Not Applicable
1. Field of the Invention
The invention relates generally to earth-boring bits. More particularly, the invention relates to maintaining lubrication of rolling cone cutters that are mounted on journal pins. Still more particularly, the invention relates to apparatus for maintaining an appropriate thickness of lubrication between opposing surfaces that rotate relative to one another so as to extend bearing and bit life.
2. Description of the Related Art
An earth-boring drill bit is mounted on the lower end of a drill string and is rotated by revolving the drill string. With weight applied to the drill string, the rotating drill bit engages the earthen formation and proceeds to form a borehole along a predetermined path toward a target zone. An earth-boring bit comprises one or more rotatable cone cutters that perform their cutting function due to the rolling movement of the cone cutters acting against the formation material. The cone cutters roll and slide upon the bottom of the borehole as the drillstring and bit are rotated, the cone cutters thereby engaging and disintegrating the formation material in their path. The rotatable cone cutters may be described as generally conical in shape and are therefore referred to as rolling cones.
Rolling cone bits comprise a bit body with a plurality of journal segment legs. The cones are mounted on bearing pin shafts (also called journal shafts or journal pins) that extend downwardly and inwardly from the journal segment legs. As the bit is rotated, cutter elements or teeth that extend from the cone cutters remove chips of formation material (“cuttings” or “drilled solids”) which are carried upward and out of the borehole by the flow of drilling fluid which is pumped downwardly through the drill pipe and out of the bit.
The cost of drilling a borehole is proportional to the length of time it takes to drill to the desired depth and location which, in turn, is greatly affected by the number of times the drill bit must be changed in order to reach the targeted formation. This is the case because each time the bit is changed, the entire string of drill pipes—which in oil and gas well drilling may be miles long—must be retrieved from the borehole, section by section. Once the drill string has been retrieved and the new bit installed, the bit must be lowered to the bottom of the borehole on the drill string, which again must be constructed section by section. As is thus obvious, this process, known as a “trip” of the drill string, requires considerable time, effort and expense. The amount of time required to make a round trip for replacing a bit is essentially lost time and lost productivity from drilling operations. It is therefore advantageous to employ drill bits that will be durable enough to drill for a substantial period of time with acceptable rates of penetration (ROP) so as to minimize the number of “trips” and the associated lost productivity.
One cause of bit failure arises from the severe wear or damage that may occur to the bearings on which the cone cutters are mounted. These bearings can be friction bearings (also referred to as journal bearings) or roller type bearings, and are subjected to high drilling loads, high hydrostatic pressures, and high temperatures. Conventional rolling cone bits comprise lubricant systems within their journal segments for communicating lubricant from a reservoir in the bit to the narrow space—or journal gap—which exists between the journal pin and cone cutter. Seals are provided in the journal gap to prevent lubricant from escaping from around the bearing surfaces and also to prevent the cutting-laden, abrasive drilling fluid that is present in the borehole from entering the gap. Maintaining adequate lubrication of the bearings is thus critical to maintaining the life of the cone cutter assembly and of the bit. Consequently, the frequency with which the bit must otherwise be replaced due to bit failure or loss of an acceptable ROP may be reduced by maintaining proper lubrication of the cone cutters.
Thus, the embodiments of the present invention are directed toward methods and apparatus for maintaining lubrication of rolling cone cutters that are mounted on journal pins that seek to overcome certain limitations of the prior art.
Embodiments of the invention comprise methods and apparatus for maintaining lubrication of rolling cone cutters mounted on journal pins. The embodiments comprise a rotating cone disposed on a journal pin and forming a journal gap there between. A cylindrical journal sleeve is disposed in the journal gap. The journal sleeve has a longitudinal gap forming opposing end portions, which are continuously contoured. A lubrication port is disposed in the journal pin and in fluid communication with a lubrication supply. The lubrication port has an outlet located in a recess in the journal gap. Each end of the recess comprises a transitioning surface between the bottom of the recess and the outer surface of the journal pin. In certain embodiments, the journal pin may comprise one or more lubrication ports, each located in a recess with transitioning surfaces.
