1. Field of the Invention
The present invention relates to a bed having a load detection function which detects a change of a load applied to a bed main body by a load detector attached to the bed main body and detects a state of a user on a bed surface of the bed main body, and a load detector for applying a load detection function to a bed.
Priority is claimed on Japanese Patent Application No. 2013-094606, filed Apr. 26, 2013, the content of which is incorporated herein by reference.
2. Description of Related Art
For example, in a bed which is used in a medical institution, nursing facilities, care facilities, lodging facilities, an ordinary household, or the like, a method has been suggested which detects a change of a load applied to a bed main body, and detects a state (having got into a bed, having got out of a bed, an in-bed position, a movement of a body, or the like) of a user (a sick person, a person who needs care, infants, a healthy person, or the like) on a bed surface of a bed main body (for example, refer to PTLs 1 to 3).
Specifically, PTL 1 discloses a method which disposes a load sensor between a leg portion provided on a bed main body and an installation surface (a floor surface or the like) on which the bed main body is installed, and detects a bed occupancy state of a person based on electric signals from the load sensor. In addition, a slope portion for introducing a caster provided on the leg portion of the bed main body from the installation surface of the bed main body onto a load-receiving portion of the load sensor is formed on the load sensor.
Meanwhile, PTL 2 discloses a method which provides a load detector in a space between a bed main body and an installation surface on which the bed main body is installed and detects a load applied to the bed main body. In addition, in the load detector, means for lifting a bed is provided.
[PTL 1] Japanese Unexamined Patent Application, First Publication No. 2000-105884
[PTL 2] Japanese Unexamined Patent Application, First Publication No. 2008-304397
[PTL 3] Japanese Unexamined Patent Application, First Publication No. 2007-256074
However, in the invention disclosed in PTL 1, when a load of the bed main body is detected using the load sensor, after the caster provided in the leg portion of the bed moves to the vicinity of a front side of the slope portion of the load sensor and passes through the slope portion, the caster should be placed on the load-receiving portion of the load sensor, which is significantly troublesome.
Meanwhile, in the invention disclosed in PTL 2, for example, when the bed main body is installed along a wall, since a provider cannot enter a portion between the bed main body and the wall, it is significantly difficult to dispose the load detector in a space between the bed main body and the installation surface.
In addition, in the invention disclosed in PTL 3, even when the load detector is incorporated into the bed main body in advance, the bed main body should be designed in accordance with the load detector. Accordingly, new parts are required. Therefore, the bed having a load detection function becomes significantly expensive. In addition, the number of parts increases and it is difficult to achieve reduction of weight.
The present invention is made in consideration of the circumstances of the related art, and object thereof is to provide a bed having a load detection function in which a load detection function is capable of being added using a simple structure while preventing an increase in the number of parts, and a bed-load detector capable of being simply and easily incorporated into a bed main body in order to add the load detection function to an existing bed. In addition, another object of the present invention is to provide a bed having a load detection function and a bed-load detector capable of detecting a load with high accuracy without decreasing detection accuracy of a load in a vertically downward direction which is detected initially even when a load applied to a bed surface is greatly biased (an unbalanced load state is generated) due to a user or the like on a bed sitting on an end portion of a bed surface of the bed, a user who lies on a bed surface mainly having turned over toward one end portion side on the bed surface, or the like, and the bed is distorted.
In order to achieve above-described objects, the present invention provides aspects described in the following (1) to (19).
(1) A bed having a load detection function which detects a change of a load applied to a bed main body by a load detector attached to the bed main body and detects a state of a user on a bed surface of the bed main body,
in which the bed main body is configured to include a bed surface-forming portion which forms the bed surface, a leg portion which comes into contact with an installation surface on which the bed main body is to be installed, and a connection-support portion which connects the bed surface-forming portion and the leg portion such that the bed surface-forming portion is positioned above the installation surface, and transmits a load from the bed surface-forming portion to the leg portion,
in which the load detector includes a load cell which measures strain generated when a load is applied to the bed main body,
in which the load cell is provided at a site which is positioned at any location on a load transmission path extending from the bed surface-forming portion to the installation surface via the connection-support portion, and at which a load from the bed surface-forming portion side is received and the load is transmitted to a configuration member of the installation surface side,
in which the load cell includes a load-receiving member which receives a load from the bed surface-forming portion side, and a base body which is separated from the load-receiving member and to which the load from the load-receiving member is applied, and
in which the base body is configured to include an action portion with which the load-receiving member comes into contact and on which a load from the load-receiving member acts, an operating portion which is strain-deformed by the load applied to the action portion, a strain sensor which is attached to the operating portion, and an attachment portion which is continuous with the operating portion and is fixed to the configuration member of the installation surface side in the bed main body.
In the aspect of (1), the term “load transmission path” corresponds to a structural member which supports a load applied to the bed surface-forming portion between the bed surface-forming portion and the installation surface, and may be a structural member through which a load applied to the bed surface-forming portion is transmitted to the leg portion which comes into contact with the installation surface. Accordingly, for example, the “load transmission path” may be configured of the connection-support portion and the leg portion, or the connection-support portion, the leg portion, the bed surface-forming portion, and the caster.
In addition, in the aspect of (1), as a specific aspect of “the load cell being provided at a site which is positioned at any location on the load transmission path and at which a load from the bed surface-forming portion side is received and the load is transmitted to the installation surface side”, preferably, in a state where an arbitrary surface (division surface) by which the load transmission path of the bed main body is vertically divided into the bed surface-forming portion side and the installation surface side is assumed, the load cell is provided on at least one location on a structural member penetrating the division surface vertically. For example, a surface on which a spindle and a bearing portion receiving the spindle come into contact with each other in the load transmission path of the bed main body may be assumed as the division surface, and in this case, the spindle and the bearing portion correspond to structural members penetrating the division surface vertically.
(2) In the bed having a load detection function of the aspect of (1),
the operating portion in the base body of the load cell is configured of a flexibly deformable cantilever portion in which one end is continuous with the action portion and the other end is continuous with the attachment portion.
(3) In the bed having a load detection function of the aspect of (1),
the operating portion in the base body of the load cell is a compression-deformable member in which one end is continuous with the action portion and the other end is continuous with the attachment portion.
