This application claims priority to European Application No. 19174867.2, having a filing date of May 16, 2019, the entire contents of which are hereby incorporated by reference.
The following relates to a bearing arrangement for a wind turbine and a wind turbine.
In general, bearing arrangements of wind turbines comprise a bearing housing and a drive shaft, whereby the drive shaft is arranged within the bearing housing in an axial direction along a longitudinal axis of the bearing housing. Bearings of the bearing arrangement are arranged about the drive shaft, so that the drive shaft can be rotated within the bearing housing by means of a rotor of the wind turbine. Such a bearing arrangement is known from EP 3 276 192 A1, for example.
The bearing arrangement must be provided with axial load taking capabilities to be able to take an axial load from an axial or thrust force of the drive shaft. Such axial load taking capabilities may be provided by an axial bearing, which may be structurally integrated with the bearing arrangement. However, current solutions, e.g. a bolt connection between the axial collar of an axial bearing and the drive shaft, have a leakage potential, are cumbersome in their manufacture and difficult to service.
An aspect relates to eliminate or at least reduce disadvantages in the conventional art techniques related to the structural integration of an axial bearing in the bearing arrangement, in particular to provide a bearing arrangement for a wind turbine with an axial bearing having no or little leakage potential, which is simple to manufacture and requires no or little maintenance.
The features and details described in connection with the bearing arrangement of embodiments of the invention apply in connection with embodiments of the wind turbine of embodiments of the invention, so that regarding the disclosure of the individual aspects of embodiments of the invention it is or can be referred to one another.
According to a first aspect of embodiments of the invention, embodiments of the invention relates to a bearing arrangement for a wind turbine comprising a bearing housing and a drive shaft, whereby the drive shaft is arranged within the bearing housing in an axial direction along a longitudinal axis of the bearing housing, the bearing arrangement further comprising a downwind bearing and an upwind bearing as radial fluid bearings, whereby the downwind bearing and the upwind bearing are arranged between the bearing housing and the drive shaft, the bearing arrangement further comprising an axial bearing, whereby the axial bearing comprises a axial collar, whereby the axial collar is integrally formed with the drive shaft.
By means of embodiments of the invention, there are no weak points, such as bolt connections, between the axial collar and the drive shaft which would have a potential of leaking lubricant from the axial bearing or which would require maintenance. Further, the bearing arrangement of embodiments of the invention is simple to manufacture in that it requires few manufacturing steps.
The axial collar is monolithically designed with the drive shaft. Thereby, a particularly simple manufacturing method of the axial collar is provided and structural integrity of the axial collar and the drive shaft is further improved.
Further, the axial collar is arranged about an entire circumference of the drive shaft. Thereby, a large surface on the axial collar for taking axial loads is provided and the overall load distribution on the axial collar is improved.
Moreover, the axial collar extends outwards of the drive shaft. In other words, the axial collar extends radially outwards relative to a cylindrical surface of the drive shaft. Thereby, the axial collar is favorably located on an outside of the drive shaft, which allows for a simple design of the axial bearing.
The axial bearing is arranged at a downwind portion or an upwind portion of the drive shaft. The downwind portion may be a portion extending from a downwind end of the drive shaft in an axial direction along the longitudinal axis to an upwind end of the drive shaft and having a length of 10% of an entire length of the drive shaft. The upwind portion may be a portion extending from an upwind end of the drive shaft in an axial direction along the longitudinal axis to a downwind end of the drive shaft and having a length of 10% of an entire length of the drive shaft. In particular, the axial bearing may be arranged at the downwind end or the upwind end of the drive shaft.
The downwind bearing or the upwind bearing of the bearing arrangement is located adjacent to the axial bearing. Thereby, the manufacturing of the bearings may be further facilitated.
The downwind bearing or the upwind bearing is fluidically connected to the axial bearing. In other words, a lubricant, e.g. oil, provided in the downwind bearing or the upwind bearing can flow to the axial bearing. Thereby, a radial bearing and an axial bearing can be combined so as to reduce the maintenance requirements with regard to providing the lubricant in the bearings.
In particular, the axial bearing comprises an axial bearing stop arranged opposite of the axial collar. The axial bearing stop itself or components attached thereto may form a contacting stop for the axial collar, when the axial collar is axially moved in an axial direction along the longitudinal axis.