In one embodiment, a drill bit comprises a journal pin and a roller cone disposed on the journal pin. A journal gap if formed between the journal pin and the roller cone. A journal sleeve, comprising continuously contoured opposing end portions forming a longitudinal gap, is disposed in the journal gap. A lubrication port is disposed in the journal pin and is in fluid communication with both a lubrication supply and the journal gap. A recess surrounds an outlet from the lubrication port and comprises transition surfaces between the recess and the outer surface of the journal pin. The continuously contoured opposing end portions comprise an end surface intersecting an inner surface and an outer surface, wherein the surface intersections have radiuses greater than 0.020 inches. The intersections between the transition surfaces of the recess and the outer surface of the journal pin are radiused, as is the intersections between the transition surfaces and the bottom surface of the recess.
In another embodiment, a lubrication system, for a drill bit comprising a roller cone disposed on a journal pin, comprises a journal gap, disposed between the roller cone and the journal pin, and a cylindrical journal sleeve disposed within the journal gap and comprising a longitudinal slot forming opposing end portions. Each end portion is continuously contoured. A lubrication port is disposed within the journal pin and provides fluid communication between a lubrication supply and an outlet disposed in the journal gap. A recess is disposed on the journal pin and surrounds the outlet from said lubrication port. The recess comprises transition surfaces between the recess and the journal pin.
In another embodiment, a method, for lubricating a drill bit comprising a roller cone rotating about a journal pin, comprises providing a journal gap disposed between the roller cone and the journal pin and providing a journal sleeve disposed within the journal gap. The journal sleeve has a longitudinal slot forming opposing ends, which are shaped such that they are continuously contoured. A lubricant is provided from a lubricant supply into a lubrication port disposed in the journal pin. An outlet in communication with the lubrication port is provided within a recess on the outer surface of the journal pin, wherein the recess comprises transition surfaces between the recess and the outer surface of the journal pin.
Thus, the present invention comprises a combination of features and advantages that enable it to provide lubrication for a roller cone drill bit. These and various other characteristics and advantages of the preferred embodiments will be readily apparent to those skilled in the art upon reading the following detailed description and by referring to the accompanying drawings.
For a more detailed description of the preferred embodiments of the present invention, reference will now be made to the accompanying drawings, wherein:
In the description that follows, like parts are marked throughout the specification and drawings with the same reference numerals, respectively. The drawing figures are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. The present invention is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present invention with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce desired results.
In particular, various embodiments described herein thus comprise a combination of features and advantages that overcome some of the deficiencies or shortcomings of prior art seal assemblies and drill bits. The various characteristics mentioned above, as well as other features and characteristics described in more detail below, will be readily apparent to those skilled in the art upon reading the following detailed description of preferred embodiments, and by referring to the accompanying drawings.
Embodiments of the present invention comprise a bearing and lubrication system for earth boring bits, and features aimed at improving lubricant distribution in the journal gap of such bits.
Journal pin 118, comprising longitudinal axis 119, comprises a generally cylindrical bearing surface 133, and a cylindrical nose, or spindle portion 120, of reduced diameter at the lower end 122 of pin 118. Pin 118 further comprises an annular groove or ball race 143 between bearing surface 133 and spindle portion 120.
Each cutter cone 104 is in the form of a generally conical body comprising a central bore or cavity 126 for receiving journal pin 118. Cemented tungsten carbide inserts 108 are pressed into holes on the external surface. For long life, the inserts 108 may be tipped with a polycrystalline diamond layer. Such tungsten carbide inserts 108 enhance formation removal by engaging the subterranean formation as the bit 100 is rotated. Some bits have teeth milled on the outer surface of the cone 104 rather than employing inserts as cutting elements. Such bits are referred to as “milled-tooth” or “steel tooth” bits.
