BEARING ASSEMBLY

Abstract
The rolling bearing design incorporates at least two antifriction bearings, a fixed supporting centering sleeve and a toothed cage with an extended cylindrical part, extending outside the dimensions of the bearings, and sockets in the form of a crown on both sides of the cylindrical part of the cage. The fixed supporting centering sleeve of the cage incorporates channels for oil supply to the cage. The extended cylindrical part of the cage between the adjacent bearings in the assembly can be made up of two parts with the possibility to slip relative to each other. The invention enables improvement in the reliability, wear-resistance and durability of the bearing assemblies incorporating at least two bearings, including those of different types and sizes, which operate at high speeds and are subject to significant centrifugal loads exceeding the gravity acceleration by hundred times.
Description
FIELD OF THE INVENTION

The invention pertains to machine engineering and can be used in assemblies, where high speed antifriction bearings are used bearing, particularly in planetary mills, planetary reduction gears, and planetary gearboxes, i.e., where the bearings are subject to significant centrifugal loads exceeding the gravity acceleration by hundred times.


BACKGROUND OF THE INVENTION

A bearing assembly incorporating a rolling bearing; cage with an extended part extending outside the bearing; sleeve with a collar enclosing the extended part of the cage; and a cavity for bearing lubrication has been known (see inventor's certificate of the USSR No. 1328595 dd. Jun. 13, 1984).


The possibility of misalignment may be reckoned among the deficiencies of the said assembly, which is explained by the inequality of friction forces occurring at the different locations, where the cage is in contact with the other assembly components. With high centrifugal overloads, it can lead to overheating and seizure of the bearing.


The roller bearing as per inventor's certificate of the USSR No. 176468 dd. Mar. 20, 1963, which incorporates an outer ring; inner ring, installed on the working shaft; and a toothed cage in the form of a sleeve with the teeth on one end, the second end of which is freely mounted on the working shaft or the extended part of the inner ring, can be considered as a technical solution, which is the closest to the applied invention.


The deficiencies of this solution are the asymmetry of the design and lack of the bearing lubrication system, which together lead to misalignment and seizure of the bearing.


Rotational speed of the high-speed rolling bearings is that high that the inertial forces of the cage and rolling elements as well as the friction forces in the grease cause the slipping of the rolling elements in the bearing race. In the bearing assemblies incorporating two and more rolling bearings, the non-uniform slippage of the rolling elements is the cause of increased wear of the separating part of the cage and bearing races and can lead to misalignment and seizure of the bearing.


SUMMARY OF THE INVENTION

The proposed antifriction design of the bearing assembly enables improvement in its reliability, wear-resistance and durability.


The set task is resolved with a bearing assembly, incorporating at least two rolling bearings, a toothed cage extending beyond the dimensions of the bearings, and a fixed supporting centering sleeve, where the sockets for rolling elements are made in both sides of the cylindrical part of the cage.


The fixed supporting centering sleeve of the cage, which location depends on the assembly loading conditions, can be located both inside and outside of the extended cylindrical part (FIG. 1) and has channels for oil supply to the cage.


Further, the extended cylindrical body of the toothed cage between the adjacent bearings in the assembly can be made up of two portions with the possibility of skidding relative to each other.


The location of the sockets for rolling elements on both sides of the cylindrical part of the cage enabled elimination of the misalignments in the design; the channels for oil supply into the clearance between the cylindrical part of the cage and the fixed supporting centering sleeve enabled reduction in the friction and thus improvement in the wear-resistance of the assembly parts as much as possible; and the two-part design of the cage enabled reduction in the negative effect of the difference in the slippage velocity of the rolling elements in the left and right bearings, which is particularly evident at high rotational speeds of the bearings, and thus improvement in the durability of the assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

Essence of the proposed bearing assembly is explained in FIGS. 1, 2, 3, which show the axonometry and longitudinal section of the assembly, and the developed view of the cages joint.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The bearing assembly incorporates rolling bearings, consisting of inner rings 2 mounted on shaft 1, outer rings 3 fixed on case 4, and toothed cage 5 in direct contact with rolling elements 6 between inner rings 2 and outer rings 3.


The cage is made in the form of a cylinder extending outside the bearing dimensions, whose ends are made in the form of a crown with the sockets for rolling elements.


The cage is supported by fixed centering sleeve 7, which is made on shaft 1 or mounted shaft 1, or is made on case 4 or mounted in case 4, depending on the bearing assembly operation. In case of the former, the fixed supporting centering sleeve is located inside the extended cylinder part of the cage and outside in case of the latter (FIG. 1).