(4) In the bed having a load detection function of the aspect of (1),
a spindle having a substantially horizontal axial line is placed in the load transmission path of the bed main body, and a bearing portion which rotatably supports the spindle is formed on the load-receiving member of the base body.
In the aspect of (4), the spindle having a substantially horizontal axial line provided in the load transmission path of the bed main body may be slightly inclined from a horizontal direction. Specifically, for example, due to error when the bed main body is manufactured, inclination or unevenness of the installation surface, a change over time according to use for a long period of time of a bed, a movement of a bed user on a bed surface, or the like, strictly, the spindle may be slightly inclined from a horizontal direction, for example, may be inclined within approximately 5°.
(5) In the bed having a load detection function of the aspect of (1),
the connection-support portion of the bed main body includes a lower frame which is substantially parallel with the installation surface, the leg portion is provided on the lower frame, the lower frame is a configuration member of the installation surface side, and the cylindrical support body is fixed to the lower frame.
(6) In the bed having a load detection function of the aspect of (1),
a hollow cylindrical support body is perpendicularly fixed to the configuration member of the installation surface side in the bed main body such that one end opening portion of the hollow cylindrical support body faces upward, a lower portion of the load-receiving member is inserted into an opening portion of the cylindrical support body from above, and at least a portion of the base body is inserted into a lower portion of the cylindrical support body such that the action portion of the base body is positioned inside the cylindrical support body and the action portion and the operating portion do not come into contact with the cylindrical support body.
(7) In the bed having a load detection function of the aspect of (2),
a hollow cylindrical support body is perpendicularly fixed to the configuration member of the installation surface side in the bed main body such that one end opening portion of the hollow cylindrical support body faces upward, a lower portion of the load-receiving member is inserted into an opening portion of the cylindrical support body from above, an opening window portion is formed on a side surface side of a lower portion of the cylindrical support body, a portion of the base body is inserted into the cylindrical support body from the opening window portion such that at least the action portion is positioned inside the cylindrical support body and the action portion and the operating portion do not come into contact with the cylindrical support body, and the remaining portion of the base body is positioned outside the cylindrical support body.
(8) In the bed having a load detection function of the aspect of (7),
at least a portion of the attachment of the base body is inserted into the cylindrical support body, and the attachment portion is fixed to an inner wall surface of the cylindrical support body.
(9) In the bed having a load detection function of the aspect of (7),
at least a portion of the attachment of the base body is inserted into the cylindrical support body, and the attachment portion is fixed to an inner wall surface of the cylindrical support body.
(10) In the bed having a load detection function of any one of the aspects of (7) to (9),
the connection-support portion of the bed main body includes a lower frame which is substantially parallel with the installation surface, the leg portion is provided on the lower frame, the lower frame is configured by combining at least four pipes, one pipe or two or more pipes are configuration members of the installation surface side, the cylindrical support body is fixed to one pipe or each of two or more pipes, and the base body is disposed such that a length direction of the cantilever portion is along a length direction of a pipe.
(11) In the bed having a load detection function of any one of the aspects of (1) to (4),
the load cell is placed at an intermediate portion of the connection-support portion.
(12) In the bed having a load detection function of the aspect of (11),
the connection-support portion includes a lifting-lowering link mechanism which lifts and lowers the bed surface-forming portion, and
the load cell is incorporated into the lifting-lowering link mechanism.
(13) In the bed having a load detection function of the aspect of (11),
the connection-support portion includes a lower frame which is supported above the installation surface via the leg portion, in addition to the lifting-lowering mechanism, and
the lifting-lowering link mechanism includes at least a first connection arm and a second connection arm as an arm which connects the bed surface-forming portion and the lower frame, the second arm is connected to the bed surface-forming portion side, the first arm is connected to the lower frame side, and the load cell is interposed between the bed surface-forming portion and the lower frame.
(14) In the bed having a load detection function of any one of the aspects of (1) to (3),
the load cell is interposed between the bed surface-forming portion and the connection-support portion.
(15) In the bed having a load detection function of any one of the aspects of (1) to (3),
the load cell is interposed between the connection support portion and the leg portion.
(16) In the bed having a load detection function of any one of the aspects of (1) to (3),
the load cell is incorporated into the leg portion.
(17) In the bed having a load detection function of any one of the aspects of (1) to (3),
the leg portion includes a caster mechanism, and the load cell is incorporated into the caster mechanism.
(18) A bed-load detector which measures a change of a load applied to a bed main body by the bed-load detector being attached to the bed main body and detects a state of a user on a bed surface of the bed main body,
in which the bed main body includes
a bed surface-forming portion which forms the bed surface,
a leg portion which comes into contact with an installation surface on which the bed main body is to be installed, and
a connection-support portion which connects the bed surface-forming portion and the leg portion such that the bed surface-forming portion is positioned above the installation surface, and transmits a load from the bed surface-forming portion to the leg portion,
in which the load detector includes a load cell which measures strain generated when a load is applied to the bed main body,
in which the load cell is configured to be placed at a site which is positioned at any location on a load transmission path extending from the bed surface-forming portion to the installation surface via the connection-support portion, and at which a load from the bed surface-forming portion side is received and the load is transmitted to a configuration member of the installation surface side,
in which the load cell includes a load-receiving member which receives a load from the bed surface-forming portion side, and a base body which is separated from the load-receiving member and to which the load from the load-receiving member is applied, and
in which the base body is configured to include an action portion with which the load-receiving member comes into contact and on which a load from the load-receiving member acts, an operating portion which is strain-deformed by the load applied to the action portion, a strain sensor which is attached to the operating portion, and an attachment portion which is continuous with the operating portion and is fixed to the configuration member of the installation surface side in the bed main body.
Similarly to the above-described aspect of (1), in the aspect of (18), the “load transmission path” corresponds to a structural member which supports a load applied to the bed surface-forming portion between the bed surface-forming portion and the installation surface, and, for example, corresponds to a structural member through which a load applied to the bed surface-forming portion is transmitted to the leg portion which comes into contact with the installation surface, the leg portion itself, a caster which is attached to the leg portion, or the like.
