The present disclosure relates generally to the field of seals, and more specifically, to seals used with bearings in high pressure fluid environments.
Seals are used with bearings to protect the bearings and other bearing components located in the interior of the bearing.
Example aspects broadly comprise a bearing assembly for a shaft having an outer shell including first and second radial walls axially spaced apart from each other and joined by a circumferential wall. A sealing element is disposed in the outer shell and includes a body portion in sealing engagement with the first radial wall or the circumferential wall of the outer shell. The sealing element includes a lip portion protruding radially inward from the body portion, wherein the lip portion is arranged to sealingly engage the shaft. A bearing is press fitted in the outer shell between the sealing element and the second radial wall of the outer shell.
Other example aspects broadly comprise a method for manufacturing a bearing assembly that includes forming an outer shell including first and second radial walls axially spaced apart from each other and joined by a circumferential wall. The method also includes installing a sealing element in the outer shell such that a body portion of the sealing element is in sealing engagement with the first radial wall or the circumferential wall of the outer shell. The method further includes press fitting a bearing in the outer shell between the sealing element and the second radial wall of the outer shell.
Further example aspects broadly comprise a bearing assembly including an outer shell including a first radial wall and a bearing received in the outer shell. The bearing has an outer ring with a second radial wall opposite the first radial wall. A seal of the bearing includes a body portion sandwiched between the first and second radial walls and a lip portion protruding radially inward from the body portion and extending past the bearing.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the embodiments.
As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art.
In general, seals may be used to protect bearings and their interior components. For example, seals may be used to protect bearings in high and low pressure fluid environments in devices such as transmissions. However, axial space in transmissions, and like devices, are becoming increasingly limited. As such, there is a need to provide bearing seals that perform in high pressure areas or combined low and high pressure areas that meet these axial constraints. Embodiments of the present disclosure provide a bearing assembly and method of making the same that provides an integrated solution where a seal is integrated into the bearing assembly to save axial space. The embodiments disclosed provide various advantages such as axial space savings and a reduction in manufacturing and assembly costs.
The following description is made with reference to
A sealing element (seal) 20 is disposed in the outer shell 12. The sealing element 20 includes a body portion 22 in sealing engagement with the first radial wall 14 and/or the circumferential wall 18 (or at least a portion thereof) of outer shell 12. The sealing element 20 body portion 22 may have an axial width of at least 1 mm, for example, to provide proper sealing of the bearing assembly 10. Sealing element 20 also includes a lip portion 24 protruding radially inward in a first radial direction RD1 from the body portion 22 of sealing element 20, wherein the lip portion 24 is arranged to sealingly engage shaft 34. By radially protruding, it is meant that lip portion 24 extends at least partially radially inward in a first radial direction RD1. First radial direction RD1 and second radial direction RD2 are orthogonal to axis of rotation A. The lip portion 24 of sealing element 20 may be integrally formed with the body portion 22. That is, lip portion 24 and body portion 22 are formed from the same piece of material. Lip portion 24 of sealing element 20 extends axially away from the first radial wall 14 and toward the second radial wall 16 of outer shell 12. That is, lip portion 24 extends in axial direction AD2 opposite axial direction AD1, which is parallel to the axis of rotation A. Positioning lip portion 24 to face inwards and extend in axial direction AD2 may have various advantages such as preventing displacement of the lip portion 24 during applications where increased levels of pressure occur. However, although lip portion 24 extends axially away from the first radial wall 14 in
The sealing element 20 may be manufactured by injection molding and comprised of a material capable of withstanding high pressure fluid environments and applications. For example, the sealing element 20 may be comprised of a fluorocarbon polymer material such as Polytetrafluoroethylene (PTFE). Under higher pressure, it is important to select appropriate seal materials because the sliding contact area between the seal lip and the shaft will generate much higher friction, heat, and wear of the seal lip than in low pressure systems, which can cause premature or catastrophic seal failure in a very short period of time when using seals not specifically designed for higher pressures. Moreover, an inside diameter of the sealing element 20 lip portion 24 is smaller than an outer diameter of the shaft 34 it is in contact with to ensure a proper interference fit or contact between the sealing element 20 lip portion 24 and the shaft 34.