Multiple axial bearing pads are, in particular reversibly, attached to the axial bearing stop, whereby an effective path of the axial bearing is formed between the axial collar and the multiple axial bearing pads. The axial bearing pads may comprise an elastomer for contacting the axial collar, for example. The axial bearing pads may be serviced or replaced when they are worn off or fail due to the load applied onto them by means of the axial collar.
Further, the axial bearing pads may be attached via axial tiltable support structures to the axial bearing stop so as to be tiltable with respect to the axial collar. Thereby, tolerances between the axial collar and the axial bearing pads can be compensated for.
The axial bearing stop is arranged at the bearing housing. Thereby, the loads applied onto the axial bearing stop are conveniently forwarded to the bearing arrangement.
Moreover, the axial bearing stop is arranged about an entire circumference of the bearing housing. Thereby, a large mass on the axial bearing stop for taking axial loads is provided and the overall load distribution on the axial bearing stop is improved.
The axial bearing stop extends inwards of the bearing housing. In other words, the axial bearing stop extends radially inwards relative to a cylindrical surface of the bearing housing. Thereby, the axial bearing stop is favorably located on an inside of the bearing housing, which allows for a simple design of the axial bearing.
The axial bearing stop is integrally formed with the bearing housing as a protrusion extending from the bearing housing in a radial direction of the bearing housing.
The axial bearing stop is arranged at a downwind end of the bearing housing. Thereby, the axial bearing stop may be easily attached to the bearing housing.
According to a second aspect of embodiments of the invention, embodiments of the invention relates to a wind turbine comprising a bearing arrangement according to embodiments of the invention, whereby the wind turbine further comprises a rotor connected to drive the drive shaft and a generator connected to be driven by the drive shaft.
The generator may be a direct drive generator or a geared generator having a gearbox, for example. The rotor is also commonly referred to as a hub of the wind turbine. Two, three or more wind turbine blades may be attached to the rotor or hub. The wind turbine may further comprise a nacelle, which may be supported on a tower of the wind turbine. The nacelle may comprise the bearing arrangement. The bearing arrangement, in particular the bearing housing, and the generator may be attached to the nacelle and/or the tower.
Some of the embodiments will be described in detail, with references to the following Figures, wherein like designations denote like members, wherein:
The lubricant flooded chamber 201 of the upwind bearing 200 is sealed by means of an inner sealing 206 against the internal space 82 of the bearing housing 80. The inner sealing 206 of the lubricant flooded chamber 201 of the upwind bearing 200 comprises multiple inner sealing plates 207. Two lip seals 212.1, 212.2 are arranged in series between the inner sealing 206 and the drive shaft 90 so as to seal the sealing 206 against the drive shaft 90.
The lubricant flooded chamber 201 of the upwind bearing 200 is sealed against an outside of the bearing housing 80 by means of an outer sealing 208 and a dust sealing 210. The outer sealing 208 comprises an outer seal plate 209 and two lip seals 212.3, 212.4 arranged in series in between the outer seal plate 209 and the drive shaft 90. The dust sealing 210 is formed by a dust seal plate 211 and a further lip seal 212.5 arranged between the dust seal plate and the drive shaft 90. The dust sealing 210 is located towards the outside of the bearing housing 80. The dust sealing 210 sandwiches the outer sealing 208 in between the dust sealing 210 and the outer sealing 206.
The lubricant flooded chamber 101 of the downwind bearing 100 is sealed by means of an inner sealing 106 against the internal space 82 of the bearing housing 80. The inner sealing 106 of the lubricant flooded chamber 101 of the downwind bearing 100 comprises multiple inner sealing plates 107. Two lip seals 112.1, 112.2 are arranged in series between the inner sealing 106 and the drive shaft 90 so as to seal the sealing 106 against the drive shaft 90.
The lubricant flooded chamber 101 is fluidically connected to an effective path provided by a lubricant flow channel 303 of an axial bearing 300 of the bearing arrangement 70. The axial bearing 300 comprises an axial collar 301 and multiple axial bearing pads (not shown here, because the sectional cut goes through the axial bearing stop 302, only) attached to an axial bearing stop 302. As can be seen in
Although the present invention has been disclosed in the form of preferred embodiments and variations thereon, it will be understood that numerous additional modifications and variations could be made thereto without departing from the scope of the invention.
For the sake of clarity, it is to be understood that the use of “a” or “an” throughout this application does not exclude a plurality, and “comprising” does not exclude other steps or elements.
Number | Date | Country | Kind |
---|---|---|---|
19174867.2 | May 2019 | EP | regional |