Ventricular assist devices, known as VADs, often include an implantable blood pump and are used for both short-term (i.e., days, months) and long-term applications (i.e., years or a lifetime) where a patient's heart is incapable of providing adequate circulation, commonly referred to as heart failure or congestive heart failure. According to the American Heart Association, more than five million Americans are living with heart failure, with about 670,000 new cases diagnosed every year. People with heart failure often have shortness of breath and fatigue. Years of living with blocked arteries and/or high blood pressure can leave a heart too weak to pump enough blood to the body. As symptoms worsen, advanced heart failure develops.
A patient suffering from heart failure may use a VAD while awaiting a heart transplant or as a long term destination therapy. A patient may also use a VAD while recovering from heart surgery. Thus, a VAD can supplement a weak heart (i.e., partial support) or can effectively replace the natural heart's function.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In many embodiments, an implantable blood pump includes a rotary motor that includes a compact stator assembly. The compact size of the stator assembly is enabled by the stator assembly including a compact stator core, which includes a toroidal portion, and stator coils. Each of the stator coils extend around a respective separated segment of the toroidal portion. In many embodiments, the stator does not extend beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the axis of rotation of the rotary motor), thereby enabling the stator assembly to have a corresponding compact thickness parallel to the axis of rotation of the rotary motor. In some embodiments, the stator core includes separated stator teeth that extend inwardly from the toroidal portion between adjacent pairs of the stator coils. In some embodiments, the rotary motor includes rotor position sensors (e.g., hall effect sensors). Each of the rotor position sensors can be disposed in or adjacent to a respective gap between adjacent pairs of the stator coils. The compact size of the stator assembly parallel to the axis of rotation of the rotary motor enables the implantable blood pump to have a compact size parallel to the axis of rotation of the rotary motor, thereby requiring less space within the thoracic cavity.
Thus, in one aspect, a first implantable blood pump includes a housing and a rotary motor. The housing defines an inlet opening, an outlet opening, and a dividing wall within the housing defining a blood flow conduit. The blood flow conduit extends between the inlet opening and the outlet opening. The rotary motor includes a stator and a rotor. The stator includes a stator core and stator coils. The stator core includes a toroidal portion and stator teeth. Each of the stator teeth extend toward the rotor from the toroidal portion. Each of the stator teeth is separated from each of an adjacent two of the stator teeth by a respective adjacent intervening segment of the toroidal portion. Each of the stator coils extends around one of the intervening segments of the toroidal portion. The stator is disposed within the housing circumferentially about the dividing wall such that the blood flow conduit extends through the stator core. The stator core is disposed circumferentially around at least a portion of the rotor. The rotor has a rotor axis of rotation and includes a rotor magnet for driving the rotor. The stator teeth axially overlap the rotor magnet with respect to the rotor axis of rotation. In many embodiments, the stator does not extend beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the rotor axis of rotation.
In many embodiments, the first implantable blood pump is configured to pump blood from a heart ventricle to the aorta. In some embodiments, the outlet opening is oriented at an angle relative to the input opening. The inlet opening can be oriented to receive blood directly from a heart ventricle and the output opening oriented to output blood in a direction transverse to the orientation of the inlet opening so as to reduce the length of a blood flow cannula used to transfer the blood flow from the output opening to the aorta. The rotor can include centrifugal pump impeller blades.
In many embodiments of the first implantable blood pump, the rotor defines a rotor blood flow conduit that extends through the stator. For example, in many embodiments, the rotor defines a rotor blood flow conduit that extends through the rotor, thereby extending through the stator.
The rotor can have any suitable number of magnetic moments. In some embodiments, the rotor has only one magnetic moment.
In some embodiments, the first implantable blood pump includes one or more rotor position sensors that generate output indicative of the orientation of the rotor for use in electronic commutation of the rotary motor. In some embodiments, the output of the one or more rotor position sensors is indicative of the position of the rotor within the blood flow conduit transverse to the rotor axis of rotation (e.g., in two different directions transverse to the rotor axis of rotation). In some embodiments, the position of the rotor within the blood flow conduit transverse to the rotor axis of rotation is used to control operation of the stator to control magnetic levitation of the rotor within the blood flow conduit. In some embodiments, the one or more rotor position sensors includes hall effect sensors. In some embodiments, each of the hall effect sensors is disposed in or adjacent to a respective gap between an adjacent pair of the stator coils. In some embodiments, each of the hall effect sensors is disposed aligned with and above or below a respective gap between an adjacent pair of the stator coils.