Bearing assembly 10 further includes a bearing 26 disposed in the outer shell 12 and arranged between the sealing element 20 and the second radial wall 16 of the outer shell 12. In particular, bearing 26 may be press fit in the outer shell 12 between sealing element 20 and radial wall 16. That is, bearing 26 is compressively fitted into outer shell 12 of bearing assembly 10 such that sealing element 20, and in particular, body portion 22 is compressed between first radial wall 14 and bearing 26 or outer ring 28 of bearing 26. This ensures that sealing element 20 remains sealingly engaged with outer shell 12 and retained in bearing assembly 10. Bearing 26 may include an outer ring 28, at least one roller element 30 disposed within the outer ring 28, and a cage 32 configured to rotatably retain the at least one roller element 30 in the outer ring 28. Cage 32 is further configured to maintain a desired peripheral spacing and axial positioning of the roller element 30 in outer ring 28. Although bearing 26 is shown as a roller bearing, other applications may exist and should be considered within the scope of this disclosure. For example, bearing 26 may be a radial bearing or an axial bearing. Example bearings may include a ball bearing, needle bearing, tapered roller bearing, or spherical roller bearing.
The following description is made with reference to
Referring to
A sealing element 86 is configured to create an oil-tight seal between the outer shell 76 and the inner ring 74 to prevent oil flow though the bearing 80. The outer ring 82 may include a radial wall 88 that is adjacent to the radial wall 78 and spaced apart so that a body portion 90 of the sealing element 86 can be sandwiched between the radial walls 78, 88. The body portion 90 may be compressed between the radial walls 78, 88 to retain the sealing element 86 to the bearing assembly 70.
The body portion 90 extends radially inward towards the inner ring 74. A lip portion 92 of the sealing element 86 may be integrally formed with the body portion 90. The lip portion 92 of the sealing element 86 may extend axially away from the radial wall 78. Positioning the lip portion 92 to face inwards and extend axially may have various advantages as previously explained. The lip portion 92 is configured to engage with the outer surface of the inner ring 74 to seal the bearing 80. The material of the sealing element 86 and the manufacturing process may be the same as those previously described. While illustrated as having a single sealing element, a second sealing element may be provided on the other end of the bearing assembly 70.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, to the extent any embodiments are described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics, these embodiments are not outside the scope of the disclosure and can be desirable for particular applications.
The following is a list of reference numbers shown in the Figures. However, it should be understood that the use of these terms is for illustrative purposes only with respect to one embodiment. And, use of reference numbers correlating a certain term that is both illustrated in the Figures and present in the claims is not intended to limit the claims to only cover the illustrated embodiment.
This application claims the benefit of U.S. provisional application Ser. No. 62/554,418 filed on Sep. 5, 2017, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1995838 | Buckwalter | Mar 1935 | A |
2022252 | Miltenberger | Nov 1935 | A |
2274187 | Buckwalter | Feb 1942 | A |
2383727 | Lewis | Aug 1945 | A |
2647808 | Spurgeon | Aug 1953 | A |
3206829 | Schaeffler | Sep 1965 | A |
3348889 | Schaeffler | Oct 1967 | A |
3395953 | Pitner | Aug 1968 | A |
3469063 | Van Dorn | Sep 1969 | A |
3501210 | Deutsch | Mar 1970 | A |
3539232 | Batt | Nov 1970 | A |
3710471 | Pitner | Jan 1973 | A |
3844010 | Frost | Oct 1974 | A |
3998505 | Frost | Dec 1976 | A |
4692826 | Raj et al. | Sep 1987 | A |
4854751 | Grassmuck | Aug 1989 | A |
5385413 | Murphy | Jan 1995 | A |
5419641 | Fujinami | May 1995 | A |
5533815 | Schierling | Jul 1996 | A |
5636808 | Colin | Jun 1997 | A |
6517251 | Williams | Feb 2003 | B1 |
8505706 | Horling | Aug 2013 | B2 |
20010006566 | Akamatsu | Jul 2001 | A1 |
20050196082 | Asfour et al. | Sep 2005 | A1 |
20050261141 | Iso | Nov 2005 | A1 |
20060090344 | Suzuki | May 2006 | A1 |
Number | Date | Country |
---|---|---|
4238147 | May 1994 | DE |
2004293618 | Oct 2004 | JP |
Entry |
---|
Machine Translation of JP-2004293618-A (Year: 2004). |
PTFE Seals, http://www.oeminternational.com/products-seals-radial-shaft-ptfe-lip.html, ISO 9001:20080 Certified, OEM International, Inc., New Jersey, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20190072133 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62554418 | Sep 2017 | US |