The cavity 126 in the cone 104 comprises a generally cylindrical bearing surface 128 concentric to pin bearing surface 133. Cavity 126, of cone cutter 104, further comprises annular groove forming a ball race 144. Disposed about the bearing surface 133 of the pin 118 is a floating journal sleeve 132. Collectively, sleeve 132 and journal bearing surfaces 133 and 128 provide the main bearing surfaces for the cone 104 on the bit leg 116.
Upon assembly of the cone 104 on journal pin 118, plurality of locking balls 142 are fitted into complementary ball races 143, 144. Balls 142 are inserted through a ball passage 146, which extends through the journal pin between the ball races 143, 144 and the exterior of the rock bit leg 116. The balls 142 carry any thrust loads tending to dislodge the cone 104 from the journal pin 118, and thereby serve to retain the cone on the journal pin. The balls 142 are retained in the races 143, 144 by a ball retainer 148 that is inserted through the ball passage 146 after the balls are in place in the ball races. The ball retainer 148 may be of such diameter as to not completely fill the ball passage 146, allowing a portion of the ball passage diameter to serve as a grease passage 150 for communicating lubricant to the ball races 143, 144 and journal bearing surfaces 128, 133.
Grease passage 150 interconnects and is in fluid communication with leg grease passageway 156. A plug 154 is welded or otherwise secured into the end of the ball passage 146 to keep the ball retainer 148 in place. Although shown as the same passage, it will be understood that an alternative embodiment may comprise a grease passage 150 distinct from ball passage 146, while still maintaining fluid communication with leg grease passage 156 and ball races 143, 144. Additionally, journal pin 118 comprises additional grease passageways 158 (one shown in
Grease, or another lubricant, lubricates the bearing surfaces 128, 133 between the journal pin 118 and the cone 104. Preferably, upon assembly of the bit 100, the interior of the bit is evacuated, and lubricant is introduced through a fill passage (not shown). The lubricant thus fills the regions adjacent the bearing surfaces 128, 133 plus passages 158, 150 and 156 and grease reservoir subassembly 164, air being essentially excluded from the interior of the bit 100. When the rock bit is assembled, the ball races 143, 144, the journal gap 160, the leg grease passages 156, 158 and 150 are all filled with lubricant. If desired, a pressure-relief check valve (not shown) can also be provided in the reservoir subassembly 164 for relieving over-pressures in the lubricant system that could damage the seal ring 162.
The reservoir subassembly 164 is disposed in a cavity 112 in the bit body 102. Leg grease passageway 156 is disposed between reservoir 164 and ball passage 146. Lubricant also fills the portion of the ball passage 146 adjacent the ball retainer 148 and journal gap 160. The journal gap 160 (best shown in
Although a rotary cone drill bit comprising a reservoir subassembly 164 with a pressure compensation subassembly is shown, it will be understood that some rotary cone drill bits are configured without pressure compensation subassemblies. For example, rotary cone drill bits used in mining operations, i.e., mining bits, are used in operating conditions different from that of bits where pressure compensation is not necessary.
Formed in bearing surface 133 of journal pin 118 are a pair of recesses 172. Recesses 172 comprise bottom surfaces 174 and a transitioning surface 176 at each end of recess 172, transitioning surfaces 176 extending between bottom surface 174 and bearing surface 133. Recesses 172 are formed on the segment of bearing surface 133 that is closest to pin end 106 of bit 100. In this position, recesses 172 may be described as being disposed on the unloaded side of journal pin 118. Recesses 172 are formed on journal pin 118 so as to be generally centered about the terminus of grease passageways 158. Each grease passage 158 is in fluid communication with grease passageway 146. Grease, or another lubricant, in grease passage 158 (from
Journal sleeve 132 is disposed between cone 104 and journal pin 118, in gap 160. Sleeve 132 is shown to comprise inner surface 180 and outer surface 182. Sleeve 132 is a generally cylindrical body that also comprises edge surfaces 183, which can be seen in
As mentioned above, recesses 172 are disposed on the unloaded side of journal pin 118. Although other circumferential lengths of recesses 172 may be employed, in this embodiment, each recess 172 comprises an arcuate length of approximately 20 to 40 degrees as measured between ends 178 of recesses 172 relative to pin axis 119. In this embodiment, bottom surface 174 between transition sections 176 is generally an arcuate surface of generally constant radius. Recesses 172 are generally also a constant depth as measured along bottom surface 174 between surface 174 and 133, such depth being approximately 0.5% to 5% of D, where D is the diameter of cylindrical bearing surface 133.
