BEARING MAINTENANCE TIMING ACQUISITION METHOD

Information

  • Patent Application
  • 20220018733
  • Publication Number
    20220018733
  • Date Filed
    November 14, 2019
    5 years ago
  • Date Published
    January 20, 2022
    3 years ago
Abstract
Provided in the present invention is a bearing maintenance timing acquisition method: acquiring vibration signals of a bearing under different loads; then, respectively acquiring dimensionless parameters according to the vibration signal of each load; thus, acquiring predicted damage condition distribution data of the bearing under different loads according to the dimensionless parameters; and finally, obtaining accurate maintenance timing based on the predicted damage condition distribution data under different loads, so as to prolong the service life of the bearing while reducing maintenance costs.
Description
BACKGROUND OF THE INVENTION
1. Technical Field

The present invention involves bearing technology, specifically, a method for determining the time to repair a bearing.


2. Description of Related Art

Bearing is a mechanical device widely used in various fields and industries. Failure or damage of it during the use will lead to the stoppage of production work and great repair costs.


In order to prolong the service life of the bearing, monitoring of the bearing condition during the use becomes particularly important. Conventionally, the monitoring of the bearing is achieved by the monitoring of its vibration. The core idea is: during the monitoring of the bearing vibration, when the vibration exceeds a certain threshold, it is judged that the bearing needs to be repaired. A variety of industrial standards have been proposed in the industry, with the purpose of determining the time to repair the bearing. For example, ISO IS 7919 recommends determining the time to repair the bearing by judging whether the vibration displacement of the bearing exceeds the vibration peak threshold. These industrial standards were originally used to provide general operating recommendations for the use and repair of machines and their components.


However, since the actual vibration of the bearing is affected by various environmental factors (for example, load, speed and temperature), through the existing condition monitoring mechanism, the time to repair the bearing is often inaccurate. If the time to repair the bearing is too early, the repair costs will increase; and if the time to repair the bearing is delayed, the service life of the bearing will be greatly reduced.


SUMMARY OF THE INVENTION

To address the technical issues left unsolved by the prior art, the present invention provides a method for determining the time to repair the bearing, which aims at reducing the repair cost and improving the service life of the bearing.


To address the foregoing technical issues, the present invention provides a technical scheme, wherein:


a method for determining the time to repair the bearing, comprising:


obtaining the vibration signal of the bearing;


obtaining the dimensionless criteria of the vibration signal according to the vibration signal;


determining the time to repair the bearing according to the dimensionless criteria of the vibration signal.


As further improvements on the foregoing technical scheme:


obtaining the dimensionless criteria of the vibration signal according to the vibration signal, specifically including:


obtaining the NIE of the vibration signal according to the vibration signal;


the NIE of the vibration signal satisfies the following formula:






NIE
=

-




k
=
1

M



(


p
k

×

ln


(

p
k

)



)







therein, pk represents the possible distribution of the vibration signal; the M is a natural number;


the pk satisfies the following formula:







p
k

=



n
k

N

×
1

0

0

%


(


k
=
1

,
2
,

.



.



.





,
M

)






therein, the nk represents the number of data in each element; the N represents the number of data contained in the vibration signal; the N satisfies the following formula:






N
=




k
=
1

M



n
k






Obtaining the dimensionless criteria of the vibration signal according to the vibration signal, specifically including:


obtaining the J-Divergence of the vibration signal according to the vibration signal;


the J-divergence represents the pseudo distance between two possible distribution points of the vibration signal;


if the two distribution points are p1 and p2 respectively, the J-Divergence satisfies the following formula:







J


(


p
1

,

p
2


)


=


NIE


(



p
1

+

p
2


2

)


-


1
2

×

[


NIE


(

p
1

)


+

NIE


(

p
2

)



]







Obtaining the dimensionless criteria of the vibration signal according to the vibration signal, specifically including:


obtaining the Kurtosis of the vibration signal according to the vibration signal; the Kurtosis satisfies the following formula:






K
=


1
N






i
=
1

N



(



x
i

-

x
¯


σ

)







therein, the xi represents the vibration signal i; the {tilde over (x)} and the σ represent the standard deviation value of the vibration signal.


Obtaining the dimensionless criteria of the vibration signal according to the vibration signal, specifically including:


obtaining the mixed dimensionless criterion C of the vibration signal according to the vibration signal; the mixed dimensionless criterion C satisfies the following formula:






C=√{square root over ((ΔNIE)2+(J)2+(ΔK)2)}


therein, the ΔNIE=NIEpresent−NIEreference; the ΔK=Kpresent−Kreference; the NIEpresent represents the real-time NIE value; the NIEreference represents the reference value of NIE; the Kpresent represents the real-time K value; the Kreference represents the reference value of K.