In some embodiments, the first implantable blood pump includes control electronics disposed within the housing. In such embodiments, the control electronics can be configured to control current passing through each of the stator coils to radially levitate the rotor and rotate the rotor within the blood flow conduit.
In many embodiments of the first implantable blood pump, an axial position of the rotor along the blood flow conduit is restrained via passive magnetic interaction between the rotor and the stator such that the stator functions as a passive magnetic bearing that controls the axial position of the rotor parallel to the rotor axis of rotation. In such embodiments, the first implantable blood pump can be configured without dedicated magnetic axial bearings that restrain the axial position of the rotor along the blood flow conduit.
In many embodiments of the first implantable blood pump, the rotor is separated from the dividing wall so as to accommodate flow of blood around the rotor. For example, in some embodiments of the first implantable blood pump, a gap between the rotor and the dividing wall is between about 0.2 mm to about 2 mm with the rotor centered relative to the stator core. A gap between the rotor and at least one of the stator teeth can be between about 0.3 mm to about 2.4 mm with the rotor centered relative to the stator core.
In another aspect, a second implantable blood pump includes a housing and a rotary motor. The housing defines an inlet opening, an outlet opening, and a dividing wall defining a blood flow conduit extending from the inlet opening to the outlet opening. The rotary motor includes a stator, hall effect sensors, and a rotor. The stator includes a stator core and stator coils. The stator core includes a toroidal portion. Each of the stator coils extends around one of separated segments of the toroidal portion. The stator is disposed within the housing circumferentially about the dividing wall such that the blood flow conduit extends through the stator core. The stator core is disposed circumferentially around at least a portion of the rotor. Each of the hall effect sensors is disposed in a respective gap between an adjacent pair of the stator coils. The rotor has a rotor axis of rotation and includes a rotor magnet for driving the rotor. The stator core axially overlaps with the rotor magnet with respect to the rotor axis of rotation. In many embodiments, the stator does not extend beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the rotor axis of rotation.
In many embodiments, the second implantable blood pump is configured to pump blood from a heart ventricle to the aorta. In some embodiments, the outlet opening is oriented at an angle relative to the input opening. The inlet opening can be oriented to receive blood directly from a heart ventricle and the output opening oriented to output blood in a direction transverse to the orientation of the inlet opening so as to reduce the length of a blood flow cannula used to transfer the blood flow from the output opening to the aorta. The rotor can include centrifugal pump impeller blades.
In many embodiments of the second implantable blood pump, the rotor defines a rotor blood flow conduit that extends through the stator. For example, in many embodiments, the rotor defines a rotor blood flow conduit that extends through the rotor, thereby extending through the stator.
The rotor can have any suitable number of magnetic moments. In some embodiments, the rotor has only one magnetic moment.
In some embodiments, the second implantable blood pump includes control electronics disposed within the housing. In such embodiments, the control electronics can be configured to control current passing through each of the stator coils to radially levitate the rotor and rotate the rotor within the blood flow conduit.
In many embodiments of the second implantable blood pump, an axial position of the rotor along the blood flow conduit is restrained via passive magnetic interaction between the rotor and the stator. In such embodiments, the second implantable blood pump can be configured without dedicated magnetic axial bearings that restrain the axial position of the rotor along the blood flow conduit.
In many embodiments of the second implantable blood pump, the rotor is separated from the dividing wall so as to accommodate flow of blood around the rotor. For example, in some embodiments of the second implantable blood pump, a gap between the rotor and the dividing wall is between about 0.2 mm to about 2 mm with the rotor centered relative to the stator core. A gap between the rotor and at least one of the stator coils can be between about 0.3 mm to about 2.4 mm with the rotor centered relative to the stator core.