Referring now to
Opposing ends 186 of journal sleeve 132 are preferably “continuously contoured” between inner surface 180 and outer surface 182. As used herein, the term “continuously contoured” refers to surfaces that can be described as continuously curved surfaces wherein the surface is free of relatively small radii (less than 0.020 inches) that have conventionally been used to break sharp edges or round-off transitions between adjacent distinct surfaces. Eliminating sharp breaks or abrupt changes in curvature between adjacent regions on the surface lessens the likelihood of the intersection acting as a wiper or scraper that would tend to remove grease from a surface and thereby contribute to, or cause, premature bearing or bit failure. Similarly, providing a continuously contoured surface between inner surface 180 and outer surface 182 enhances the ability of the lubrication system to provide a lubricant film of consistent depth between journal sleeve 132 and bearing surface 133. Several embodiments of the continuously contoured ends 186 of journal sleeve 132 are described in reference to
Referring still to
Lubrication port 179, formed with transition surfaces 176 described above, minimizes the pressure changes in the lubricant as it moves across port 179. Some of the lubricant will travel with sleeve 132 as it rotates about pin 118. As a selected point on sleeve 132 is rotated toward lubrication port 179, the volume of space between the journal pin 118 and the rotating sleeve 132 gradually increases, thus creating a void that decreases the pressure within the lubricant. As the selected point continues to move over the mid point of the communication port 179, the volume of space between the rotating members begins to reduce, and the pressure within the lubricant increases. This increased pressure forces the lubricant to spread evenly between the bearing surfaces 180 and 133 of the rotating members and acts to provide an even distribution of lubricant between sleeve 132 and bearing surface 133 of the journal pin.
The arrangement of
A conventional journal sleeve 12 is shown in
Consequently, with the desired lubricant scraped by wiper surfaces at 41 and 21, the rotating surfaces, starved of adequate lubricant, could seize up and prevent rotation of the cone, causing the cone to drag rather than rotate, across the borehole bottom. This could potentially lead to bit failure or loss of acceptable ROP and require tripping the drill string prematurely, leading to time consuming and costly delays. By contrast, by providing an internal radius on the inner transition surface 194 of journal sleeve 132 as shown in
As previously discussed, providing and maintaining the proper amount and distribution of lubrication is essential to the sustained performance of the bearing. The lubricant, such as grease, is provided to the bearing through a lubricant passage 158. Referring back to
By contrast, with the sharp corners as present at intersections 21 such as in the prior art shown in
Alternate embodiments of the continuously contoured ends 186 of journal sleeve 132 are shown in
In this embodiment, segments 196 and 198 have substantially the same radius, and, likewise, the radii of segments 197, 199 are substantially the same; however, as explained by further examples herein, the radii of segments 196–199 may vary from those described with reference to
Referring now to
Additional embodiments are provided so as to provide smooth transitions and avoid wiping edges. For example, shown in
As shown in
While various embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments herein are exemplary only, and are not limiting. Many variations and modifications of the apparatus and methods disclosed herein are possible and within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims.
The present application claims priority to U.S. Provisional Application No. 60/505,725, filed Sep. 24, 2003, titled “Bearing and Lubrication System for Earth Boring Bit,” and hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3971600 | Murdoch et al. | Jul 1976 | A |
4199856 | Farrow et al. | Apr 1980 | A |
4280571 | Fuller | Jul 1981 | A |
6220374 | Crawford | Apr 2001 | B1 |
6869223 | Azumi et al. | Mar 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050077087 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60505725 | Sep 2003 | US |