This invention relates to bearing systems, particularly though not exclusively to bearing systems suitable for use in cases where a large structure needs to be mounted to rotate about a vertical axis.
A specific example of such a scenario is a power-generating vertical axis wind turbine. In order to generate useful quantities of power, wind-driven turbines need to be fairly large and accordingly of substantial weight. A particular difficulty is that the greater the wind, and accordingly the greater the potential power output of a vertical axis wind turbine, the greater the lateral forces on the turbine structure itself and the greater the demands placed on the bearing arrangement.
The operation of vertical axis wind turbines where the turbine is relatively small can be satisfactorily effected using standard size engineering components. However, in the case of a large rotating body, standard bearing technology is impractical. This is particularly the case if the bearing arrangement is to have a substantial intrinsic diameter, for example 15 or 20 metres. Manufacturing a steel bearing ring of diameter 20 metres would be difficult but not impossible, but manufacturing one which was strictly geometrically accurate is essentially infeasible.
The present invention seeks to provide bearing arrangements which can be used to provide bearings for rotational movement about a vertical axis of substantial diameter, e.g. up to 30 metres or even higher.
According to a first feature of the present invention, there is provided a bearing arrangement for vertical axis rotation consisting of inner and outer coaxial cylindrical members, one member having a generally flat support surface transverse to its axis and the other member having a generally flat circular or annular surface facing the support surface on the one member, means for enabling the two flat support surfaces to rotate relative to one another, and wherein the cylindrical wall of one member carries a plurality of radially movable arcuately curved support plates, the curvature of the support plates matching the curvature of the facing surface of the other member, and being in contact therewith, and means to control the radial thrust exerted by the movable support plates on the cylindrical surface of the other member. The radial thrust is preferably directed inwardly, as this enables the machined surface (against which the arcuately curved plates press) to be of smaller diameter, and thus more easily machinable, than the inner diameter of the outer coaxial member.
Preferably the bearing arrangement includes at least ten and more preferably at least 20 such arcuate support plates, forming a ring. If desired, and if the axial extent of the bearing allows, there may be two or more rings of such arcuate support plates.
While the individual support plates may be on rotor or stator and may act to exert thrust radially inwardly or outwardly, it is generally most convenient to have the plates mounted on the stator since then the maintenance, operation and control of the entire bearing arrangement is generally easier.
The generally flat support surface transverse to the axis of rotation of the bearing may be made up of a number of individual surface members, each of which may be movable axially by means of an appropriate actuator. The axial thrust between that surface and the facing circular or annular surface of the other component may be transmitted by a cushion of fluid between them, constituting a hydrostatic bearing, or e.g. via needle rollers or other like force transmission members enabling rotation of one surface relative to the other. In the case of a fluid cushion support, this is most conveniently achieved if the supporting part of the bearing is stationary and consists of a plurality of individual support surfaces, each of which may be moved axially by a short distance and each of which support surfaces has means for forming a cushion of fluid above it on which part of the other member of the bearing rests. The axial movement of adjacent parts of the support surface is preferably controlled centrally by suitable control means to enable linked operation.
The bearing arrangement of the present invention is, as noted above, of particular value in the case of bearings where the loading is not purely axial, as, for example, is the case with a large vertical axis wind turbine where the rotating portion, which forms a solid rotating unit with the “sails” thereon, is set to rotate on or in a base, and which is subject to the lateral force of the wind. This places substantial demands on the bearing technology, which may be met by the use of bearing arrangements as set out above.
By way of illustration, the accompanying drawings show diagrammatically a bearing arrangement for use with a large size vertical axis wind turbine. While the invention is illustrated with reference to this field, it should be understood that the bearing arrangement of the present invention may be used in any other analogous situation where a very large diameter bearing is appropriate.
In the drawings:
Referring first to
As shown in
The inner cylindrical wall of the skirt 12 carries a plurality of arcuate support surfaces 16 which are set in two rings about the inside of base 1 and each of which may be moved radially by virtue of constituting the piston of an hydraulic piston/cylinder arrangement. As shown in
In order to even out the forces on the base and aerodynamic superstructure thereon, the pressures within the chambers 18 behind each of the arcuate support surfaces 16 may be suitably controlled. Conveniently, the pressure is relatively evenly applied around the circumference of the base member save for the fact that in order to offset the lateral force of the wind, the individual arcuate support surfaces 16 in the lower ring are loaded more towards from the wind, and those in the upper ring more away from the wind, which serves to keep the base 1 properly centred on base member 2 while rotating.
Control of the individual hydraulic chambers 18, each of which presses its respective arcuate support surface 16 against the cylindrical outer surface of the column 2 does not need to be on an individual basis. Rather, it is more appropriate to control the pressures in chambers 18 in groups, e.g. eight groups, each group extending around an octant. Within each group, it is also useful to connect the pressurised chambers together so that any irregularities in circularity can be compensated for as the base 1 rotates relative to the column 2.
The detailed control of the individual positions of support surfaces 16 is preferably carried out automatically by mechanisms which sense the position of the column 2 relative to skirt 12 and compare it to a desired position. If there is no deviation, then all of the surfaces 16 are pressed lightly on to the fixed surface of column 2 with a small but constant force.
As the pressure is constant around the rings of support surfaces 16, the bearing has no stiffness. If the control system detects that the distance between skirt 12 and the outer surface of column 2 has reduced, at a certain radial position, the chambers 18 behind the support surfaces 16, over a range of about 45° to either side of that position, are subjected to higher pressure, sufficient to offset the deviation. The surfaces 16 still share the load, even though sensing the force has caused their position to vary accordingly. The bearing is now stiff, but any surface irregularities are compensated by the load sharing mechanism imparted by connecting the chambers in groups.
If the direction of force changes, then the direction of the deviation of the skirt relative to the column will change and a different set of support surfaces 16 work together.
Vertically, the base 1 is supported by the skirt 12 resting on the support pads 14, each of which consists of a chamber 28 and a sealed piston pad 25, on which the skirt 12 rests (via the fluid cushion noted above). The position of pad 25 is controlled by a valve 26 which may allow oil under pressure to flow into chamber 28 or vent oil from the chamber, usually under central computerised control.
Although the bearing system of the invention has been described with reference to its use in a continuously rotating application, a wind-driven turbine, it may be applied in other areas, e.g. architectural areas where parts of large structures are to be rotated, for example swing bridges or observatory domes.
Number | Date | Country | Kind |
---|---|---|---|
0520253.6 | Oct 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/003616 | 9/29/2006 | WO | 00 | 4/4/2008 |