In another aspect, a method of assisting blood circulation in a patient is provided. The method includes drawing a flow of blood from a patient's heart into a blood flow channel formed by a housing via rotation of a rotor comprising impeller blades. The flow of blood is passed through a toroidal portion of a motor stator core. Delivery of current to each of a plurality of stator coils is controlled to control a radial position of the rotor within the blood flow channel and to control rotation of the rotor within the blood flow channel. The rotor is rotated around a rotor axis of rotation. Each of the stator coils extends around one of separated segments of the toroidal portion. The rotor has permanent magnetic poles for magnetic levitation and rotation of the rotor. The flow of blood is output from the blood flow channel to the patient.
In many embodiments, the method further includes processing output from a plurality of hall sensors to determine an orientation of the rotor. Each of the hall effect sensors can be disposed in a respective gap between an adjacent pair of the stator coils.
In many embodiments, the method further includes supporting control electronics within the housing and between the stator core and the patient's heart. The control electronics can control the delivery of current to each of the stator coils.
In many embodiments, the method further includes flowing blood through and around the rotor. For example, the method can include (a) passing a first portion of the flow of blood through a central aperture formed through the rotor and (b) passing a second portion of the flow of blood through a gap formed between the rotor and the housing.
In many embodiments, the method further includes magnetically levitating the rotor within the blood flow channel. For example, the rotor can be levitated within the blood flow channel such that the rotor is separated from the housing by a gap between about 0.2 mm to about 2 mm. The rotor can be levitated within the blood flow channel such that the rotor is separated from at least one of the stator coils by a gap between about 0.3 mm to about 2.4 mm.
For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings.
In the following description, various embodiments of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
Referring now to the drawings, in which like reference numerals represent like parts throughout the several views,
The housing 32 has a circular shape and is implanted in a patient's body with a first face 54 of the housing 32 facing the patient's heart 24 and a second face 56 of the housing 32 facing away from the heart 24. The housing 32 includes an inlet cannula 58 that couples with the ventricular cuff 16 and extends into a ventricle of the heart 24. The second face 56 of the housing 32 has a chamfered edge 60 to avoid irritating other tissue that may come into contact with the blood pump assembly 30, such as the patient's diaphragm. To construct the illustrated shape of the puck-shaped housing 32 in a compact form, the stator 36 and electronics 62 of the pump assembly 30 are positioned on the inflow side of the housing 32 toward first face 54, and the rotor assembly 38 is positioned along the second face 56. This positioning of the stator 36, electronics 62, and the rotor assembly 38 permits the edge 60 to be chamfered along the contour of the impeller blade assembly 50.
The blood flow conduit 44 extends from the inlet opening 40 of the inlet cannula 58 through the stator 36 to the outlet opening 42. The rotor assembly 38 is positioned within the blood flow conduit 44. The stator 36 is disposed circumferentially around the rotor magnetic assembly 48. The stator 36 is also positioned relative to the rotor assembly 38 such that, in use, blood flows within the blood flow conduit 44 through the stator 36 and the rotor magnetic assembly 48 before reaching the impeller blade assembly 50. In some embodiments, the rotor magnetic assembly 48 has a permanent magnetic north pole (N) and a permanent magnetic south pole (S) for combined active and passive magnetic levitation of the rotor magnetic assembly 48 and for rotation of the rotor assembly 38. In some embodiments, the rotor magnetic assembly 48 has more than one pair of magnetic poles (e.g., 2, 3, 4, 5, or more). The impeller blade assembly 50 includes impeller blades 64. The impeller blades 64 are located within a volute 66 of the blood flow conduit 44 such that the impeller blades 64 are located proximate to the second face 56 of the housing 32.
The puck-shaped housing 32 further includes a peripheral wall 68 that extends between the first face 54 and a removable cap 70. As illustrated, the peripheral wall 68 is formed as a hollow circular cylinder having a width (W) between opposing portions of the peripheral wall 68. The housing 32 also has a thickness (T) between the first face 54 and the second face 56 that is less than the width (W). The thickness (T) is from about 0.5 inches to about 1.5 inches, and the width (W) is from about 1 inch to about 4 inches. For example, the width (W) can be approximately 2 inches, and the thickness (T) can be approximately 1 inch.