In addition, in the aspect of (18), a specific aspect of “the load cell being placed at a site which is positioned at any location on a load transmission path extending from the bed surface-forming portion to the installation surface via the connection-support portion, and at which a load from the bed surface-forming portion side is received and the load is transmitted to a configuration member of the installation surface side” is similar to that of the aspect of (1).
(19) In the bed-load detector of the aspect of (18),
a bearing portion which rotatably supports a spindle, which is provided in the load transmission path of the bed main body and has a substantially horizontal axial line, is formed on the load-receiving member of the base body.
Moreover, in the aspect of (19), “a spindle having a substantially horizontal axial line” is similar to that of the above-described aspect of (4).
According to the bed having a load detection function of the present invention, it is possible to provide a bed having a load detection function in which a load detection function is capable of being added using a simple structure while preventing an increase in the number of parts and of detecting a load with high accuracy while securing durability of a load detector, and a load detector capable of being separately incorporated into a bed main body in order to add the load detection function to an existing bed. In addition, in the present invention, it is possible to provide a bed having a load detection function and a bed-load detector capable of detecting a load with high accuracy without decreasing detection accuracy of a load in a vertically downward direction to be detected originally even when a load applied to a bed surface is greatly biased (an unbalanced load state is generated) due to a user or the like on a bed sitting on an end portion of a bed surface of the bed, a user who lies on a bed surface largely turning over toward one end portion side on the bed surface, or the like, and the bed is distorted.
Hereinafter, embodiments of a bed having a load detection function and a load detector to which the present invention is applied will be described with reference to the drawings. In addition, in the drawings used in the following descriptions, for convenience, characteristic portions may be enlarged for easy understanding of characteristics, and dimension ratios between components are not limiting to be being the same as actual dimension ratios. In addition, a material, a dimension, or the like exemplified in the following descriptions is an example, the present invention is not limited to the example, and the example may be appropriately modified and exemplified within a scope which does not depart from the gist.
For example, the bed 1 having a load detection function includes a bed main body 1A which is installed on an installation surface B such as a floor surface, and has a function which detects a change of a load applied to the bed main body 1A using a load detector 50 attached to the bed main body 1A and detects a state of a user H on a bed surface T of the bed main body 1A.
Moreover, in the following descriptions, the installation surface B and the bed surface T of the bed main body 1A shown in
Specifically, the bed main body 1A is configured so as to approximately include a bed surface-forming portion 100 which forms the bed surface T, a leg portion 4 which comes into contact with the installation surface B on which the bed main body 1A is to be installed, and a connection-support portion 102 which connects the bed surface-forming portion 100 and the leg portion 4 so that the bed surface-forming portion 100 is positioned above the installation surface B and transmits a load from the bed surface-forming portion 100 to the leg portion 4.
Here, in an example shown in
The bed plate 2 is formed of a rectangular flat plate having a length and a width sufficient for sleeping of the user H.
For example, in the bed main body 1A, a mat, a mattress, or the like is laid on the bed plate 2, and in this state, the user H can be on the mat or the like (in addition,
The upper frame 3 has a structure (a frame structure) in which a pair of right and left pipes 3a which extends in a length direction (a longitudinal direction of the bed main body 1A) of the bed plate 2 and a pair of front and rear pipes 3b which extends in a width direction (a lateral direction of the bed main body 1A) of the bed plate 2 are connected to each other so as to be formed in a frame shape as a whole, and in a state where a plurality of pipes 3c extending in a width direction (the lateral direction of the bed main body 1A) of the bed plate 2 are arranged in the length direction (the longitudinal direction of the bed main body 1A) of the bed plate 2, the pair of right and left pipes 3a are connected to each other.
In addition, the bed plate 2 is attached in a state where the bed plate 2 is fixed to the upper portions of the plurality of pipes 3c. Moreover, a head plate 7a and a foot plate 7b are attached to the pair of front and rear pipes 3b configuring the upper frame 3 in a state where the plates 7a and 7b are erected upward in a vertical direction.
Four leg portions 4 are disposed at four corners (left front side, right front side, left rear side, and right rear side) of the bed main body 1A having a symmetrical positional relationship to each other. Moreover, a caster mechanism 8 for easily moving the bed main body 1A which is a heavy load is provided in each of four leg portions 4. A configuration of the caster mechanism 8 is not particularly limited, and a well-known configuration may be used. In addition, in some cases, the leg portion 4 may not include the caster mechanism.
The lower frame 5 is formed in a planar frame structure as a whole by combining and connecting at least four square pipe-shaped pipes in a frame shape. That is, the lower frame 5 is configured of a pair of right and left pipes 5a which extends in the longitudinal direction of the bed main body 1A, and a pair of front and rear pipes 5b which extends in the lateral direction of the bed main body 1A, and both ends of the pair of front and rear pipes 5b are joined to locations close to both ends of the pair of right and left pipes 5a (refer to
The pair of lifting-lowering link mechanisms 6 in the above-described connection-support portion 102 is disposed so as to be arranged on a front side and a rear side of the bed main body 1A. Moreover, the front and rear lifting-lowering mechanisms 6 have substantially the same structure as each other except that the attachment positions are different from each other. In addition, each of the front and rear lifting-lowering link mechanism 6 has a bilaterally symmetrical structure with respect to the right side and the left side of the bed main body 1A.
Accordingly, for example, as shown in
Moreover, as an example of the lifting-lowering mechanism for lifting and lowering the bed plate 2, a swing lifting-lowering type lifting-lowering link mechanism 6 is shown. However, as the lifting-lowering mechanism, other link mechanisms, a pantograph type, a vertical lifting-lowering type, or the like may be used. Accordingly, as long as a spindle (pin) 13 having a substantially horizontal axial line described below is provided on an intermediate or end portions of the lifting-lowering mechanism as a member to which a load from the bed plate 2 is applied, similarly to a case where the lifting-lowering mechanism is configured of the swing lifting-lowering type lifting-lowering mechanism 6, the present invention can be applied to any type of lifting-lowering mechanism.
