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6914890 | Tobita et al. | Jul 2005 | B1 |
6927646 | Niemi | Aug 2005 | B2 |
6934541 | Miyatani | Aug 2005 | B2 |
6975582 | Karabinis et al. | Dec 2005 | B1 |
6987958 | Lo et al. | Jan 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7177663 | Axness et al. | Feb 2007 | B2 |
7190964 | Damnjanovic et al. | Mar 2007 | B2 |
7257425 | Wang et al. | Aug 2007 | B2 |
7299072 | Ninomiya | Nov 2007 | B2 |
7391757 | Haddad et al. | Jun 2008 | B2 |
7392015 | Farlow et al. | Jun 2008 | B1 |
7474676 | Tao et al. | Jan 2009 | B2 |
7499109 | Kim et al. | Mar 2009 | B2 |
7512083 | Li | Mar 2009 | B2 |
7606528 | Mesecher | Oct 2009 | B2 |
7634015 | Waxman | Dec 2009 | B2 |
7646744 | Li | Jan 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7742000 | Mohamadi | Jun 2010 | B2 |
7769107 | Sandhu et al. | Aug 2010 | B2 |
7876848 | Han et al. | Jan 2011 | B2 |
7881401 | Kraut et al. | Feb 2011 | B2 |
7898478 | Niu et al. | Mar 2011 | B2 |
7904086 | Kundu et al. | Mar 2011 | B2 |
7904106 | Han et al. | Mar 2011 | B2 |
7933255 | Li | Apr 2011 | B2 |
7970366 | Arita et al. | Jun 2011 | B2 |
8078109 | Mulcay | Dec 2011 | B1 |
8103284 | Mueckenheim et al. | Jan 2012 | B2 |
8111782 | Kim et al. | Feb 2012 | B2 |
8115679 | Falk | Feb 2012 | B2 |
8155613 | Kent et al. | Apr 2012 | B2 |
8194602 | van Rensburg et al. | Jun 2012 | B2 |
8275377 | Nanda et al. | Sep 2012 | B2 |
8280443 | Tao et al. | Oct 2012 | B2 |
8294625 | Kittinger et al. | Oct 2012 | B2 |
8306012 | Lindoff et al. | Nov 2012 | B2 |
8315671 | Kuwahara et al. | Nov 2012 | B2 |
8369436 | Stirling-Gallacher | Feb 2013 | B2 |
8504098 | Khojastepour | Aug 2013 | B2 |
8509190 | Rofougaran | Aug 2013 | B2 |
8520657 | Rofougaran | Aug 2013 | B2 |
8526886 | Wu et al. | Sep 2013 | B2 |
8571127 | Jiang et al. | Oct 2013 | B2 |
8588844 | Shpak | Nov 2013 | B2 |
8599955 | Kludt et al. | Dec 2013 | B1 |
8599979 | Farag et al. | Dec 2013 | B2 |
8605658 | Fujimoto | Dec 2013 | B2 |
8611288 | Zhang et al. | Dec 2013 | B1 |
8644413 | Harel et al. | Feb 2014 | B2 |
8649458 | Kludt et al. | Feb 2014 | B2 |
8666319 | Kloper et al. | Mar 2014 | B2 |
8670504 | Naguib | Mar 2014 | B2 |
8744511 | Jones, IV et al. | Jun 2014 | B2 |
8754810 | Guo et al. | Jun 2014 | B2 |
8767862 | Abreu et al. | Jul 2014 | B2 |
8780743 | Sombrutzki et al. | Jul 2014 | B2 |
8797969 | Harel et al. | Aug 2014 | B1 |
8891598 | Wang et al. | Nov 2014 | B1 |
8928528 | Harel et al. | Jan 2015 | B2 |
8942134 | Kludt et al. | Jan 2015 | B1 |
8976845 | O'Keeffe et al. | Mar 2015 | B2 |
8995416 | Harel et al. | Mar 2015 | B2 |
9014066 | Wang et al. | Apr 2015 | B1 |
9035828 | O'Keeffe et al. | May 2015 | B2 |
20010029326 | Diab et al. | Oct 2001 | A1 |
20010038665 | Baltersee et al. | Nov 2001 | A1 |
20020024975 | Hendler | Feb 2002 | A1 |
20020051430 | Kasami et al. | May 2002 | A1 |
20020065107 | Harel et al. | May 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020107013 | Fitzgerald | Aug 2002 | A1 |
20020115474 | Yoshino et al. | Aug 2002 | A1 |
20020181426 | Sherman | Dec 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030087645 | Kim et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030153322 | Burke et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030186653 | Mohebbi et al. | Oct 2003 | A1 |
20030203717 | Chuprun et al. | Oct 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20040023693 | Okawa et al. | Feb 2004 | A1 |
20040056795 | Ericson et al. | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040081144 | Martin et al. | Apr 2004 | A1 |
20040121810 | Goransson et al. | Jun 2004 | A1 |
20040125899 | Li et al. | Jul 2004 | A1 |
20040125900 | Liu et al. | Jul 2004 | A1 |
20040142696 | Saunders et al. | Jul 2004 | A1 |
20040147266 | Hwang et al. | Jul 2004 | A1 |
20040156399 | Eran | Aug 2004 | A1 |
20040166902 | Castellano et al. | Aug 2004 | A1 |
20040198292 | Smith et al. | Oct 2004 | A1 |
20040228388 | Salmenkaita | Nov 2004 | A1 |