The peripheral wall 68 encloses an internal compartment 72 that surrounds the dividing wall 46 and the blood flow conduit 44, with the stator 36 and the electronics 62 disposed in the internal compartment 72 about the dividing wall 46. The removable cap 70 includes the second face 56, the chamfered edge 60, and defines the outlet opening 42. The cap 70 has an inner surface that defines the volute 66 that is in fluid communication with the outlet opening 42.
Within the internal compartment 72, the electronics 62 are positioned adjacent to the first face 54 and the stator 36 is positioned adjacent to the electronics 62 on an opposite side of the electronics 62 from the first face 54. The electronics 62 can include one or more circuit boards and various components carried on the circuit boards to control the operation of the blood pump assembly 30 (e.g., magnetic levitation and/or drive of the rotor assembly 38) by controlling currents applied to the stator 36. The housing 32 is configured to receive the electronics 62 within the internal compartment 72 generally parallel to the first face 54 for efficient use of the space within the internal compartment 72. The electronics 62 also extend radially-inward towards the dividing wall 46 and radially-outward towards the peripheral wall 68. For example, the internal compartment 72 is generally sized no larger than necessary to accommodate the stator 36 and the electronics 62, and space for heat dissipation, material expansion, potting materials, and/or other elements used in installing the stator 36 and the electronics 62. Thus, the external shape of the housing 32 proximate the first face 54 generally fits the shape of the electronics 62 closely to provide external dimensions that are not much greater than the dimensions of the electronics 62. In the illustrated embodiment, the electronics 62 include Hall effect sensors 74 that generate output indicative of the angular orientation of the rotor magnetic assembly 48 and the transverse position of the rotor magnetic assembly 48 transverse to the rotor axis of rotation 52 in two directions. The output from the Hall effect sensors 74 is used by the electronics 62 to control operation of the stator 36 to levitate and rotate the rotor assembly 38.
The rotor assembly 38 is arranged within the housing 32 such that the rotor magnetic assembly 48 is located upstream of the impeller blade assembly 50. The rotor magnetic assembly 48 is disposed within the blood flow conduit 44 proximate the stator 36. The rotor magnetic assembly 48 and the dividing wall 44 form a gap 76 between the rotor magnetic assembly 48 and the dividing wall 44 when the rotor magnetic assembly 48 is centered within the blood flow conduit 44. In many embodiments, the gap 76 is from about 0.2 millimeters to about 2 millimeters. In some embodiments, the gap 76 is approximately 1 millimeter. The north permanent magnetic pole N and the south permanent magnetic pole S of the rotor magnetic assembly 48 provide a permanent magnetic attractive force between the rotor magnetic assembly 48 and the stator 36 that acts as a passive axial force that tends to maintain the rotor magnetic assembly 48 generally axially aligned with the stator 36 relative to the rotor axis of rotation 52 thereby resisting movement of the rotor magnetic assembly 48 towards the first face 54 or towards the second face 56.
As blood flows through the blood flow conduit 44, blood flows through a central aperture 78 formed through the rotor magnetic assembly 48. Blood also flows through the gap 76 between the rotor magnetic assembly 48 and the dividing wall 46 and through a gap 80 between the impeller blade assembly 50 and the inner surface of the cap 70. The gaps 76 and 80 are large enough to allow adequate blood flow to limit clot formation that may occur if the blood is allowed to become stagnant. The gaps 76 and 80 are also large enough to limit shear forces on the blood cells such that the blood is not damaged when flowing through the blood pump assembly 30. As a result of the size of the gaps 76 and 80 limiting shear forces on the blood cells, the gaps 76 and 80 are too large to provide a meaningful hydrodynamic suspension effect. That is to say, the blood does not act as a bearing within the gaps 76 and 80, and the rotor magnetic assembly 48 is only magnetically-levitated.