Specifically, as shown in
Among these, the first connection arms 9a are attached in a state where lower end portions of the arms 9a are fixed to the pair of front and rear pipes 5b configuring the lower frame 5. Moreover, the first connection arm 9a is formed in a hollow cylindrical shape, for example, a square tube shape, and corresponds to the hollow cylindrical support body (cylindrical support body) described in the aspect of (5), and includes a hollow portion inside the first connection arm along a vertical direction. Meanwhile, a lower end portion of the second connection arm 9b is rotatably attached to an upper end portion of the first connection arm 9a via a first hinge portion 10a. In addition, a lower end portion of the third connection arm 9c is rotatably attached to an upper end portion of the second connection arm 9b via a second hinge portion 10b.
Moreover, the lifting-lowering link mechanism 6 includes a pair of fourth right and left connection arms 9d which connects the third front and rear connection arms 9c. Moreover, each of upper ends of the third front and rear connection arms 9c is rotatably attached to the fourth connection arm 9d via a third hinge portion 10c.
Moreover, the lifting-lowering link mechanism 6 includes an actuator (driving mechanism) 11 for lifting and lowering the bed plate 2 along with the upper frame (not shown). The actuator 11 moves (expands and contracts) a piston 11b from a cylinder 11a in a front-rear direction using electricity. Here, the cylinder 11a is attached in a state where the cylinder 11a is fixed to the upper frame 5 (not shown in
In addition, the piston 11b moves (is expanded) toward the front side by driving of the actuator 11, and accordingly, the lifting-lowering link mechanism 6 moves from the state where the bed plate 2 has been lowered along with the upper frame (not shown) as shown in
As shown in
Moreover, the load cell 51 and the calculation unit 52 are connected to each other by a wire 55a, and the calculation unit 52 and the transmission unit 53 are connected to each other by a wire 55b. Meanwhile, transmission and reception can be performed between the transmission unit 53 and the reception unit 54 by wireless communication (radio waves).
However, in the bed 1 having a load detection function to which the bed-load detector of the present invention is applied, the load cell 51 is incorporated into a site which is positioned at any location on a load transmission path extending from the bed surface-forming portion 100 to the leg portion 4 via the connection-support portion 102, and at which a load from the bed surface-forming portion side 100 is received and the load is transmitted to the installation surface B side.
In addition, particularly, in the case of the example of
Specifically, as shown in
Moreover, the four load cells 51 have substantially the same structure as each other except that the attachment positions are different from each other. Accordingly, for example, as shown in
Here,
As shown in
Meanwhile, as described in detail below again, the load cell 51 is configured to include a load-receiving member 51A which receives a load from the bed surface-forming portion 100 side, and a base body 51B which is mechanically (structurally) separated from the load-receiving member 51A and to which the load from the load-receiving member 51A is applied. In addition, the lower portion of the load-receiving member 51A in the load cell 51 is inserted from the upper opening end 91 of the square tube-shaped connection arm (cylindrical support body) 9a into the inside of the upper portion of the square tube-shaped connection arm 9a, and the base body 51B in the load cell 51 is inserted from the side opening portion 93 of the side wall of the lower portion of the square tube-shaped connection arm 9a into the inside of the lower portion of the square tube-shaped connection arm 9a.
Moreover, the above-described first hinge portion 10a has a structure in which the first hinge portion 10a is pivoted in a state where the pin (spindle) 13 provided in the second connection arm (another connection arm) 9b engages with a bearing portion 82 formed in the load-receiving member 51A of the load cell 51 described in detail below, and the second connection arm 9b is rotatably supported.
Basically, as described above, the load cell 51 includes a load-receiving member 51A which receives a load from the bed surface-forming portion 100 side, and a base body 51B which is mechanically (structurally) separated from the load-receiving member 51A and to which a load from the load-receiving member 51A is applied, and a strain sensor 57 (refer to
Moreover, specific examples of the load-receiving member 51A and the base body 51B will be described.
In
In addition, similarly to the outer shape in the horizontal section of the insertion portion 83, the outer shape in the horizontal section of the bottom portion of the bearing portion 82 in the load-receiving member 51 is also formed in a rectangular shape. However, the outer shape of the bottom portion of the bearing portion 82 is larger than the outer shape of the insertion portion 83, and the dimensions of the outer shape of the bottom portion are approximately similar to the outer dimensions in the horizontal section of the square tube-shaped connection arm 9a. Accordingly, a step portion 51C is formed between an outer edge of the bottom portion of the bearing portion 82 and an outer surface of the insertion portion 83. Moreover, a shaft hole 83A which penetrates in a horizontal direction parallel to an axial direction of the above-described spindle (pin) 13 is formed in the insertion portion 83.
In addition, a contact portion 85, which protrudes in a trapezoidal shape in a vertically downward direction so as to come into contact with the base body 51B, is formed on the lower end of the insertion portion 83. In the present example, the lower end surface (abutment surface) 85A of the contact portion 85 is a horizontally rectangular surface which extends in a direction orthogonal to the axial direction of the above-described spindle (pin) 13.
In addition, the entire load-receiving member 51A has a shape which is notched from one side and the upper side other than side wall sites 51Aa, 51Ab, 51Ac corresponding to three side surfaces among four perpendicular side surfaces and a bottom wall site (a portion at which the contact portion is positioned) 51Ad corresponding to a horizontal bottom surface, that is, a shape in which a portion surrounded by three side wall sites 51Aa, 51Ab, and 51Ac, and the bottom site 51Ad becomes a space 51Ae. This shape is adopted only for a reduction in weight and reduction in cost of materials of the load-receiving member 51A. Accordingly, a solid shape in which the space 51Ae is not present may be adopted.
Basically, the base body 51B includes an action portion 86A with which the contact portion 85 of the load-receiving member 51A comes into contact and on which a load from the load-receiving member 51A acts, an operating portion 86B which is strain-deformed by the load applied to the action portion 86A, and an attachment portion 86C which is continuous with the operating portion 86B and is fixed to a configuration member (in the case of the present embodiment, the pipe 5b of the lower frame 5, or the square tube-shaped connection arm 9a on the pipe 5b) of the installation surface B side in the bed main body 1A. In addition, the strain sensor 57 is attached to the operating portion 86B.
Here, the base body 51B corresponds to a so-called strain element, and in the present example, a cantilever type configuration is applied to the base body 51B.
