The present invention relates, generally, to bearing protectors and their use in rotating equipment and, more particularly, but not exclusively, of the contacting seal face-type. Such devices are used on said rotating equipment for preventing the ingress or egress of a fluid or solid.
Bearing protectors are used on rotating equipment to prevent fluids, solids and/or debris from entering a bearing chamber. Similarly, bearing protectors are employed to prevent egress of fluids or solids from a bearing chamber. Essentially, their purpose is to prevent the premature failure of bearings by maintaining optimum conditions.
Bearing protectors generally fall into two categories: non-contacting labyrinth bearing protectors and contacting seal face bearing protectors. The present invention relates to the contacting seal face category of bearing protection. More specifically, the present invention relates to contacting seal face bearing protectors whereby the seal faces are energized using magnet force.
The present invention is directed to an apparatus comprising a static component fixed relative to a housing, wherein a stationary sealing face profile is retained and a rotational component fixed relative to a shaft with the static and rotational components held axially relative to each other and, wherein, the rotational component embodies an annular sealing face profile energized by magnetic elements retained within the static component for generating a positive sealing face contact between the stationary sealing face and rotational sealing face profiles.
The magnetic elements are retained within the static housing component by way of functionally formed holes, thereby allowing the magnetic elements to interact with the rotational component generating positive seal face loading. The magnetic elements are annularly positioned within the housing component creating an attractive force upon the rotary component promoting axial movement and the rotary sealing face to engage the stationary sealing face; the magnetic elements being retained within the static housing component by way of, but not limited to, retaining ports. The rotary component featuring the rotational sealing face profile would be formed in a material that is magnetic to promote attraction to the magnetic elements and incorporate a profile intended to provide a surface for the magnetic elements to attract.
The rotational component profile is such that magnetic element interaction is promoted and a magnetic force gap is set to maintain a predetermined seal face loading. Magnetic attraction is created through a flanged profile of the rotary component which provides a surface for the magnetic elements to attract and whereby said surface is distally positioned to create said predetermined seal face loading.
The present invention may extend to a bearing protection device for use in controlling fluid flow, wherein the device comprises a static housing component fixed relative to the equipment housing and a rotational component fixed relative to the equipment shaft, the static component and rotational components held axially relative to each other via the equipment housing and the equipment shaft, the static housing component comprising at least one feature to slow the fluid therethrough. The flow path may comprise of bends, corners, protrusions, baffles and/or other elements.
Other objects and features of the present invention will become apparent when considered in combination with the accompanying drawing figures, which illustrate certain preferred embodiments of the present invention. It should, however, be noted that the accompanying drawing figures are intended to illustrate only select preferred embodiments of the claimed invention and are not intended as a means for defining the limits and scope of the invention.
In the drawing, wherein similar reference numerals and symbols denote similar features throughout the several views:
The invention will now be described, by way of example only, with reference to the accompanying drawings:
Turning now, in detail, to an analysis of the drawing figures, in
Referring, now, to
Referring to
With reference to
Finally, referring to
While only several embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that many modifications may be made to the present invention without departing from the spirit and scope thereof.
Number | Date | Country | Kind |
---|---|---|---|
1714111 | Sep 2017 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
5730447 | Dawson | Mar 1998 | A |
6805358 | Dawson | Oct 2004 | B2 |
20040227299 | Simmons | Nov 2004 | A1 |
20060006602 | Roddis | Jan 2006 | A1 |
20080050261 | Roddis | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
2961327 | Sep 2017 | CA |
2514455 | Apr 1983 | FR |
788385 | Jan 1958 | GB |
WO-0227221 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20190072184 A1 | Mar 2019 | US |