20040235527 | Reudink et al. | Nov 2004 | A1 |
20040264504 | Jin | Dec 2004 | A1 |
20050068230 | Munoz et al. | Mar 2005 | A1 |
20050068918 | Mantravadi et al. | Mar 2005 | A1 |
20050075140 | Famolari | Apr 2005 | A1 |
20050085266 | Narita | Apr 2005 | A1 |
20050129155 | Hoshino | Jun 2005 | A1 |
20050147023 | Stephens et al. | Jul 2005 | A1 |
20050163097 | Do et al. | Jul 2005 | A1 |
20050245224 | Kurioka | Nov 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050254513 | Cave et al. | Nov 2005 | A1 |
20050265436 | Suh et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060041676 | Sherman | Feb 2006 | A1 |
20060092889 | Lyons et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060111149 | Chitrapu et al. | May 2006 | A1 |
20060135097 | Wang et al. | Jun 2006 | A1 |
20060183503 | Goldberg | Aug 2006 | A1 |
20060203850 | Johnson et al. | Sep 2006 | A1 |
20060227854 | McCloud et al. | Oct 2006 | A1 |
20060264184 | Li et al. | Nov 2006 | A1 |
20060270343 | Cha et al. | Nov 2006 | A1 |
20060271969 | Takizawa et al. | Nov 2006 | A1 |
20060285507 | Kinder et al. | Dec 2006 | A1 |
20070041398 | Benveniste | Feb 2007 | A1 |
20070058581 | Benveniste | Mar 2007 | A1 |
20070076675 | Chen | Apr 2007 | A1 |
20070093261 | Hou et al. | Apr 2007 | A1 |
20070097918 | Cai et al. | May 2007 | A1 |
20070115882 | Wentink | May 2007 | A1 |
20070115914 | Ohkubo et al. | May 2007 | A1 |
20070152903 | Lin et al. | Jul 2007 | A1 |
20070217352 | Kwon | Sep 2007 | A1 |
20070223380 | Gilbert et al. | Sep 2007 | A1 |
20070249386 | Bennett | Oct 2007 | A1 |
20070298742 | Ketchum et al. | Dec 2007 | A1 |
20080043867 | Blanz et al. | Feb 2008 | A1 |
20080051037 | Molnar et al. | Feb 2008 | A1 |
20080081671 | Wang et al. | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080108352 | Montemurro et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080144737 | Naguib | Jun 2008 | A1 |
20080165732 | Kim et al. | Jul 2008 | A1 |
20080238808 | Arita et al. | Oct 2008 | A1 |
20080240314 | Gaal et al. | Oct 2008 | A1 |
20080247370 | Gu et al. | Oct 2008 | A1 |
20080267142 | Mushkin et al. | Oct 2008 | A1 |
20080280571 | Rofougaran et al. | Nov 2008 | A1 |
20080285637 | Liu et al. | Nov 2008 | A1 |
20090003299 | Cave et al. | Jan 2009 | A1 |
20090028225 | Runyon et al. | Jan 2009 | A1 |
20090046638 | Rappaport et al. | Feb 2009 | A1 |
20090058724 | Xia et al. | Mar 2009 | A1 |
20090121935 | Xia et al. | May 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090154419 | Yoshida et al. | Jun 2009 | A1 |
20090187661 | Sherman | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090227255 | Thakare | Sep 2009 | A1 |
20090239486 | Sugar et al. | Sep 2009 | A1 |
20090268616 | Hosomi | Oct 2009 | A1 |
20090279478 | Nagaraj et al. | Nov 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090322610 | Hants et al. | Dec 2009 | A1 |
20090322613 | Bala et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002656 | Ji et al. | Jan 2010 | A1 |
20100037111 | Ziaja et al. | Feb 2010 | A1 |
20100040369 | Zhao et al. | Feb 2010 | A1 |
20100067473 | Cave et al. | Mar 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100117890 | Vook et al. | May 2010 | A1 |
20100135420 | Xu et al. | Jun 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100172429 | Nagahama et al. | Jul 2010 | A1 |
20100195560 | Nozaki et al. | Aug 2010 | A1 |
20100195601 | Zhang | Aug 2010 | A1 |
20100208712 | Wax et al. | Aug 2010 | A1 |
20100222011 | Behzad | Sep 2010 | A1 |
20100232355 | Richeson et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100278063 | Kim et al. | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100285752 | Lakshmanan et al. | Nov 2010 | A1 |
20100291931 | Suemitsu et al. | Nov 2010 | A1 |
20100303170 | Zhu et al. | Dec 2010 | A1 |
20100316043 | Doi et al. | Dec 2010 | A1 |
20110019639 | Karaoguz et al. | Jan 2011 | A1 |
20110032849 | Yeung et al. | Feb 2011 | A1 |
20110032972 | Wang et al. | Feb 2011 | A1 |