Specifically, as shown in
Moreover, in the present example, the action portion 86A is configured of a protrusion portion protruding upward. However, the action portion 86A is not necessarily a protrusion portion, and may be a planar portion on an upper surface of an extended end portion of the operating portion (cantilever portion) 86B. In addition, when the action portion 86A is configured of a protrusion portion, the upper surface of the action portion may be a horizontal plane surface or may be a curved surface which is convex-curved upward. In addition, in contrast with the protrusion portion, the action portion 86A may be a concave portion which is formed so as to be recessed downward on the upper surface of the extended end portion of the operating portion (cantilever portion) 86B. In any case, importantly, a surface which receives the lower end surface (abutment surface) 85A of the contact portion 85 in the above-described load-receiving member 51A may be provided.
Here, a hole portion 58 for configuring a Roberval mechanism is provided on the operating portion (cantilever portion) 86B. As shown in
Moreover, for example, the strain sensor 57 adheres to the upper surface of the operating portion (cantilever portion) 86B. The strain sensor 57 detects a change of strain by a change of an electrical resistance according to the strain generated in the operating portion (cantilever portion) 86B. In the present example, the strain sensor 57 includes four strain gauges (strain sensitive resistors) R1, R2, R3, and R4, and as shown in
The four strain gauges R1, R2, R3, and R4 configure a Wheatstone bridge circuit as shown in
Moreover, the strain sensor 57 may be configured of at least two or three strain gauges (strain sensitive resistors). In this case, among the strain gauges R1, R2, R3, and R4 configuring the Wheatstone bridge circuit shown in
In addition, a material of the load-receiving member 51A of the load cell 51 and a material of the base body 51B serving as the strain element are not particularly limited. It is possible to select a suitable material as a configuration material according to required characteristics of each of the load-receiving member 51A and the base body 51B, for example, preferable workability, yield strength, elongation, abrasion resistance, or the like of each portion. That is, since the load-receiving member 51A is a member which receives a load from the spindle (pin) 13 and applies a force generated by the load to the base body 51B and is a portion which is not directly involved in generation of strain necessary for detecting a load, improved workability is required for the load-receiving member 51A such that the load-receiving member 51A can be easily processed to a suitable shape so as to receive a load from the spindle (pin) 13, and elongation or yield strength need not be considered. Meanwhile, since the base body 51B is a member which includes the operating portion (cantilever portion) 86B which is bent and deformed by a force generated from the spindle (pin) 13 and the base body 51B serves as a portion of a structure which is fixed to and supported by the member of the bed main body, it is preferable that yield strength increase and elongation decrease.
Specifically, a metal such as aluminum alloy, iron, steel, or stainless steel, or a resin such as an engineering plastic may be used for a material of the load-receiving member 51A of the load cell 51 and a material of the base body 51B serving as a strain element. In addition, a material of the load-receiving member 51A and a material of the base body 51B may not be the same as each other, and for example, preferably, the materials are selected from the above-described viewpoints, or from the viewpoints of lightness or economic efficiency, that is, a resin such as an ABS resin or a polycarbonate resin may be used for the load-receiving member 51A, and light alloy such as aluminum alloy, titanium alloy, or magnesium alloy, or a metal such as iron, carbon steel, or stainless steel may be used for the material of the base body 51B.
A state in which the above-described load cell 51 (the first example of the load-receiving member 51A and the first example of the base body 51B) is incorporated into the square tube-shaped connection arm (cylindrical support body) 9a on the pipe (the structural member of the installation surface side) 5b of the lower frame 5 in the bed main body 1A is shown in
The base body 51B of the load cell 51 is placed on the upper surface of the pipe 5b so that an extension direction of the operating portion (cantilever portion) 86B from the base portion 51Ba is positioned along the length direction of the pipe 5b on the upper surface of the pipe 5b of the lower frame 5. In addition, a portion of the tip portion side in the base body 51B (a portion of a side on which the protruding action portion 86A is positioned on the extended end side of the operating portion (cantilever portion) 86B) is inserted into the square tube-shaped connection arm 9a from the side opening portion 93 of the square tube-shaped connection arm 9a, and the tip surface 86Ca of the attachment portion 86C comes into contact with an inner wall surface of the square tube-shaped connection arm 9a opposing the tip surface 86Ca. Moreover, a screw 86Cd is inserted into the screw hole 86Cb from the outside of the square tube-shaped connection arm 9a and is screwed. Accordingly, the attachment portion 86C is fixed to the square tube-shaped connection arm 9a. Meanwhile, a portion of a base end side in the base body 51B (a portion of the base portion 51Ba side) is positioned outside the side opening portion 93 of the square tube-shaped connection arm 9a. Accordingly, the entire base body 51B is not inserted into the square tube-shaped connection arm 9a, and only a portion (a portion in which at least the protruding action portion 86A is positioned) of the entire base body 51B is inserted into the square tube-shaped connection arm 9a.
In addition, here, in the base body 51B, gaps 97 are secured between the action portion 86A and the operating portion (cantilever portion) 86B, and the inner wall surface and the edge portion of the side opening portion 93 of the square tube-shaped connection arm 9a so that the action portion 86A and the operating portion (cantilever portion) 86B do not come into contact with the inner wall surface and the edge portion of the side opening portion 93 of the square tube-shaped connection arm 9a.
Meanwhile, the insertion portion 83 of the lower portion of the load-receiving member 51A of the load cell 51 is vertically inserted from the upper opening end 91 of the square tube-shaped connection arm 9a into the square tube-shaped connection arm 9a. Moreover, the lower end surface (abutment surface) 85A of the contact portion 85 of the insertion portion 83 comes into contact with the upper surface of the protruding action portion 86A of the base body 51B. Here, a gap 84 exists between the outer surface of the load-receiving member 51A and the inner wall surface of the square tube-shaped connection arm 9a.