The embodiment of the present invention provides a method for determining the time to repair the bearing. Firstly, the vibration signals of the bearing under different loads are obtained, and then based on the vibration signal under each load, the dimensionless criteria are obtained separately; according to the dimensionless criteria, the damage prediction distribution data of the bearing under different loads can be obtained. Finally, based on the damage prediction distribution data under different loads, an accurate time to repair the bearing is obtained, thereby reducing the repair cost and improving the service life of the bearing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow chart of a method for determining the time to repair the bearing according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 a flow chart of a method for determining the time to repair the bearing according to an embodiment of the present invention. See FIG. 1 for the method, which includes the following steps:


step 100: obtaining the vibration signal of the bearing;


optionally, the vibration signals can be obtained separately for different loads of the bearing.


step 101: obtaining the dimensionless criteria of the vibration signal according to the vibration signal;


step 101: determining the time to repair the bearing according to the dimensionless criteria of the vibration signal.


The embodiment of the present invention provides a method for determining the time to repair the bearing. Firstly, the vibration signals of the bearing under different loads are obtained, and then based on the vibration signal under each load, the dimensionless criteria are obtained separately; according to the dimensionless criteria, the damage prediction distribution data of the bearing under different loads can be obtained. Finally, based on the damage prediction distribution data under different loads, an accurate time to repair the bearing is obtained, thereby reducing the repair cost and improving the service life of the bearing.


Optionally, the dimensionless criteria can be NIE, Kurtosis, J-Divergence and C.


Further, for the dimensionless criteria in Step 101, one possible way is:


obtaining the NIE of the vibration signal according to the vibration signal;


the NIE of the vibration signal satisfies the following formula:






NIE
=

-




k
=
1

M



(


p
k

×

ln


(

p
k

)



)







therein, pk represents the possible distribution of the vibration signal; M is a natural number;


pk satisfies the following formula:







p
k

=



n
k

N

×
1

0

0

%


(


k
=
1

,
2
,

.



.



.





,
M

)






therein, nk represents the number of data in each element; N represents the number of data contained in the vibration signal; N satisfies the following formula:






N
=




k
=
1

M



n
k






optionally, the J-Divergence of the vibration signal can be obtained according to the vibration signal; the J-Divergence represents the pseudo distance between two possible distribution points of the vibration signal.


If the two distribution points are p1 and p2 respectively, the J-Divergence satisfies the following formula:







J


(


p
1

,

p
2


)


=


NIE


(



p
1

+

p
2


2

)


-


1
2

×

[


NIE


(

p
1

)


+

NIE


(

p
2

)



]







optionally, the Kurtosis of the vibration signal can be obtained according to the vibration signal; the Kurtosis satisfies the following formula:






K
=


1
N






i
=
1

N



(



x
i

-

x
¯


σ

)







therein, xi represents the vibration signal i; x and σ represent the standard deviation value of the vibration signal.


Optionally, the mixed dimensionless criterion C of the vibration signal can be obtained according to the vibration signal; the mixed dimensionless criterion C satisfies the following formula:






C=√{square root over ((ΔNIE)2+(J)2+(ΔK)2)}


therein, ΔNIE=NIEpresent−NIEreference; ΔK=Kpresent−Kreference;


NIEpresent represents the real-time NIE value; NIEreference represents the reference value of NIE; Kpresent represents the real-time K value; Kreference represents the reference value of K.


A final note is made as follows: the above embodiments are only used to illustrate the technical solutions of the present invention, not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, the general technicians in this field should understand: they are still allowed to modify the technical solutions illustrated in the foregoing embodiments, or equivalently replace some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the scope of technical solutions in the embodiments of the present invention.

Claims
  • 1. A method for determining the a time to repair a bearing, comprising: obtaining a vibration signal of the bearing;obtaining a dimensionless criteria of the vibration signal based on the vibration signal; anddetermining a time to repair the bearing according to the dimensionless criteria of the vibration signal,wherein obtaining the dimensionless criteria of the vibration signal based on the obtained vibration signal includes:obtaining a NIE of the vibration signal according to the vibration signal;the NIE of the vibration signal satisfies the following formula:
  • 2. (canceled)
  • 3. The method for determining the time to repair the bearing of claim 1, wherein obtaining the dimensionless criteria of the vibration signal based on the obtained vibration signal includes: obtaining a J-Divergence of the vibration signal according to the vibration signal; the J-divergence represents the pseudo distance between two possible distribution points of the vibration signal;where two distribution points are p1 and p2 respectively, the J-Divergence satisfies the following formula:
  • 4. The method for determining the time to repair the bearing of claim 3, wherein obtaining the dimensionless criteria of the vibration signal based on the obtained vibration signal includes: obtaining the Kurtosis of the vibration signal according to the vibration signal; the Kurtosis satisfies the following formula:
  • 5. The method for determining the time to repair the bearing of claim 4, wherein obtaining the dimensionless criteria of the vibration signal based on the obtained vibration signal, includes: obtaining a mixed dimensionless criterion C of the vibration signal according to the vibration signal; the mixed dimensionless criterion C satisfies the following formula: C=√{square root over ((ΔNIE)2+(J)+(ΔK)2)}
Priority Claims (1)
Number Date Country Kind
201811400523.X Nov 2018 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2019/118512 11/14/2019 WO 00