20110085465 | Lindoff et al. | Apr 2011 | A1 |
20110085532 | Scherzer et al. | Apr 2011 | A1 |
20110105036 | Rao et al. | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110134816 | Liu et al. | Jun 2011 | A1 |
20110150050 | Trigui et al. | Jun 2011 | A1 |
20110150066 | Fujimoto | Jun 2011 | A1 |
20110151826 | Miller et al. | Jun 2011 | A1 |
20110163913 | Cohen et al. | Jul 2011 | A1 |
20110205883 | Mihota | Aug 2011 | A1 |
20110205998 | Hart et al. | Aug 2011 | A1 |
20110228742 | Honkasalo et al. | Sep 2011 | A1 |
20110249576 | Chrisikos et al. | Oct 2011 | A1 |
20110250884 | Brunel et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110281541 | Borremans | Nov 2011 | A1 |
20110299437 | Mikhemar et al. | Dec 2011 | A1 |
20110310827 | Srinivasa et al. | Dec 2011 | A1 |
20110310853 | Yin et al. | Dec 2011 | A1 |
20120014377 | Joergensen et al. | Jan 2012 | A1 |
20120015603 | Proctor et al. | Jan 2012 | A1 |
20120020396 | Hohne et al. | Jan 2012 | A1 |
20120027000 | Wentink | Feb 2012 | A1 |
20120028638 | Mueck et al. | Feb 2012 | A1 |
20120028655 | Mueck et al. | Feb 2012 | A1 |
20120028671 | Niu et al. | Feb 2012 | A1 |
20120033761 | Guo et al. | Feb 2012 | A1 |
20120034952 | Lo et al. | Feb 2012 | A1 |
20120045003 | Li et al. | Feb 2012 | A1 |
20120051287 | Merlin et al. | Mar 2012 | A1 |
20120064838 | Miao et al. | Mar 2012 | A1 |
20120069828 | Taki et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076229 | Brobston et al. | Mar 2012 | A1 |
20120088512 | Yamada et al. | Apr 2012 | A1 |
20120092217 | Hosoya et al. | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120115523 | Shpak | May 2012 | A1 |
20120155349 | Bajic et al. | Jun 2012 | A1 |
20120155397 | Shaffer et al. | Jun 2012 | A1 |
20120163257 | Kim et al. | Jun 2012 | A1 |
20120163302 | Takano | Jun 2012 | A1 |
20120170453 | Tiwari | Jul 2012 | A1 |
20120170672 | Sondur | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120207256 | Farag et al. | Aug 2012 | A1 |
20120212372 | Petersson et al. | Aug 2012 | A1 |
20120213065 | Koo et al. | Aug 2012 | A1 |
20120218962 | Kishiyama et al. | Aug 2012 | A1 |
20120220331 | Luo et al. | Aug 2012 | A1 |
20120230380 | Keusgen et al. | Sep 2012 | A1 |
20120251031 | Suarez et al. | Oct 2012 | A1 |
20120270531 | Wright et al. | Oct 2012 | A1 |
20120270544 | Shah | Oct 2012 | A1 |
20120281598 | Struhsaker et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120321015 | Hansen et al. | Dec 2012 | A1 |
20120327870 | Grandhi et al. | Dec 2012 | A1 |
20130010623 | Golitschek | Jan 2013 | A1 |
20130012134 | Jin et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130023225 | Weber | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130051283 | Lee et al. | Feb 2013 | A1 |
20130058239 | Wang et al. | Mar 2013 | A1 |
20130070741 | Li et al. | Mar 2013 | A1 |
20130079048 | Cai et al. | Mar 2013 | A1 |
20130094437 | Bhattacharya | Apr 2013 | A1 |
20130094621 | Luo et al. | Apr 2013 | A1 |
20130095780 | Prazan et al. | Apr 2013 | A1 |
20130101073 | Zai et al. | Apr 2013 | A1 |
20130150012 | Chhabra et al. | Jun 2013 | A1 |
20130156016 | Debnath et al. | Jun 2013 | A1 |
20130156120 | Josiam et al. | Jun 2013 | A1 |
20130170388 | Ito et al. | Jul 2013 | A1 |
20130172029 | Chang et al. | Jul 2013 | A1 |
20130188541 | Fischer | Jul 2013 | A1 |
20130190006 | Kazmi et al. | Jul 2013 | A1 |
20130208587 | Bala et al. | Aug 2013 | A1 |
20130208619 | Kudo et al. | Aug 2013 | A1 |
20130223400 | Seo et al. | Aug 2013 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130229999 | Da Silva et al. | Sep 2013 | A1 |
20130235720 | Wang et al. | Sep 2013 | A1 |
20130242853 | Seo et al. | Sep 2013 | A1 |
20130242899 | Lysejko et al. | Sep 2013 | A1 |
20130242965 | Horn et al. | Sep 2013 | A1 |
20130242976 | Katayama et al. | Sep 2013 | A1 |
20130252621 | Dimou et al. | Sep 2013 | A1 |
20130272437 | Eidson et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130304962 | Yin et al. | Nov 2013 | A1 |
