The present disclosure generally relates to pipe machining apparatuses and, more particularly, to pipe machining apparatuses for machining large diameter pipes.
A variety of different types of pipe machining apparatuses exist to perform various machining processes on pipes. One such process includes cutting pipes. Large diameter pipes may be cut with a split frame pipe machining apparatus, which includes two frame halves that surround the pipe from respective sides and are fixedly coupled together around the pipe and fixedly coupled to the pipe. Such a pipe cutter includes a tool carrier for supporting a tool or cutting device and the tool carrier encircles the pipe and moves toward the pipe in small increments during the cutting process in order to slowly cut into the pipe. Eventually, after many small increments of adjustment toward the pipe, the pipe will be completely cut.
A bearing assembly comprising a plurality of roller bearings is disposed between the fixed frame and the rotatable tool carrier. Such roller bearings undergo significant and various forces due to the numerous encirclements of the tool carrier relative to the frame, which can provide a detrimental effect to the machining capability of the pipe machining apparatus or may prematurely wear the roller bearings or other components of the pipe machining apparatus. In addition, these roller bearings create chatter or unwanted vibrations during operation of the pipe machining apparatus.
It would therefore be desirable to provide a bearing assembly between the fixed frame and the rotatable tool carrier that provides effective guidance of the tool carrier relative to the fixed frame during operation of a pipe machining apparatus, provides improved machining capability of the pipe machining apparatus, and inhibits chatter during operation.
The present disclosure is defined by the following claims, and nothing in this section should be taken as a limitation on those claims.
In one aspect, a pipe machining apparatus is provided and includes a frame, a tool carrier coupled to and movable relative to the frame, and the tool carrier defines a race therein. The pipe machining apparatus also includes a first roller bearing including a first shaft and a first roller rotatably coupled to the first shaft, the first roller is at least partially positioned in the race and is rotatable about a first roller bearing axis adapted to remain substantially fixed relative to the frame. The pipe machining apparatus further including a second roller bearing including a second shaft and a second roller rotatably coupled to the second shaft, the second roller is at least partially positioned in the race and is rotatable about a second roller bearing axis, and the second roller bearing is adjustable to move the second roller bearing axis relative to the frame.
In another aspect, a pipe machining apparatus is provided and includes a frame and a tool carrier coupled to and movable relative to the frame, the tool carrier defining a race therein. The race includes an interior bearing surface including an indentation and an exterior bearing surface that is substantially flat. The pipe machining apparatus also includes a first roller bearing including a first shaft and a first roller rotatably coupled to the first shaft, the first roller is at least partially positioned in the race and engages the exterior bearing surface. The pipe machining apparatus further includes a second roller bearing including a second shaft and a second roller rotatably coupled to the second shaft, the second roller is at least partially positioned in the race and engages the interior bearing surface in the indentation.
In a further aspect, a bearing assembly for a pipe machining apparatus is provided. The bearing assembly includes a plurality of fixed roller bearings with each fixed roller bearing including a first shaft and a first roller rotatably coupled to the first shaft, the first roller is rotatable about a first roller bearing axis adapted to remain substantially fixed. The pipe machining apparatus also includes a plurality of adjustable roller bearings with each adjustable roller bearing including a second shaft and a second roller rotatably coupled to the second shaft, the second roller is rotatable about a second roller bearing axis adapted to move. The plurality of fixed roller bearings and the plurality of adjustable roller bearings alternate relative to each other.
The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.
With reference to
In the illustrated exemplary embodiment, pipe machining apparatus 20 is formed of two joined-together semicircular sections 24A, 24B and includes a frame 28 and a tool carrier 32. The two sections 24A, 24B together comprise the frame 28 and the tool carrier 32 such that a first portion of the frame 28 and a first portion of the tool carrier 32 are included in one section 24A and a second portion of the frame 28 and a second portion of the tool carrier 32 are included in the other section 24B. The frame 28 has a column 36 extending outwardly of the two semicircular sections 24A, 24B and houses a pinion gear 40 adapted to couple with a suitable drive motor 44, such as an air motor with suitable gear reduction means. The frame 28 is adapted to couple and be fixed relative to a pipe P, and the tool carrier 32 is rotatable relative to the fixed frame 28 and the pipe P. The air motor 44 is adapted to rotate the tool carrier 32 relative to the frame 28 through a gear train in the column 36. The tool carrier 32 has a circular gear rack 56 for meshing with the pinion gear 40 rotatably mounted in column 36. The pinion gear 40 has an opening 60 provided with a polygonal perimeter for receiving a complementary shaped drive head 64 of drive motor 44. Therefore, it can be seen that drive motor 44 is adapted to rotate tool carrier 32 relative to the frame 28 through a gear train provided by pinion gear 40 in column 36 and circular gear rack 56 on the tool carrier 32.