Because the rotor assembly 38 is radially suspended by active control of the stator 36, and because the rotor assembly 38 is axially suspended by passive interaction between the stator 36 and the rotor magnetic assembly 48, no rotor levitation components other than the stator 36 and related components used to control operation of the stator 36 are needed (e.g., proximate the second face 56) to levitate the rotor assembly 38 transverse to the rotor axis of rotation 52 and to control the position of the rotor assembly 38 parallel to the rotor axis of rotation 52. By levitating the rotor assembly 38 via the stator 36, the cap 70 can be contoured to the shape of the impeller blade assembly 50 and the volute 66. Additionally, levitating the rotor assembly 38 via the stator 36 eliminates the need for electrical connectors extending from the compartment 72 to the cap 70, which allows the cap 70 to be easily installed and/or removed and eliminates potential sources of pump failure.
The method 200 includes drawing a flow of blood from a patient's heart into a blood flow channel formed by a housing via rotation of a rotor comprising impeller blades (act 202). For example, with reference to
The method 200 includes passing the flow of blood through a toroidal portion of a motor stator core (act 204). For example, with reference to
The method 200 includes controlling delivery of current to each of a plurality of stator coils to control a radial position of the rotor within the blood flow channel and to control rotation of the rotor within the blood flow channel, the rotor being rotated around a rotor axis of rotation, each of the stator coils extending around one of separated segments of the toroidal portion, the rotor having permanent magnetic poles for magnetic levitation and rotation of the rotor (act 206). For example, with reference to
The method 200 includes outputting the flow of blood from the blood flow channel to the patient (act 208). For example, referring to
Method 200 can further include supporting control electronics within the housing and between the stator core and the patient's heart, the control electronics controlling the delivery of current to each of the stator coils (act 212). For example, referring to
Method 200 can further include passing a first portion of the flow of blood through a central aperture formed through the rotor and passing a second portion of the flow of blood through a gap formed between the rotor and the housing (act 214). For example, referring to
Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The present application claims the benefit of U.S. Provisional Patent Appln. No. 62/615,708 filed Jan. 10, 2018, entitled “BEARINGLESS IMPLANTABLE BLOOD PUMP; the full disclosure which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
845816 | Prindle | Mar 1907 | A |
888654 | Prindle | May 1908 | A |
1026101 | Marsh | May 1912 | A |
2128988 | Russell | Sep 1938 | A |
2747512 | Paul | May 1956 | A |
2864552 | Norman | Dec 1958 | A |
3005117 | Buchhold | Oct 1961 | A |
3066849 | Beams | Dec 1962 | A |
3122101 | Baker et al. | Feb 1964 | A |
3225608 | Ivan | Dec 1965 | A |
3401640 | John et al. | Sep 1968 | A |
3499274 | Fergason | Mar 1970 | A |
3575536 | Jacobs et al. | Apr 1971 | A |
3597022 | Waldron | Aug 1971 | A |
3608088 | Dorman et al. | Sep 1971 | A |