20130331136 | Yang et al. | Dec 2013 | A1 |
20130343369 | Yamaura | Dec 2013 | A1 |
20140010089 | Cai et al. | Jan 2014 | A1 |
20140010211 | Asterjadhi et al. | Jan 2014 | A1 |
20140029433 | Wentink | Jan 2014 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140079016 | Dai et al. | Mar 2014 | A1 |
20140086077 | Safavi | Mar 2014 | A1 |
20140086081 | Mack et al. | Mar 2014 | A1 |
20140098681 | Stager et al. | Apr 2014 | A1 |
20140119288 | Zhu et al. | May 2014 | A1 |
20140185501 | Park et al. | Jul 2014 | A1 |
20140185535 | Park et al. | Jul 2014 | A1 |
20140192820 | Azizi et al. | Jul 2014 | A1 |
20140204821 | Seok et al. | Jul 2014 | A1 |
20140241182 | Smadi | Aug 2014 | A1 |
20140242914 | Monroe | Aug 2014 | A1 |
20140269409 | Dimou et al. | Sep 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
20150016438 | Harel et al. | Jan 2015 | A1 |
20150018042 | Radulescu et al. | Jan 2015 | A1 |
20150085777 | Seok | Mar 2015 | A1 |
20150124634 | Harel et al. | May 2015 | A1 |
20150139212 | Wang et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1 189 303 | Mar 2002 | EP |
1 867 177 | May 2010 | EP |
2 234 355 | Sep 2010 | EP |
2 498 462 | Sep 2012 | EP |
2009-182441 | Aug 2009 | JP |
2009-278444 | Nov 2009 | JP |
WO 03047033 | Jun 2003 | WO |
WO 03073645 | Sep 2003 | WO |
WO 2010085854 | Aug 2010 | WO |
WO 2011060058 | May 2011 | WO |
WO 2013192112 | Dec 2013 | WO |
Entry |
---|
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013. |
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014. |
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015. |
Mitsubishi Electric, “Discussion on Antenna Calibration in TDD”, 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. Ljubljana; Jan. 7, 2009, pp. 1-4. |
Alcatel-Lucent Shanghai Bell et al., “Antenna Array Calibration for TDD CoMP”, 3GPP Draft; R1-100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, no. Valencia, Spain; Jan. 18, 2010, Jan. 12, 2010, pp. 1-5. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015. |
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099. |
Songtao et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated May 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/505,655 dated Jun. 17, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/472,759 dated Jun. 18, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jun. 19, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Jun. 22, 2015. |
International Search Report and Written Opinion for PCT International U.S. Appl. No. PCT/US2014/062116 dated Jun. 22, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Jun. 30, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/063304 dated Jul. 8, 2015. |
Bandyopadhyay, S. et al., “An Adaptive MAC Protocol for Wireless Ad Hoc Community Network (WACNet) Using Electronically Steerable Passive Array Radiator Antenna”, Globecom '01 : IEEE Global Telecommunications Conference; San Antonio, Texas, USA, Nov. 25-29, 2001, IEEE Operations Center, Piscataway, NJ, vol. 5, Nov. 25, 2001, pp. 2896-2900. |
Du, Yongjiu et al., “iBeam: Intelligent Client-Side Multi-User Beamforming in Wireless Networks”, IEEE Infocom 2014—IEEE Conference on Computer Communications, IEEE, Apr. 27, 2014, pp. 817-825. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Jul. 9, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Jul. 16, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Jul. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Aug. 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20140376671 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61652743 | May 2012 | US | |
61657999 | Jun 2012 | US | |
61665592 | Jun 2012 | US | |
61658015 | Jun 2012 | US | |
61658010 | Jun 2012 | US | |
61658012 | Jun 2012 | US | |
61671416 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13776204 | Feb 2013 | US |
Child | 14320920 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13630146 | Sep 2012 | US |
Child | 13776204 | US |