The rotatable tool carrier 32 includes one or more tool supports 48 (two tool supports shown in the illustrated exemplary embodiment), which support tools 52 for performing a cutting or machining operation on the pipe P as the tools 52 rotate circumferentially about the pipe P. The machining operation performed by the tool(s) 52 may form a straight edge perpendicular to a longitudinal extent of the pipe P, a bevel on an end of the pipe P that is transverse to the longitudinal extent of the pipe P and at an angle other than ninety degrees, or an edge of a pipe P having any angle.
The apparatus 20 further includes four adjustable clamp members or coupling members 68 engageable with an exterior of the pipe P and having suitable adjustability to couple and concentrically locate the apparatus 20 to the pipe P.
A plurality of projections 80 are adjustably movable into and out of a path of an advancement member 84 coupled to each tool support 48 to advance the tool 52 toward the pipe P. In the illustrated exemplary embodiment, the apparatus 20 includes a total of two projections 80 for engaging the advancement members 84, however, the apparatus 20 may include any number of projections 80. Each projection 80 is coupled to a lever 88 that may be actuated by a user to selectively move the projection 80 into and out of the path of the advancement members 84.
With reference to
The roller bearings 72 comprise two different types of roller bearings. A first type includes an adjustable roller bearing 72A journaled on a shaft 104 and rotatably adjustable in the frame 28. A second type includes a fixed roller bearing 72B journaled on a shaft 108 that is not adjustable in the frame 28. In the illustrated exemplary embodiment, the roller bearings 72A, 72B are disposed around the pipe machining apparatus 20 in an alternating manner (i.e., every other roller bearing is an adjustable roller bearing 72A). In other exemplary embodiments, the different types of roller bearings 72A, 72B may be disposed around the apparatus 20 in any manner, combination, grouping, etc., and all of such possibilities are intended to be within the spirit and scope of the present disclosure.
With continued reference to
To this end, roller 112 is sandwiched between enlarged head 120 of shaft 104 and a bushing 128 which engages frame 28. The opposite end of shaft 104 is provided with a tool engagement portion or, in the illustrated exemplary embodiment, a hexagonal socket 132 for receiving an appropriate wrench to rotate the shaft 104 and eccentric portion 124 which is effective to adjust the radial position of roller bearing 72A. It can be seen that the threaded distal end 116, including socket 132, is positioned at and accessible from an exterior of the frame 28 to facilitate adjustment of the roller bearings 72A from outside the apparatus 20.
In order to lock the adjustable roller bearings 72A in any position of radial adjustment, a lock nut 136 is threaded onto distal end 116 of shaft 104 over a washer 140. Once the shaft 104 is rotated by a wrench to bring the respective roller 112 into desired engagement with bearing race 76, nut 136 is tightened to lock the roller bearing 72A in the particular radial position of adjustment. The lock nuts 136 and the respective distal ends 116 of the shafts 104 of the adjustable roller bearings 72A are located in recesses 144 defined in frame 28, which facilitates adjustability of the roller bearings 72A from an exterior of the pipe machining apparatus 20 and eliminates the need to disassemble the pipe machining apparatus 20 (e.g., disassemble the fixed frame 28 and the tool carrier 32) in order to adjust the roller bearings 72A. Caps 148 are positionable in all of the recesses 144 to close off and protect the recesses 144, the lock nuts 136, and the threaded ends 116 of the shafts 104 when adjustability is not desired. The caps 148 may be coupled to the frame 28 in the recesses 144 in any manner such as, for example, press-fit, threaded, detented, or any other manner.
In the illustrated exemplary embodiment, each roller 112 includes an outer circular bearing part 152 and an inner hub 156 (see
The hub 156 is press-fit over eccentric portion 124 of shaft 104 and is positioned between enlarged head 120 and bushing 128 when the bearing 72A is locked in a given position, while outer bearing part 152 is free to rotate and ride along the interior bearing surface 92 of the bearing race 76. The roller 112 and the bearing race 76 are appropriately sized to inhibit the roller 112 of the adjustable bearing 72A from engaging the exterior bearing surface 96 of the bearing race 76. To assist with inhibiting engagement, the exterior bearing surface 96 defines the pair of recesses 100 therein that encircle the entire race 76. The pair of recesses 100 align with the two furthest projecting portions of the V-rollers 112 of the adjustable roller bearings 72A such that the V-rollers 112 do not contact the exterior engagement surface 96 of the race 76.