In addition, an auxiliary pin 95 is inserted into and fixed to the shaft hole 83A of the insertion portion 83 of the load-receiving member 51A so that both end portions of the auxiliary pin 95 protrude toward both sides of the insertion portion 83, and both end portions of the auxiliary pin 95 are inserted into long holes 94 which are formed on both side walls of the square tube-shaped connection arm 9a. Here, the auxiliary pin 95 is disposed to regulate the position of the load-receiving member 51A, and can freely move in a direction which is perpendicular to the long holes 94 of the square tube-shaped connection arm 9a with a small friction resistance. In this way, since the auxiliary pin 95 is provided, deviation of the position of the load-receiving member 51A is prevented, and the load-receiving member 51A can be slightly inclined about the auxiliary pin 95. Moreover, arbitrary means for fixing the auxiliary pin 95 to the insertion portion 83 of the load-receiving member 51A may be adopted. For example, the auxiliary pin 95 may be configured of a screw rod, the shaft hole 83A may be configured of a female screw hole, and the auxiliary pin 95 may be screwed into the shaft hole 83A, or the auxiliary pin 95 may be fixed to the shaft hole 83A using welding, brazing, or the like.
The bearing portion 82 of the upper portion of the load-receiving member 51A of the load cell 51 is positioned above the upper opening end 91 of the square tube-shaped connection arm 9a. That is, the step portion 51C which is positioned at a boundary between the bearing portion 82 and the insertion portion 83 is positioned slightly above the upper opening end 91 of the square tube-shaped connection arm 9a, and a space 96 exists between the upper opening end 91 and the step portion 51C.
In this way, the load-receiving member 51A protrudes above from the upper opening end 91 of the square tube-shaped connection arm 9a. In addition, the spindle (pin) 13 of the lifting-lowering link mechanism 6 in the bed main body 1A is inserted into the bearing portion 82 having a U shape in the load-receiving member 51A, and a load from the bed surface-forming portion 100 side in the bed main body 1A is applied to the bearing portion 82 via the spindle (pin) 13, particularly to the bearing surface 82A.
When the load G in the vertically downward direction is applied from the bed surface-forming portion 100 of the bed plate 2 or the like to the load-receiving member 51A of the load cell 51, particularly, to the bearing surface 82A of the bearing portion 82 via the spindle (pin) 13 of the link mechanism 6, the contact portion 85 of the load-receiving member 51A presses the protruding action portion 86A in the base body 51B of the load cell 51. That is, the load G applied to the load-receiving member 51A is transmitted to the action portion 86A of the base body 51B. Accordingly, the tip side of the operating portion (cantilever portion) 86B continuous with the action portion 86A is pressed, and strain is generated in the operating portion 86B. In this case, the strain sensor 57 detects a change of a resistance according to a magnitude of the strain generated in the operating portion 86B, and outputs a strain signal corresponding to the magnitude of the strain generated in the operating portion 86B, that is, a signal corresponding to the change of the load. In addition, it is possible to detect the change of the load applied to the bed surface-forming portion 100 of the bed plate 2 or the like using the load detector 50 including the load cell 51.
Here, when a load is applied from the spindle (pin) 13 to the load-receiving member 51A, the load-receiving member 51A is pressed downward. However, since the space 96 (refer to
Here, according to a state or a movement of a user of a bed, a biased load may be applied to the bed surface 3 of the bed main body 1A. Specifically, a user of a bed, a visitor, a health care worker, or the like may sit on an end portion of the bed surface 3, a user who lies on the bed surface 3 mainly has turned over toward an end portion side on the bed surface 3 or stands up on the bed surface 3, and when a load applied to the bed surface 3 is greatly biased (this state is referred to as an unbalanced load state), the entire bed main body 1A may be slightly distorted. In this case, according to the distortion, a twist (here, the twist means that a center axis is inclined with respect to an original center axis position of the spindle) or positional deviation (for example, a parallel movement in a horizontal surface) may occur in the spindle 13. In this case, a force in a horizontal direction or an inclination direction is applied to the bearing portion 82 of the load-receiving member 51A in the load cell 51 according to the inclination or the movement of the spindle 13. This means that with respect to an original load (force) in a vertical direction detected by the load cell 51, a component of a force in a direction different from the vertical direction is applied to the load-receiving member 51A of the load cell 51.
In addition, when it is assumed that the load-receiving member 51A of the load cell 51 and the base body 51B are integrally continuous with each other, in the unbalanced load state, not only is strain due to the force in the vertical direction generated in the operating portion (cantilever portion) 86B of the base body 51B but also strain due to the force in the horizontal direction or the inclination direction is superimposed on the strain due to the force in the vertical direction, and as a result, it is not possible to correctly detect the load in the vertical direction and there is a concern that detection accuracy of a load may be decreased.
However, in the case of the present invention, since the load-receiving member 51A of the load cell 51 and the base body 51B are mechanically and structurally separated from each other and only come into contact with each other in an up-down direction, only a component in a direction vertically downward from a load applied to the load-receiving member 51A is applied from the contact portion 85 of the load-receiving member 51A to the action portion 86A of the base body 51B. Accordingly, even when a load is applied to the bearing portion 82A in a state where a force in the horizontal direction or the inclination direction is superimposed on the force in the vertically downward direction in the unbalanced load state, only the component of the force in the vertically downward direction is applied to the base body 51B. As a result, strain is generated in the operating portion (cantilever portion) 86B of the base body 51B by only the component of the force in the vertically downward direction. Accordingly, even in the unbalanced load state in which the force in the horizontal direction or the inclination direction is applied, it is possible to correctly detect the load in the vertically downward direction without an affect from the force in the horizontal direction or the inclination direction.
In addition, when a biased load is applied to the bed surface-forming portion 100 of the bed main body 1A as described above, a side to which a load is not applied (or a side on which the load is smaller) in the bed main body 1A may rise up. In this case, when it is assumed that the load cell 51 is not separated from the load-receiving member 51A and the base body 51B and is integrally continuous with the load-receiving member 51A and the base body 51B, there is a concern that an upward force may be applied to the load cell 51. Accordingly, the load cell 51 detects the upward force as the load in the vertically upward direction (that is, the load which is negative with respect to the load in the vertically downward direction which is intended to be detected), and there is a concern that an error with respect to the original load detection may increase. However, in the case of the present invention, since the load cell 51 is separated from the load-receiving member 51A and the base body 51B in the up-down direction, even when the above-described load in the vertically upward direction (minus load) is applied to the load-receiving member 51A, the force is not transmitted to the base body 51B. Accordingly, the operating portion (cantilever portion) 86B of the base body 51B is not bent and it is possible to detect only the load in the vertically downward direction with high accuracy.
