This application claims benefit of Serial No. 200803145, filed 4 Nov. 2008 in Spain and which application is incorporated herein by reference. To the extent appropriate, a claim of priority is made to the above disclosed application.
The present invention refers to the technical field of turbines, specifically to the elements and configuration of gas turbines, and more specifically to structural support and rotation elements of turbines, and to the optimization thereof to improve the aerodynamics of the assembly, separating the strictly structural function from the aerodynamic one.
For the housing of bearings in gas turbines, radial structures are used, where said bearings are housed inside them, and the turbine is fixed to its outer part. These structures are formed by an inner ring where the bearing is housed and an outer ring where the turbine anchoring points and the fastening points of the engine assembly, which includes the turbine, are. Nowadays, the inner ring and the outer ring of these radial structures are joined together by a set of blades or vanes, with an aerodynamic function to straighten and direct the incoming flow in the most appropriate form, a structural function to transmit the bearing loads to the anchoring points of the turbine arranged in the outer ring, and also to allow the passage of service fluids such as oil or air between the outside and the inside of the main fluid with a minimum aerodynamic impact, reason why some of the vanes must be hollow, so as to allow the passage of fluids through their interior. Therefore, the number of vanes needed between the inner ring and the outer ring is determined by the level of loads to be transmitted between the bearing and the turbine, the quantity and variety of service fluids needed, and the aerodynamic requirements. This configuration presents a series of disadvantages derived from the fact that since the number of vanes depends on so many and so different factors, it is not possible to optimize the number, form and section of said vanes without sacrificing some of the factors, for example, an improvement in the support function will worsen the aerodynamic properties, and vice versa. That is, if all vanes are the same it will not be possible to optimize all functions at the same time, instead, one of them will always be sacrificed to the others.
Therefore, it was desirable a support structure which attained an efficient turbine operation, and simultaneously improved all functions of said structure, avoiding the existing inconveniences in the previous systems of the state of the art.
The present invention solves the existing problems of the state of the art by means of a bearing support structure for a turbine, specifically for the rear bearing of a gas turbine. This support structure is formed by an inner ring, where the bearing is housed and an outer ring comprising in its outer perimeter some fastening points to the turbine and anchoring points to the engine assembly. In the present invention, the inner ring and the outer ring are radially connected by means of a series of vanes in a circumference-like arrangement between both rings, divided in structural vanes and aerodynamic vanes. The former will be in charge of support and load transmission functions exclusively between the bearing and the anchoring points of the engine assembly, in the outer ring, and the function of service fluid passage, such as oil or air between the outside and the inside of the turbine operation fluid, that is why, they will be hollow. The latter, the aerodynamic ones, however, will be lighter than the structural vanes, and they will be in charge of aerodynamic functions exclusively, such as straightening the main flow of the turbine operation.
Thus, the number of structural vanes in a circumference-like arrangement between the inner ring and the outer ring depends exclusively on the loads to be transmitted from the bearing to the anchoring points of the engine assembly in the outer ring, and on the amount of service fluids which have to travel between the inner ring and the outer ring, and the number of aerodynamic vanes and their section depends exclusively on the aerodynamic requirements demanded from the support structure for the straightening of the turbine main flow.
With this separation of mechanical and aerodynamic functions by dividing vanes into structural and aerodynamic ones, it is attained the optimization of the mechanics and aerodynamics simultaneously, acting on the structural and aerodynamic vanes, respectively.
According to different embodiments of the invention, the aerodynamic vanes, which are the ones which will enable the turbine aerodynamic optimization, can be joined to the inner ring, to the outer one, or both, through different joining systems, in order to attain a firm union, which also provides the necessary aerodynamic properties to the structure.
One of these joining systems consists of using at least a two-wing metallic flat bar with an L-section, where one of the wings is joined to the aerodynamic vane and the other wing is joined to the corresponding ring. The aerodynamic vanes are joined to each one of the rings through at least one metallic flat bar. According to different embodiments, a flat bar can be used to join the vane to the inner ring and the other flat bar can be used to join the vane to the outer ring, or more than one flat bar for the union of the vane to each one of the rings. Preferably, two metallic flat bars are used, placing one of them at each side of the aerodynamic vane, creating a steadier and more secure union.