3611815 | Fischell | Oct 1971 | A |
3647324 | Rafferty et al. | Mar 1972 | A |
3650581 | Boden et al. | Mar 1972 | A |
3938913 | Isenberg et al. | Feb 1976 | A |
3957389 | Rafferty et al. | May 1976 | A |
4082376 | Wehde et al. | Apr 1978 | A |
4135253 | Reich et al. | Jan 1979 | A |
4213207 | Wilson | Jul 1980 | A |
4340260 | Forster et al. | Jul 1982 | A |
4382199 | Isaacson | May 1983 | A |
4398773 | Boden et al. | Aug 1983 | A |
4405286 | Studer | Sep 1983 | A |
4408966 | Maruyama | Oct 1983 | A |
4475866 | Kambe et al. | Oct 1984 | A |
4507048 | Belenger et al. | Mar 1985 | A |
4589822 | Clausen et al. | May 1986 | A |
4642036 | Young | Feb 1987 | A |
4688998 | Olsen et al. | Aug 1987 | A |
4704121 | Moise | Nov 1987 | A |
4763032 | Bramm et al. | Aug 1988 | A |
4779614 | Moise | Oct 1988 | A |
4844707 | Kletschka | Jul 1989 | A |
4876492 | Lester et al. | Oct 1989 | A |
4878831 | Ewing | Nov 1989 | A |
4929158 | Girault | May 1990 | A |
4944748 | Bramm et al. | Jul 1990 | A |
4957504 | Chardack | Sep 1990 | A |
5055005 | Kletschka | Oct 1991 | A |
5078741 | Bramm et al. | Jan 1992 | A |
5079467 | Dorman | Jan 1992 | A |
5098256 | Smith | Mar 1992 | A |
5106273 | Lemarquand et al. | Apr 1992 | A |
5112200 | Isaacson et al. | May 1992 | A |
5112202 | Oshima et al. | May 1992 | A |
5126612 | Girault | Jun 1992 | A |
5127792 | Katsuta et al. | Jul 1992 | A |
5159219 | Chu et al. | Oct 1992 | A |
5177387 | McMichael et al. | Jan 1993 | A |
5195877 | Kletschka | Mar 1993 | A |
5220232 | Rigney, II et al. | Jun 1993 | A |
5341059 | Fukuyama et al. | Aug 1994 | A |
5360317 | Clausen et al. | Nov 1994 | A |
5385581 | Bramm et al. | Jan 1995 | A |
5470208 | Kletschka | Nov 1995 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5695471 | Wampler | Dec 1997 | A |
5708346 | Schob | Jan 1998 | A |
5725357 | Nakazeki et al. | Mar 1998 | A |
5798454 | Nakazeki et al. | Aug 1998 | A |
5808437 | Schob | Sep 1998 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5917297 | Gerster et al. | Jun 1999 | A |
5928131 | Prem | Jul 1999 | A |
5947703 | Nojiri et al. | Sep 1999 | A |
6053705 | Schob et al. | Apr 2000 | A |
6071093 | Hart | Jun 2000 | A |
6100618 | Schoeb et al. | Aug 2000 | A |
6116862 | Rau et al. | Sep 2000 | A |
6130494 | Schob | Oct 2000 | A |
6146325 | Lewis et al. | Nov 2000 | A |
6186665 | Maher et al. | Feb 2001 | B1 |
6222290 | Schob et al. | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6234772 | Wampler et al. | May 2001 | B1 |
6249067 | Schob et al. | Jun 2001 | B1 |
6264635 | Wampler et al. | Jul 2001 | B1 |
6278251 | Schob | Aug 2001 | B1 |
6293901 | Prem | Sep 2001 | B1 |
6302661 | Khanwilkar et al. | Oct 2001 | B1 |
6351048 | Schob et al. | Feb 2002 | B1 |
6355998 | Schob et al. | Mar 2002 | B1 |
6394769 | Bearnson et al. | May 2002 | B1 |
6447266 | Antaki et al. | Sep 2002 | B2 |
6468041 | Ozaki | Oct 2002 | B2 |
6547530 | Ozaki et al. | Apr 2003 | B2 |
6559567 | Schoeb | May 2003 | B2 |
6575717 | Ozaki et al. | Jun 2003 | B2 |
6589030 | Ozaki | Jul 2003 | B2 |
6605032 | Benkowski et al. | Aug 2003 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6626644 | Ozaki | Sep 2003 | B2 |
6634224 | Schob et al. | Oct 2003 | B1 |
6640617 | Schob et al. | Nov 2003 | B2 |
6641378 | Davis et al. | Nov 2003 | B2 |
6688861 | Wampler | Feb 2004 | B2 |
