The present invention relates to bearing assemblies, more particularly to a bearing assembly with a magnetic encoder.
In order to detect the relative speed of rotation between the rotating race and the stationary race of a bearing assembly, detecting devices are conventionally used comprising a magnetic encoder mounted on a rotating bearing race and a sensor that is fitted on a stationary part at a location facing the encoder at a preset distance. Electric signals generated by the sensor due to the rotation of the encoder are transmitted to a processing unit, which provides information on the rotation (rotational speed, angular position, etc.) of the rotating member. With hub-bearing units, the processing unit mounted on board of the vehicle provides information on the rotation of the wheels.
U.S. Pat. No. 6,939,050 discloses a cover of non-ferromagnetic material mounted on the outer, stationary bearing race to protect the encoder and seal the bearing from the axially inner side (or inboard side). The encoder is associated with a sealing device that limits the radial size of the encoder.
It is an object of the present invention to increase the intensity of the magnetic field generated by the encoder, so that the associated sensor will be capable of picking up magnetic pulses which are strong enough, although the cover is interposed between the encoder and the sensor. It is also desired to have more freedom in choosing the position where the sensor is to be mounted, without needing to locate it exactly in front of the middle of the radial extension of the encoder, where the magnetic field is maximum, at equal distance.
The above and other objects and advantages, that will be better understood in the following, are accomplished, in accordance with the invention, by a bearing assembly having the features defined in the appended claims.
A few preferred but not limiting embodiments of the invention will now be described, reference being made to the accompanying drawings, in which:
Referring initially to
Whereas a conventional sealing device 22 is provided at the axially outer side (outboard side) of the assembly in order to seal the annular space between the outer race 11 and the hub 12, a device of this kind is absent on the inboard side of the assembly. On this side, located in the annular gap between the bearing races 11 and 15 is a magnetic encoder 23 in form of an annular disc fixed to a supporting ring 24 having an L-shaped cross section and mounted on the inner bearing race 15. As shown more clearly in
A protective cover 30 made of non-ferromagnetic material (for example aluminium, copper, or the like) is applied on the inboard side of the hub-bearing assembly to protect the encoder and seal the bearing, leaving a minimum axial gap G2 between the cover 30 and the axially inner side of the encoder.
The cover 30 has a radial peripheral portion 31 axially abutting against the side surface 32 of the outer race 11 facing the inboard side and, in the preferred embodiment shown in the drawings, an axial cylindrical edge 33 that is forcedly fitted on the outer cylindrical surface 34 of the bearing outer race.
Owing to the above described arrangement, in accordance with the invention the radial size of the encoder is increased, thereby exploiting practically all the space between the bearing races 11 and 15. As a result, a more intense magnetic field is generated. This allows also the designer to have more freedom in positioning the sensor (not shown), which will not necessarily have to be facing the encoder exactly at half its radial extension, where the magnetic field is at its maximum intensity, at equal distance from the encoder. Owing to the invention, the sensor may instead be located also at radially outer or inner positions, as indicated at P in
With the hub-bearing units of the general design discussed herein, the side surface 32 is conventionally machined with high accuracy since it serves as a reference surface for fitting the encoder in the hub-bearing unit and, as said above, for determining the correct axial position of the cover 30. In this way an accurately sized minimum axial gap G2 is achieved, allowing to reduce the overall distance between the encoder and the sensor (not shown). Since a sealing device has no longer to be fitted in the inner cylindrical surface 29 of the outer race, machining of this surface can be dispensed with, which is advantageous since it eliminates a conventionally required step. Moreover, in the hub-bearing assembly according to the invention, with respect to the prior art there is also eliminated the sealing device arranged on the inboard side of the assembly. This reduces rolling friction of the assembly and cuts down manufacturing and assembling costs of a sealing device. Finally, the axial dimension of the outer 11 and inner 15 bearing races on the inboard side may be reduced, since it is not necessary to accommodate a sealing device, but only the encoder 23, which takes up a rather limited axial space. This helps to make the assembly lighter and axially compact. As an alternative, at equal axial bulk, the two sets of rolling bodies may be further spaced apart, thereby gaining a greater rigidity of the assembly as a whole concerning bending in an axial plane. This prevents any contact between the peripheral edge of the encoder and the inner cylindrical surface 29 of the outer race.
In the embodiment shown in
It is to be understood that invention is not limited to the embodiments described and illustrated herein, which are to be considered as examples of the assembly; rather, the invention can undergo modifications concerning shape and arrangement of parts, constructional and functional details, as will be apparent to those skilled in the art. As an example, the protective cover may not have the peripheral edge 33, as shown in the embodiment of
Further, the invention is applicable also to bearing assemblies different from the kinds illustrated in
Number | Date | Country | Kind |
---|---|---|---|
TO06A0501 | Jul 2006 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/056871 | 7/6/2007 | WO | 00 | 11/9/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/006777 | 1/17/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2986432 | Schlauch | May 1961 | A |
3415500 | Pethis | Dec 1968 | A |
4854751 | Grassmuck et al. | Aug 1989 | A |
4988219 | Peilloud | Jan 1991 | A |
5375933 | Mizutani et al. | Dec 1994 | A |
5533815 | Schierling et al. | Jul 1996 | A |
5961222 | Yabe et al. | Oct 1999 | A |
6702470 | Beauprez | Mar 2004 | B2 |
6939050 | Ohtsuki | Sep 2005 | B2 |
6979001 | Ohtsuki et al. | Dec 2005 | B2 |
7249891 | Aoki et al. | Jul 2007 | B2 |
7677808 | Shigeoka et al. | Mar 2010 | B2 |
20050232526 | Sakamoto | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
1989633 | Jul 1968 | DE |
102004044118 | Mar 2006 | DE |
1469239 | Oct 2004 | EP |
1666747 | Jun 2006 | EP |
1205886 | Sep 1970 | GB |
Number | Date | Country | |
---|---|---|---|
20100054643 A1 | Mar 2010 | US |