According to a particular embodiment of these unions through metallic flat bars, the aerodynamic vanes are joined through the flat bar to both rings, both the inner and the outer one, being firmly fixed to one of them and simply resting against the flat bar wing in the other. In this way, the fixing to the structure is efficiently attained, and furthermore the vanes will have certain mobility, favoring the effort release and improving aerodynamic properties.
According to an alternative embodiment, the aerodynamic vanes are fixed only to one of the rings, through a couple of metallic flat bars, leaving the other end of the vane free, which further favors its movement, for cases in which it is necessary.
Besides the metallic flat bars, there exist other systems for the union of aerodynamic vanes to the rings, such as grouping the aerodynamic vanes between two structural vanes through a membrane in one of its ends, which is fixed to one of the rings, or through two membranes, being each one of them fixed to one of the vane ends. These membranes can be joined to the rings in a rigid or detachable manner, through flanges, or they can be built-in with the other rings. It is also possible that, instead of the two membranes joining the rings, only one of them joins one of the rings, the other one remaining free, thus being one of the ends free to move.
The aerodynamic vanes can be contiguous or they can be partitioned, or divided into two parts, preferably by its central area, so that one of the parts is joined to the inner ring and the other part is joined to the outer ring.
For a better understanding of the invention, the following is an illustrative non-limiting description of an embodiment of the invention making reference to a series of drawings.
In these figures, reference is made to the following set of elements:
As it can be seen in the drawings, particularly in
These vanes 5, 6 are divided into structural vanes 5 and aerodynamic vanes 6. The structural vanes 5 are in charge of transmitting the bearing 3 loads to the anchoring points 7 of the engine assembly which are in the outer ring 2, and of being the passage of service fluids, such as air, water or oil between the inner ring 1 and the outer ring 2. The aerodynamic vanes 6 are in charge of providing the aerodynamic requirements to the structure, such as for example, straightening the main flow of the turbine operation. Due to the difference between the function of both types of vanes 5, 6, the aerodynamic vanes 6 are lighter than the structural vanes 5.
In the present bearing support structure for turbines, the mechanical or structural function and the aerodynamic one are totally separate, that is, the structural vanes 5 only fulfill structural functions and the aerodynamic vanes 6 only fulfill aerodynamic functions.
Therefore, the number of structural vanes 5 placed between the inner ring 1 and the outer ring 2 depends exclusively on the loads to be transmitted between the bearing 3 and the anchoring points 7 of the engine assembly located in the outer ring 2, and on the quantity and type of service fluids which need to go through between the inner ring 1 and the outer ring 2, while the number of aerodynamic vanes 6 and their section depend exclusively on the aerodynamic requirements demanded by the support structure for the straightening of the main flow of the turbine operation.
According to different particular embodiments of the invention, the aerodynamic vanes 6 can be joined at one of its ends to the inner ring 1, or at the other end to the outer ring 2, or they can be joined to both rings 1, 2.
For the union of the aerodynamic vanes 6 to the rings there exist several methods.
A preferred embodiment of these union means consists of at least a metallic flat bar 8, which is formed by a first wing 9 which is connected to the aerodynamic vane 6, and a second wing 10 rigidly joined to the ring 1, 2. The aerodynamic vanes 6 are joined to the rings 1, 2 through at least one of these metallic flat bars 8, being it possible to use one metallic flat bar 8 for the union of the aerodynamic vane 6 to each one of the ring, or more than one metallic bar.
According to another embodiment of the invention, the aerodynamic vanes 6 are joined only to one of the rings 1, 2 through two metallic flat bars 8 arranged one at each side of the aerodynamic vane 6.
Alternatively to the metallic flat bars 8, the present invention has other means for joining the aerodynamic vanes 6 to the rings 1, 2.
According to different embodiments, the flanges 14 are eliminated to the membranes 12, 13, being said membranes 12, 13 integral to the rings 1, 2 when the packages 11 are fixed to them, or remain free.
Once the invention has been clearly described, it is worth stating that the previously described embodiments can be subject to detail modifications as long as the main principle and essence of the invention are not modified.
Number | Date | Country | Kind |
---|---|---|---|
200803145 | Nov 2008 | ES | national |