Here, preferably, the gap 84 (refer to
In addition, in order to reliably perform the operation of transmitting only the force in the vertically downward direction from the contact portion 85 of the load-receiving member 51A as described above to the action portion 86A of the base body 51B, preferably, friction between the lower end surface (abutment surface) 85A of the contact portion 85 and the upper surface of the action portion 86A is decreased, and when the load-receiving member 51A is inclined, the base body 51B does not receive influence of the inclination.
Accordingly, first, in order to decrease the friction resistance between the lower end surface (abutment surface) 85A of the contact portion 85 and the upper surface of the action portion 86A, preferably, at least one of the surfaces is finished to a smooth surface (for example, a mirror surface). In addition, in some cases, surface processing for decreasing the friction resistance may be performed on at least one of the surfaces, or a low-friction (solid lubricant) film, for example, a fluororesin coating may be applied on at least one surface.
Moreover, secondarily, preferably, a contact area between the lower end surface (abutment surface) 85A of the contact portion 85 and the upper surface of the action portion 86A is decreased. Accordingly, for example, decreasing the area of the abutment surface 85A by changing the shape (shape which protrudes downward) of the contact portion 85 may be considered, or a contact state may be set to a line contact or a point contact rather than a surface contact. Some specific examples in which the shape (shape which protrudes downward) of the contact portion 85 is changed in this way so that the contact area between the contact portion 85 and the action portion 86A is decreased or the contact state is substantially changed from a surface contact to a point contact will be described in detail with reference to
In any case, the member (load-receiving member 51A) of the load cell 51 receiving a load and the member (base body 51B) in which strain is generated by a load are separate and independent from each other, the load-receiving member 51A and the base body 51B come into contact with each other in the up-down direction, and only the component in the vertically downward direction of a load which is received by the load-receiving member 51A is applied to the base body 51B. Therefore, any configuration may be adopted as long as the load-receiving member 51A and the base body 51B simply come into contact with each other in the up-down direction. Accordingly, degrees of freedom in shapes, dimensions, or attachment positions of the configuration members of the load cell 51 increase, and the load cell 51 can be incorporated into a bed on the market in a state where a design of the bed is not particularly changed.
In addition, in the above-described example, in the base body 51B of the load cell 51, only a portion including the action portion 86A is inserted into the square tube-shaped connection arm (cylindrical support body) 9a, and the remaining portion protrudes outside the square tube-shaped connection arm 9a. The reason why only a portion of the base body 51B is inserted into the square tube-shaped connection arm 9a in this way is as follows.
That is, a bending amount of the operating portion 86B increases even when the same load is applied as a length (a length from the action portion 86A to the base portion 51Ba) of the operating portion (cantilever portion) 86B of the base body 51B in the load cell 51 increases, and it is possible to detect a load with higher accuracy. Meanwhile, in a general bed main body 1A, in most cases, a width of the pipe 5b of the lower frame 5 is limited. Accordingly, in order to place the base body 51B on the pipe 5b having a relatively narrow width even when the length of the operating portion (cantilever portion) 86B increases, preferably, the length direction of the operating portion (cantilever portion) 86B is along the length direction of the pipe 5b. In addition, from the viewpoint of economic efficiency or the like, preferably, the dimensions (inner dimensions in the horizontal surface) of the square tube-shaped connection arm 9a in a general bed main body 1A are not increased.
As described above, if the length direction of the operating portion (cantilever portion) 86B is along the length direction of the pipe 5b, only a portion (a portion in which the action portion 86A is positioned) of the base body 51B is inserted into the square tube-shaped connection arm 9a, and the remaining portion protrudes outside the square tube-shaped connection arm 9a, even when the width of the pipe 5b is narrow and the dimensions of the square tube-shaped connection arm 9a in the horizontal surface are small, the length of the operating portion (cantilever portion) 86B increases, and it is possible to increase detection accuracy of the load. In other words, it is possible to increase the detection accuracy of a load by increasing a length of the operating portion (cantilever portion) 86B without limiting the width of the pipe which supports the base body 51B of the load cell 51.
In addition, as described above, only a portion (a portion in which the action portion 86A is positioned) of the base body 51B is inserted into the square tube-shaped connection arm 9a, the remaining portion protrudes outside the square tube-shaped connection arm 9a, and particularly, the attachment location of the strain sensor 57 in the operating portion (cantilever portion) 86B is set to the exterior surface of the square tube-shaped connection arm 9a (or, a location which is positioned inside the square tube-shaped connection arm 9a but is positioned so as to be close to the side opening portion 93). Accordingly, it is possible to easily replace the strain sensor 57 without disassembling the bed main body or removing the configuration members of the bed main body. In addition, in this case, it is not necessary to draw wires or cables connected from the strain sensor 57 to the outside around the inner portion of the square tube-shaped connection arm 9a. Accordingly, it is possible to easily hold wires or cables.
Hereinbefore, the state where one load cell 51 configured of the first example of the load-receiving member 51A and the first example of the base body 51B is incorporated into the square tube-shaped connection arm 9a positioned at one location on one pipe 5b of the lower frame 5 in the bed main body 1A is described. However, in the bed having a load detection function of the present invention, actually, preferably, the load cell 51 is incorporated into each of four corners (the left front side, the right front side, the left rear side, and the right rear side) of the bed main body 1A, or each of locations corresponding to the vicinities of the four corners, and changes of loads applied to four corners of the bed main body 1A are detected by a total of four load cells 51. In addition, preferably, load signals detected by the four load cells 51 are output to the calculation unit 52. Hereinafter, this will be described again with reference to
The calculation unit 52 is configured of a computer which includes a ROM, a RAM, other memories, a CPU, or the like, and programs, numerical values, or the like required for calculating a state of the user H on the bed surface T of the bed main body 1A are stored in the calculation unit 52 in advance.
Moreover, in the calculation unit 52, the state of the user H on the bed surface T of the bed main body 1A is calculated based on load signals output from the four load cells 51, and the calculated results are output to the transmission unit 53.
