The present invention relates to a mounting element for a driveshaft system comprising a front shaft, a two-part or a multi-part shaft, in particular a bearing assembly with bearing cushion.
The flexible mounting elements of the shafts of the vehicles, in particular driveshafts, have bearing assemblies comprising a bellows mounting member disposed in a central axis in a U-like frame, for example the vibration isolators and a bearing that is secured in the middle of the front shaft. The bearing assembly is securely mounted on the lower part of the vehicle. The driveshaft is swivel jointed by a bearing inside the bearing assembly. During the installation, the driveshaft extension axis must be changed due to the incorrect or improper position of the bearing assembly for various reasons. Failure to change the axis will cause strain on the bellows mounting element, which helps damp the vibrations.
U.S. Pat. No. 5,172,985A patent publication discloses a driveshaft assembly that can be adjusted automatically while still providing adequate vibration isolation in case of misalignment of the driveshaft. The anchoring flange and rear die-stamped plate are solidly interconnected to one another by means of side blocks which are provided with threaded holes so that this assembly may be secured under a bent sheet-metal bracket whose lateral rims are provided with slots and holes for attaching and adjusting the bearing.
EP0160212 discloses a suitable mounting assembly for mounting the driveshaft on a vehicle body. The outer element is secured to the vehicle body by a U-shaped link and the inner member receives the ball race of the split shaft. Each limb of the link is pivotally connected at one end to the vehicle body by respective pivot means including a mounting bracket for attachment to the vehicle body and at the other free end to the outer member by respective pivot means received in the locating holes defined by the flanges. Each pivot means comprises a rubber bush pivot and the torsional stiffness of the pivot may be varied by altering the characteristics of the bush.
The object of the invention is to extend the effective service life of the axially adjustable bearing cushion for the driveshaft system.
To achieve the aforementioned objective, invention comprises a bearing assembly comprising a frame surrounding an opening; a flexible vibration isolator disposed in the opening and a ball bearing is mounted at a central opening of the vibration isolator. The bearing assembly comprising a spherical cup is nested to a central opening of the vibration isolator and spherically pivoted such that in an adjustment position changing the rotational axis of the ball bearing by a deviation angle when a rotational force is applied. The bearing assembly comprises a spherical cup having a central opening engaging to a vibration isolator and is rotating by applying a rotation force in an adjustment position, wherein the bearing is spherically pivoted to change the rotational axis by a deviation angle.
A preferred embodiment of the invention comprises a ring element having a corresponding curved wall which directly engages the central opening of the vibration isolator from the radial outer part and the spherical cup is disposed to the radial inner part from the outer periphery. The ring element facilitates interlocking of the spherical cup with the vibration isolator. This allows the bearing assembly to be easily rotated in the adjustment position while maintaining its compact structure. The ring element is preferably flat and metal annular form. In an alternative embodiment it may be formed from more than one ring or a structure made of different cross-sectional profile or a composite polymer.
In a preferred embodiment of the invention, the curved wall of the ring element is having a circumferential concave form of substantially the same diameter as the outer periphery of the spherical cup. Thus, a spherical cup with e.g., a suitable coefficient of friction can be rotated end-to-end with an additional force in the ring element.
In a preferred embodiment of the invention, the length of the outer periphery of the spherical cup is substantially equal to the length of the curved wall in a transverse direction. In coaxial position, the spherical cup is fully aligned with the ring element to form a compact structure. Alternatively, it is possible to form a protruding form from the ring element from the spherical cup by when it is longer or to indent inside the ring element from the spherical cup when it is shorter.
In a preferred embodiment of the invention, two opposing inner openings of the ring element is in the form of a hollow truncated sphere with which directly fit into the central opening. The truncated spherical form allows the spherical cup to be easily engaged within the concave form of the rotational surface by keeping the planar portions inclined.
In a preferred embodiment of the invention, the opening, central opening and the bearing is coaxially aligned in the rotational axis. Thus, a structure that effectively damps the vibration generated during rotation and operates under silent and stable dynamic loads is obtained.
In a preferred embodiment of the invention, the vibration isolator comprises substantially rubber material. The rubber material extends the service life of the bearing assembly due to its vibration damping and long service life.
In a preferred embodiment of the invention, the rotating force of the spherical cup in the adjustment position is set to at least 1 N. This prevents the spherical cup from rotating spontaneously or in vibrations by providing a self-locking feature.
In a preferred embodiment of the invention, the bearing assembly comprises a radially outwardly extending extension portion from each other from the top. The extension portions allow easy mounting the bearing assembly to the vehicle chassis.
A preferred embodiment of the invention comprises a driveshaft system comprising a bearing assembly according to any one of the preceding claims.
A preferred embodiment of the invention comprises the steps of comprising the steps of aligning the front shaft and the rear shaft mounted on the bearing assembly with a midship joint therebetween, on the rotational axis; securing the bearing assembly with the rotational axis at the deviation angle and aligning the front shaft and/or the rear shaft in the bearing assembly by rotating the spherical cup to the deviation axis in the adjustment position.
In this detailed description, the subject matter has been described with reference for examples, such that there is no restriction and only to better describe the subject matter.
The bearing assembly (10) shown from the front in
A ring element (30) is inserted directly into the central hole (24) through the outer walls. The ring element (30) is made of metal material. In
Under auspices of spherical joint formed by the spherical cup (40), it is possible that the deviation axis (x′) has vertical or horizontal angular components relative to the rotational axis (x). That is, the spherical cup (40) can be aligned to compensate axial deviations occurring in two axes.
In
Number | Date | Country | Kind |
---|---|---|---|
2018/13604 | Sep 2018 | TR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TR2019/050487 | 6/22/2019 | WO | 00 |