6707200 | Carroll et al. | Mar 2004 | B2 |
6711943 | Schob | Mar 2004 | B1 |
6817836 | Nose et al. | Nov 2004 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6991595 | Burke et al. | Jan 2006 | B2 |
7070398 | Olsen et al. | Jul 2006 | B2 |
7112903 | Schob | Sep 2006 | B1 |
7138776 | Gauthier et al. | Nov 2006 | B1 |
7150711 | Nusser et al. | Dec 2006 | B2 |
D534548 | Urano et al. | Jan 2007 | S |
7160242 | Yanai | Jan 2007 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7229474 | Hoffmann et al. | Jun 2007 | B2 |
7239098 | Masino | Jul 2007 | B2 |
7284956 | Nose et al. | Oct 2007 | B2 |
7338521 | Antaki et al. | Mar 2008 | B2 |
7462019 | Allarie et al. | Dec 2008 | B1 |
7497116 | Miyakoshi et al. | Mar 2009 | B2 |
7511443 | Townsend et al. | Mar 2009 | B2 |
7578782 | Miles et al. | Aug 2009 | B2 |
7591777 | LaRose | Sep 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7699586 | LaRose et al. | Apr 2010 | B2 |
7699588 | Mendler | Apr 2010 | B2 |
7854631 | Townsendl et al. | Dec 2010 | B2 |
7861582 | Miyakoshi et al. | Jan 2011 | B2 |
7887479 | LaRose et al. | Feb 2011 | B2 |
7893644 | Townsend et al. | Feb 2011 | B2 |
7951062 | Morello | May 2011 | B2 |
7976271 | LaRose et al. | Jul 2011 | B2 |
7997854 | LarRse et al. | Aug 2011 | B2 |
8007254 | LaRose et al. | Aug 2011 | B2 |
8152493 | LaRose et al. | Apr 2012 | B2 |
8157720 | Marseille et al. | Apr 2012 | B2 |
8303482 | Schima et al. | Nov 2012 | B2 |
8323174 | Jeevanandam et al. | Dec 2012 | B2 |
8382830 | Maher et al. | Feb 2013 | B2 |
8419609 | Laorse et al. | Apr 2013 | B2 |
8449444 | Poirier | May 2013 | B2 |
8506470 | LaRose et al. | Aug 2013 | B2 |
8506471 | Bourque | Aug 2013 | B2 |
8517699 | Horvath | Aug 2013 | B2 |
8556795 | Bolyard et al. | Oct 2013 | B2 |
8562508 | Dague et al. | Oct 2013 | B2 |
8581462 | Nussbaumer | Nov 2013 | B2 |
8597350 | Rudser et al. | Dec 2013 | B2 |
8652024 | Yanai et al. | Feb 2014 | B1 |
8657733 | Ayre et al. | Feb 2014 | B2 |
8668473 | LaRose et al. | Mar 2014 | B2 |
8764621 | Badstibner et al. | Jul 2014 | B2 |
8852072 | White et al. | Oct 2014 | B2 |
8864643 | Reichenbach et al. | Oct 2014 | B2 |
8870739 | LaRose et al. | Oct 2014 | B2 |
8882477 | Fritz, IV et al. | Nov 2014 | B2 |
8882744 | Dormanen et al. | Nov 2014 | B2 |
8956275 | Bolyard et al. | Feb 2015 | B2 |
9068572 | Ozaki et al. | Jun 2015 | B2 |
9079043 | Stark et al. | Jul 2015 | B2 |
9091271 | Bourque | Jul 2015 | B2 |
9091272 | Kim et al. | Jul 2015 | B2 |
9265870 | Reichenbach et al. | Feb 2016 | B2 |
9382908 | Ozaki et al. | Jul 2016 | B2 |
9675741 | Bourque | Jun 2017 | B2 |
20020105241 | Carroll et al. | Aug 2002 | A1 |
20030021683 | Capone et al. | Jan 2003 | A1 |
20040236420 | Yamane et al. | Nov 2004 | A1 |
20050004421 | Pacella et al. | Jan 2005 | A1 |
20050025630 | Ayre et al. | Feb 2005 | A1 |
20050071001 | Jarvik | Mar 2005 | A1 |
20050135948 | Olsen et al. | Jun 2005 | A1 |
20050147512 | Chen et al. | Jul 2005 | A1 |
20070100196 | Larose et al. | May 2007 | A1 |
20090064755 | Fleischli et al. | Mar 2009 | A1 |
20090234447 | Larose et al. | Sep 2009 | A1 |
20100130809 | Morello | May 2010 | A1 |
20100150749 | Horvath | Jun 2010 | A1 |
20100152526 | Pacella et al. | Jun 2010 | A1 |
20100241223 | Lee et al. | Sep 2010 | A1 |
20100327687 | Iannello et al. | Dec 2010 | A1 |
20110002794 | Haefliger et al. | Jan 2011 | A1 |
