The present invention is related to a bearing-hub assembly having a light alloy hub, for example an aluminum hub. The assembly is particularly suitable for applications having a rotatable hub, since the hub is engaged with a rotatable element, for example a motor-vehicle wheel, and having the hub steadily coupled with a bearing inner ring.
In the state of the art, flanged bearing-hub assemblies for motor-vehicle driving wheel applications are known. An example is described in the European patent EP 1031439 B1, such embodiment comprising a radially outer ring, a pair of radially inner rings and two rows of rolling bodies (in the example, spheres), radially interposed between the outer ring and the pair of inner rings. The outer ring has an external cylindrical surface, suitable for press fit operations, to insert the bearing into a cylindrical seat, formed in a suspension knuckle. The radially inner rings are press fit on a flanged hub, which is angularly connected in a known way with the end portion of a spindle, in other words an axle shaft of a motor-vehicle powertrain. The rings are typically made of high resistance steel for rolling bearings, since the ring must support high hertzian loads, which are transmitted between rolling bodies and raceways.
The bearing-hub assembly also comprises a hub, which has a flange portion inside of which holes are provided for a plurality of fastening means (for instance, bolts), which connect in a known way an element of the motor-vehicle wheel, for example the brake disc, to the flanged hub.
The flanged hub can also be defined as assembly structural portion, since it supports loads transmitted by the element of the motor-vehicle wheel. Advantageously, the flanged hub can be made of light alloy, anyway of a lighter material than the hertzian portion material, in order to decrease the assembly overall weight. According to state of art teaching, the hub can be co-molded to the hertzian portion, in other words to a rolling ring.
Several co-molding technologies require the light alloy to be transformed in a state different from the solid state, by means of a light alloy heating. The hertzian portion material has a different thermal behavior with respect to the structural portion material (as known a light alloy, for example aluminum, has a greater thermal dilatation than the steel one). Therefore, particularly in applications with a hub rotatable and steadily engaged to the bearing inner ring, it is particularly difficult to ensure that the two portions remain perfectly adherent each other, that is to say, they do not disjoin neither after cooling nor during working operations.
Aim of the present invention is to realize a bearing-hub assembly comprising a light alloy hub, the assembly overcoming the above described inconveniences.
According to the present invention, a bearing-hub assembly, with an aluminum or other light alloy hub, is described.
Further embodiments of the invention, preferred and/or particularly advantageous, are described according to the characteristics as in the enclosed dependent claims
A preferred embodiment of the invention will be now described, in an exemplifying and not limitative way, by reference to the enclosed drawing, in which:
With reference to
Throughout the present description and in the claims, the terms and expressions indicating positions and orientations such as “radial” and “axial” are to be taken to refer to the axis of rotation A of the assembly 1. Instead, expressions as “axially external” and “axially internal” are to be referred to the assembled condition, in this case respectively to a motor-vehicle wheel side and to an opposite side.
The radially outer ring 2 comprises an annular portion, in which the raceways 6 for the rolling bodies 3 are provided. In the non-limitative embodiment of
In the above described rolling bearing, the diameter De of the centers of the spheres 3 of the more axially external row 31 is greater than the diameter Di of the centers of the spheres 3 of the more axially internal row 32. This is the configuration of an asymmetric rolling bearing, which presents functional advantages with respect to symmetric bearings, bearings having the diameter De equal to the diameter Di. Of course, the embodiment of the asymmetric bearing is only exemplifying, since the present invention is also suitable for symmetric rolling bearings.
On the radially inner ring 4, a light alloy hub 9 is assembled. The hub comprises a flange portion 10 and a cylindrical body 11, in one piece with the flange portion and made of the same material.
With reference to
According to the present invention, the complex co-molding operation can be avoided. In fact, the hub 9 is cold formed, close to the inner ring 4. In particular, the radially internal surface 41 of the radially inner ring 4 is provided with annular grooves 42, which are alternated to annular protrusions 43. Due to cold forming, the radially external surface 91 of the hub 9 perfectly copies the profile of the radially internal surface 41 of the inner ring 4 and therefore in the grooves 42 correspondent protrusions 93 of the hub 9 will be engaged. At the same time, the protrusions 43 of the inner ring 4 will engage correspondent grooves 92 of the hub 9.
The hub cold forming process can be carried out, by using different known technologies, for example, orbital forming, hydro-forming, elastomeric forming.
Therefore, the invented solution allows obtaining a low weight bearing-hub assembly, since the hub is made of light alloy. Moreover, such solution avoids the complex co-molding operation and the consequent risks of detachment of the hub from the inner ring. In fact, the detachment can be due to the shrinkage of the light alloy during solidification. As known, the light alloy has a coefficient of thermal expansion greater than the one of the inner ring material and, consequently, the hub shrinks more than the inner ring. This problem is solved, by adopting the cold forming process.
Finally, adopting a profile with grooves and protrusions also helps during the bearing lifetime. In fact, the assembly use under vehicle working conditions, i.e. at high temperature (anyway, a higher temperature than the cold forming one), the light alloy expands more than the ring material. The adhesion between hub and ring will be then ensured by the contact between surfaces 94 of the hub and surfaces 44 of the inner ring, while the hub will be free expanding in the area of its axially internal edge 95. On the other hand, at a vehicle start, operating the bearing at low temperature (anyway at a lower temperature than the cold forming one), protrusions 43 always act as anchoring points, thus avoiding the detachment between the two components. Other than the embodiments of the invention, as above disclosed, it is to be understood that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
TO2013A0904 | Nov 2013 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
4383588 | Krude | May 1983 | A |
4715780 | Kan | Dec 1987 | A |
4765688 | Hofmann | Aug 1988 | A |
4792020 | Okumura | Dec 1988 | A |
5674011 | Hofmann | Oct 1997 | A |
5764049 | Hofmann | Jun 1998 | A |
6232772 | Liatard | May 2001 | B1 |
6322253 | Picca | Nov 2001 | B1 |
7118182 | Kayama | Oct 2006 | B2 |
7618191 | Haepp | Nov 2009 | B2 |
7758432 | Arrieta | Jul 2010 | B2 |
8480306 | Fukumura | Jul 2013 | B2 |
8944523 | Re | Feb 2015 | B2 |
20050163410 | Sakamoto | Jul 2005 | A1 |
20070098315 | Komori | May 2007 | A1 |
20080144985 | Joki | Jun 2008 | A1 |
20100021099 | Torii | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1031439 | Apr 2005 | EP |
2378143 | Oct 2011 | EP |
2505380 | Oct 2012 | EP |
2505383 | Oct 2012 | EP |
2010063299 | Jun 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20150123455 A1 | May 2015 | US |