The assembly incorporates channels 8 in fixed supporting sleeve 7 for oil supply to the operating parts.


Reinforcement ribs 9 can be made on the cylindrical part of the cage, which is not in contact with the supporting centering sleeve, to improve the reliability of the design.



FIG. 2 shows an option of the bearing assembly, where the extended cylindrical part of the cage between the adjacent bearings is made up of two parts, coaxially inserted into each other, with the necessary clearance to provide slippage relative to each other.


Unlike the solid cage, the made-up design of the cage enables elimination of the rigid coupling between the bearings, operating in different conditions, and prevention of the negative effect of the difference in the slippage velocity of the rolling elements, particularly at high rotational speeds of the bearings.


The bearing assembly operates as follows:


In the process of the assembly operation, shaft 1, through inner rings 2, or case 4, through outer rings 3, transmit the rotation to rolling elements 6, which in turn rotate cylindrical cage 5. The cage rotates at a speed that is lower than the rotational speed of shaft 1.


In the process of the assembly operation, lubrication oil is supplied under pressure through channel 8 into the clearance between fixed supporting sleeve 7 and extended cylindrical part of the cage. As a result, oil films occur on the inner or outer surface of the cage, which unload the cage from the effect of significant centrifugal forces and eliminate the braking effect of the cage on the rolling elements and consequently reduce their mutual wear and increase the service life of the bearing assembly in general.


Slippage of the cage components (FIG. 2) relative to each other enables them to rotate at different speeds, which allows the use of rolling bearings of different types and types in a bearing assembly and, when same bearings are used, the reduction in the negative effect of the slippage of the rolling elements in the bearing races and the improvement in the operational reliability of the assembly.


Cylindrical components of the cage can have a varying diameter, where the diameter of the outer edge, equipped with the sockets in the form of a crown for rolling elements, is defined by the size of the bearings used (FIG. 2).


When using more than two bearings in a bearing assembly (FIG. 3), the rolling elements of the bearing, located between two outermost bearings, can be separated by two toothed cages disposed on both sides of such bearing, wherein some rolling elements of such bearing will be located in one toothed cage and other rolling elements of such bearing will be located in another toothed cage.


The proposed technical solution can find a common use in the machines and gears utilizing bearing assemblies incorporating at least two bearings, including those of different types and sizes, which operate at high speeds and are subject to high centrifugal forces exceeding the gravity acceleration by hundred times.


REFERENCES

1. Inventor's certificate of the USSR No. 1328595 dd. Jun. 13, 1984.


2. Inventor's certificate of the USSR No. 176468 dd. Mar. 20, 1963.

Claims
  • 1. A bearing assembly comprising at least two rolling bearings, a fixed supporting centering sleeve and a toothed cage, the toothed cage being a cylindrical body extending beyond dimensions of the bearings and comprising sockets in the form of a crown for housing rolling elements, wherein such crowns are made on both sides of the cylindrical body of the toothed cage.
  • 2. The bearing assembly according to claim 1, wherein the cylindrical body of the toothed cage between the adjacent bearings is made of two portions coaxially inserted into each other with the possibility of the portions skidding relative to each other.
  • 3. The bearing assembly according to claim 1, wherein the fixed supporting centering sleeve of the toothed cage is located inside the cylindrical body and comprises channels for supplying oil to the toothed cage.
  • 4. The bearing assembly according to claim 1, wherein the fixed supporting centering sleeve is located outside the cylindrical body of the toothed cage and comprises channels for supplying oil to the toothed cage.
  • 5. The bearing assembly according to claim 2, wherein one of the two portions of the cylindrical body of the toothed cage that is not in contact with the supporting centering sleeve has a reinforcement rib.
  • 6. The bearing assembly according to claim 1, wherein the sockets of the rolling elements in the crowns on different ends of the toothed cage are different in shapes and sizes.
  • 7. The bearing assembly according to claim 1, wherein when the bearing assembly has more than two bearings, the rolling elements of a bearing located between the outermost bearings can be separated by two toothed cages disposed on both sides of such bearing, wherein some rolling elements of such bearing will be located in one toothed cage and other rolling elements of such bearing will be located in another toothed cage.
Priority Claims (1)
Number Date Country Kind
2011130763 Jul 2011 RU national
RELATED APPLICATIONS

This Application is a Continuation application of International Application PCT/RU2012/000582, filed on Jul. 12, 2012, which in turn claims priority to Russian Patent Applications No. RU2011130763, filed Jul. 19, 2011, both of which are incorporated herein by reference in their entirety.

Continuations (1)
Number Date Country
Parent PCT/RU2012/000582 Jul 2012 US
Child 14147784 US