The adjustable roller bearings 72A are also adapted to provide a preload between the adjustable roller bearings 72A and the fixed roller bearings 72B during assembly of the apparatus 20. When assembling the apparatus 20, the adjustable roller bearings 72A are adjusted or moved into contact with the interior bearing surface 92 of the race 76 resulting in a force applied by the adjustable roller bearings 72A, thereby forcing the fixed roller bearings 72B into engagement with the exterior bearing surface 96 to establish a preload between the adjustable roller bearings 72A and the fixed roller bearings 72B.
With continued reference to
In the illustrated exemplary embodiment, each roller 168 includes an outer circular bearing part 192 and an inner hub 196. Outer bearing part 192 is freely rotatable about hub 196 by means of ball bearings. The outer bearing part 192 includes a substantially flat engagement portion 200 for engaging the substantially flat exterior engagement surface 96 of the race 76. The substantially flat engagement portion 200 provides a single line contact between the roller 168 and the exterior race 76. In the illustrated exemplary embodiment, the single line contact is substantially parallel to the rotational axis 164 of the tool carrier 32. Alternatively, the single line contact may be transverse to the rotational axis 164 of the tool carrier 32.
The hub 196 is press-fit over concentric portion 180 of shaft 108 and is positioned between enlarged head 176 and washer 184, while outer bearing part 192 is free to rotate and ride along the exterior bearing surface 96 of the bearing race 76. The roller 168 and the bearing race 76 are appropriately sized to inhibit the roller 168 of the fixed bearing 72B from engaging the interior bearing surface 92 of the bearing race 76. The fixed bearings 72B provides radial support to the tool carrier 32, assist with establishing location of the tool carrier 32, and assists with proper engagement and backlash of the drive pinion gear 40 to the gear rack 56.
During operation of the pipe machining apparatus 20, the tool 52 applies a machining force to a pipe P, which may result in outward radial forces and axial forces on the tool support(s) 48 and the tool carrier 32. These machining forces result in forcing the interior engagement surface 92 of the race 76 more into or against the roller 112 of the adjustable roller bearing 72A, which ensures a reliable and adequate radial engagement between the roller bearing 72A and the race 76. Additionally, these machining forces may result in forcing the tool carrier 32 in an axial direction, which results in forcing the interior engagement surface 92 of the race 76 into or against the two lines of contact provided by the two angled engagement portions 160 of the roller bearing 72A. These features of the roller bearings 72A assist with maintaining proper operation and movement of the tool carrier 32 relative to the fixed frame 28, and additionally may assist with reducing chatter during operation of the pipe machining apparatus 20. Thus, the roller bearings 72A provide both radial and axial support during the machining operation of the pipe cutting apparatus 20.
Conventional pipe machining apparatuses operate in a different manner. Particularly, conventional pipe machining apparatuses include roller bearings within a race, however, a machining force realized by a tool machining a pipe forces the interior engagement surface of the race away from the roller bearings, thereby providing a looser, less reliable, and potentially inadequate engagement between the roller bearing and the race.
The Abstract of the disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While various embodiments of the disclosure have been described, it will be apparent to those of ordinary skill in the art that other embodiments and implementations are possible within the scope of the disclosure. Accordingly, the disclosure is not to be restricted except in light of the attached claims and their equivalents.