20110031836 | Nussbaumer | Feb 2011 | A1 |
20110054239 | Sutton et al. | Mar 2011 | A1 |
20110071337 | Thompson et al. | Mar 2011 | A1 |
20110144413 | Foster | Jun 2011 | A1 |
20110187217 | Nussbaumer | Aug 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20110245582 | Zafirelis et al. | Oct 2011 | A1 |
20110313237 | Miyakoshi et al. | Dec 2011 | A1 |
20120035411 | LaRose et al. | Feb 2012 | A1 |
20120046514 | Bourque | Feb 2012 | A1 |
20120059212 | LaRose et al. | Mar 2012 | A1 |
20120134832 | Wu | May 2012 | A1 |
20120226097 | Smith et al. | Sep 2012 | A1 |
20120245680 | Masuzawa | Sep 2012 | A1 |
20120245681 | Casas et al. | Sep 2012 | A1 |
20120253103 | Robert | Oct 2012 | A1 |
20120310036 | Peters et al. | Dec 2012 | A1 |
20130314047 | Eagle et al. | Nov 2013 | A1 |
20130331934 | Kabir et al. | Dec 2013 | A1 |
20130345492 | Pfeffer et al. | Dec 2013 | A1 |
20140030122 | Ozaki et al. | Jan 2014 | A1 |
20140100413 | Casas et al. | Apr 2014 | A1 |
20140194985 | Vadala, Jr. | Jul 2014 | A1 |
20140275723 | Fritz, IV et al. | Sep 2014 | A1 |
20140303426 | Kerkhoffs et al. | Oct 2014 | A1 |
20140357937 | Reyes et al. | Dec 2014 | A1 |
20140364768 | Hastie et al. | Dec 2014 | A1 |
20150051438 | Taskin | Feb 2015 | A1 |
20150151031 | Yaghdjian | Jun 2015 | A1 |
20150211542 | Scheckel | Jul 2015 | A1 |
20150273125 | Bourque | Oct 2015 | A1 |
20160331881 | Siebenhaar et al. | Nov 2016 | A1 |
20170119946 | McChrystal et al. | May 2017 | A1 |
20170246365 | Bourque | Aug 2017 | A1 |
20170302145 | Holenstein | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
300837668 | Oct 2008 | CN |
150320 | May 1990 | EP |
0 600 569 | Dec 1990 | EP |
0 378 251 | Jun 1994 | EP |
2357374 | Aug 2011 | EP |
1491710 | Nov 1977 | GB |
01257792 | Oct 1989 | JP |
02016390 | Jan 1990 | JP |
03088996 | Apr 1991 | JP |
04148095 | May 1992 | JP |
2000510929 | Aug 2000 | JP |
2002512333 | Apr 2002 | JP |
2003093500 | Apr 2003 | JP |
2011530315 | Dec 2011 | JP |
9953974 | Oct 1999 | WO |
2004098677 | Nov 2004 | WO |
2005032620 | Apr 2005 | WO |
2006137496 | Dec 2006 | WO |
2010015836 | Feb 2010 | WO |
2010023815 | Mar 2010 | WO |
2010036815 | Apr 2010 | WO |
2012028181 | Mar 2012 | WO |
Entry |
---|
Antaki et al., “PediaFlowTM Maglev Ventricular Assist Device: A Prescriptive Design Approach”, Cardiovascular Engineering and Technology, vol. 1, No. 1, Mar. 2010, pp. 104-121. |
Barletta et al., “Design of a Bearing Less Blood Pump”, Proc.Third International Symposium on Magnetic Suspension Technology, Jul. 1, 1996, pp. 265-274. |
Izraelev et al., “A Paaively-Suspended Tesla Pump Left Ventricular Assist Device”, NIH Public Access, vol. 55, No. 6, 2009, pp. 556-561. |
Steinert et al., “Concept of a 150 krpm Bearingless Slotless Disc Drive with Combined Windings”, Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC 2013), 2013, pp. 311-318. |
Steinert et al., “Slotless Bearingless Disk Drive for High-Speed and High-Purity Applications”, IEEE Transactions on Industrial Electronics, vol. 61, No. 11, Nov. 2014, pp. 975-981. |
Steinert et al., “Topology Evaluation of Slotless Bearingless Motors with Toroidal Windings”, The 2014 International Power Electronics Conference, 2014, pp. 974-981. |
Number | Date | Country | |
---|---|---|---|
20190209752 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62615708 | Jan 2018 | US |