The present application claims the benefit of co-pending U.S. Provisional Patent Application No. 61/709,531, filed Oct. 4, 2012, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1140208 | Taylor | May 1915 | A |
1886082 | Chapman | Nov 1932 | A |
2358741 | Shelby | Sep 1944 | A |
2364963 | Elliott | Dec 1944 | A |
2635270 | Dawson | Apr 1953 | A |
2798390 | Bennett | Jul 1957 | A |
2931659 | Novkov | Apr 1960 | A |
2968375 | Avery, Sr. | Jan 1961 | A |
3253336 | Brown | May 1966 | A |
3732758 | Rinaldo | May 1973 | A |
3807047 | Sherer | Apr 1974 | A |
3942248 | Sherer | Mar 1976 | A |
4112794 | Franks | Sep 1978 | A |
4318391 | Wachs et al. | Mar 1982 | A |
4366994 | Yoshioka | Jan 1983 | A |
4397487 | Guttman | Aug 1983 | A |
4411178 | Wachs | Oct 1983 | A |
4421441 | Hirose | Dec 1983 | A |
4483223 | Nall et al. | Nov 1984 | A |
4490909 | Wachs et al. | Jan 1985 | A |
4493150 | Garcia | Jan 1985 | A |
4543861 | Kwech et al. | Oct 1985 | A |
4608755 | Braasch | Sep 1986 | A |
4637285 | Mizoguchi | Jan 1987 | A |
4655108 | Galos | Apr 1987 | A |
4677884 | Kwech et al. | Jul 1987 | A |
4739685 | Ricci | Apr 1988 | A |
4762038 | Olson | Aug 1988 | A |
4770074 | Kwech | Sep 1988 | A |
4791842 | Olson | Dec 1988 | A |
4813314 | Kwech | Mar 1989 | A |
4829860 | VanderPol | May 1989 | A |
4880340 | Taki et al. | Nov 1989 | A |
4939964 | Ricci | Jul 1990 | A |
5002440 | Tamaoki et al. | Mar 1991 | A |
5013015 | Fatheree | May 1991 | A |
5050291 | Gilmore | Sep 1991 | A |
5054342 | Swiatowy et al. | Oct 1991 | A |
5070600 | Brew et al. | Dec 1991 | A |
5199928 | Gress et al. | Apr 1993 | A |
5361659 | Hanson | Nov 1994 | A |
5368399 | Tremblay | Nov 1994 | A |
5549024 | Ricci et al. | Aug 1996 | A |
5557995 | Robinson | Sep 1996 | A |
5603250 | Robinson | Feb 1997 | A |
5609081 | Lin | Mar 1997 | A |
5660093 | Ricci | Aug 1997 | A |
5775188 | Strait | Jul 1998 | A |
5894772 | Nodar | Apr 1999 | A |
5941145 | Marshall | Aug 1999 | A |
5943927 | Hanson | Aug 1999 | A |
5954462 | Way et al. | Sep 1999 | A |
6065378 | Ricci | May 2000 | A |
6227577 | Ikeda et al. | May 2001 | B1 |
6257110 | Ricci et al. | Jul 2001 | B1 |
6615696 | Ricci | Sep 2003 | B2 |
7000510 | Place | Feb 2006 | B1 |
7383758 | Place | Jun 2008 | B2 |
8250953 | Hall | Aug 2012 | B2 |
8534170 | Arnemann | Sep 2013 | B2 |
9050669 | Coakley | Jun 2015 | B2 |
20040035171 | Gormany | Feb 2004 | A1 |
20040234352 | Vanderpol | Nov 2004 | A1 |
20050132851 | Place | Jun 2005 | A1 |
20060207395 | Place et al. | Sep 2006 | A1 |
20100062887 | Bodensteiner et al. | Mar 2010 | A1 |
20100162860 | Hall et al. | Jul 2010 | A1 |
20110219920 | Arnemann | Sep 2011 | A1 |
20140190327 | Pierce | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
85102879 | Jan 1986 | CN |
87101953 | Sep 1988 | CN |
2109276 | Jul 1992 | CN |
2254385 | May 1997 | CN |
2274107 | Feb 1998 | CN |
201482987 | May 2010 | CN |
900042 | Dec 1953 | DE |
2439852 | Apr 1976 | DE |
3603618 | Oct 1987 | DE |
10020393 | Feb 2001 | DE |
10 2009 005983 | Jul 2010 | DE |
0819501 | Jan 1998 | EP |
2641487 | Jul 1990 | FR |
2242850 | Oct 1991 | GB |
2010077349 | Jul 2010 | WO |
2012071419 | May 2012 | WO |
2014055610 | Apr 2014 | WO |
2014109910 | Jul 2014 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2013/062999 dated Jan. 29, 2014, 12 pages. |
International Search Report and Written Opinion for PCT/US2013/062987 dated Feb. 20, 2014, 11 pages. |
HST2121, “H&S Tool Clamshell.mpg,” Dec. 22, 2009, Published on YouTube, https://www.youtube.com/watch?v=Okfh-ODTj-8. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/063023 dated Jun. 2, 2014, 16 pages. |
International Search Report for PCT/US2014/058814, dated Dec. 15, 2014, 3 pages. |
International Search Report and Written Opinion for PCT/US2013/063007, dated Jan. 22, 2014, 14 pages. |
International Search Report and Written Opinion for PCT/US2015/056015 dated Mar. 31, 2016, 19 pages. |
International Search Report and Written Opinion for PCT/US2015/056006 dated Mar. 31, 2016, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20140096663 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61709531 | Oct 2012 | US |