For example, in the calculation unit 52, from the load signals output from the four load cells 51, when a total value of loads applied to the four load cells 51 is larger than a threshold value which is stored in advance, it is determined that the user H is on the bed surface T of the bed main body 1A, and the calculated results are output to the transmission unit 53.
Moreover, in the calculation unit 52, in addition to the user H getting into a bed (sleeping) and getting up from a bed (rising), for example, a calculation for predicting the user H getting up from a bed from a movement distance and/or a movement speed of a position of a center of gravity of the user H on the bed surface T of the bed main body 1A can be performed. In addition, it is possible to detect a movement of a body (for example, turning over in a bed or the like), a posture (for example, a supine position, a prone position, recumbent position, or the like), or the like of the user H by the calculation, and it is possible to predict occurrence of bedsores as described below.
The transmission unit 53 is a transmitter which is attached to the bed main body 1A, and transmits the results calculated by the calculation unit 52 to the reception unit 54 which is positioned separately from the calculation unit 52. Meanwhile, the reception unit 54 is a receiver which receives the signals transmitted from the transmission unit 53, and can remotely monitor the state (bed occupancy state) of the user H by receiving the signals from the transmission unit 53.
Moreover, in the reception unit 54 side, for example, results detected by the load cells 51 or results calculated by the calculation unit 52 may be displayed on a monitor (not shown) or may be printed by a printer.
In addition, for example, from the results calculated by the calculation unit 52, it is possible to notify a state of the user H to a guardian if necessary. A notification method is not particularly limited, and for example, an alarm may be generated from a speaker (not shown), or display may be performed on a monitor.
For example, the bed 1 provided with a load detection function having the above-described structure is suitably used in medical facilities (for example, hospitals, clinics, or the like), nursing facilities, care facilities, or the like.
In the present invention, by using the bed 1 having a load detection function, for example, it is possible to remotely monitor a state (bed occupancy state) of the user H such as having got into a bed (sleeping), having got up from a bed (rising), an in-bed position, a movement of a body (for example, turning over in a bed), or postures (for example, supine position, prone position, recumbent position, or the like). In addition, by using the bed 1 having a load detection function, it is possible to reduce a mental burden on the user H such as the user H being monitored by someone, or physical burdens and a mental burden on a guardian such as a case where the guardian must monitor the user H not only in the late evening or early morning but also all the times.
In addition, the use of the bed 1 having a load detection function is not limited to the above-described facilities. For example, the bed 1 having a load detection function may be also used in lodging facilities (for example, hotels, inns), ordinary households (for example, home care or the like). That is, a use of the bed 1 having a load detection function is not particularly limited.
In addition, for example, as an application example using a load detection function of the bed 1 having a load detection function to which the present invention is applied, there is a “bedsore prevention function”. Specifically, when a center does not move outside a certain circle in which a position of a center of gravity is positioned during a certain period of time (for example, two hours), or when a load of each load cell 51 does not change so as to remain a constant value (for example, 1 kg) or more, it is determined that there is a possibility that bedsores may occur in the user H, and a function of notifying this to a guardian can be added.
In addition, as another application example, there is an “illumination control function”. Specifically, by measuring the presence or absence of a weight of the user H on the bed surface T of the bed main body 1A, a position of a center of gravity of the user H, a movement amount of a center of gravity of the user H, a movement speed of a center of gravity of the user H, or the like, a function of turning on or turning off illumination when the user H gets into a bed or gets up from a bed can be added.
Moreover, as another application example, there is a “body weight management function”. Specifically, by measuring a body weight of the user H periodically (at a fixed time every day) on the bed surface T of the bed main body 1A, a function of performing a management of body weight of the user H can be added.
Moreover, as another application example, there is an “air-conditioning management function”. Specifically, by detecting a movement of a body (turning over in a bed, or the like) of the user H on the bed surface T of the bed main body 1A and measuring a sleeping depth of a user H, a function of managing air-conditioning according to a state of a user can be added.
In addition, as another application example, there is a “body weight monitor function in dialysis”. Specifically, by measuring a body weight of the user H on the bed surface T of the bed main body 1A, a function of detecting a start and end of dialysis can be added.
The present invention is not limited to the above-described functions, and various functions can be added using the load detection function of the bed 1 having a load detection function.
In addition, the present invention may be a bed having a load detection function in which the load detector 50 to which the present invention is applied is incorporated into the bed main body 1A in advance, or may be a bed having a load detection function in which the load detection function is added to an existing bed by separately incorporating the load detector 50 to which the present invention is applied into the bed main body 1A.
That is, in the bed having a load detection function to which the present invention is applied, it is possible to detect a state of the user H on the bed surface T of the bed main body 1A by measuring a change of a load applied to the bed main body 1A using the load detector 50 which is attached to the bed main body 1A in advance or is separately attached to the bed main body 1A.
Moreover, in the present invention, by attaching the load cell 51 of the load detector 50 to which the present invention is applied to the bed main body 1A, it is possible to add a load detection function to a bed with a simple structure while preventing an increase in the number of parts.
Specifically, in the load detector 50 to which the present invention is applied, since the load-receiving member 51A of the load cell 51 may be any member as long as the load-receiving member configures a load detection part which is exchangeable with a part (a bearing member on which a guide slit (bearing) 12 is formed) configuring the first hinge portion 10 of the first connection arm 9a included in an existing bed, it is possible to simply and easily incorporate the load cell 51 into the bed main body 1A.
Accordingly, it is possible to inexpensively add the load detection function to an existing bed. Moreover, even when faults or the like occur in the load cell 51, it is possible to easily replace the load cell 51. In addition, since a difference between a bed and an existing bed is small, the user H can use the bed without feeling uncomfortable.
In addition, the load-receiving member 51A and the base body 51B of the load cell 51 are not limited to the above-described examples, and various modifications may be applied within a scope which does not depart from the gist of the present invention.
For example, a second example of the base body 51B of the load cell 51 is shown in
In the base body 51B of the second example shown in
That is, the attachment portion 86C is configured of a trapezoidal-shaped (pedestal-shaped) portion which is formed below the base end side portion (base portion 51Ba) of the operating portion (cantilever portion) 86B. Moreover, for example, two screw holes 86Ce are formed on the lower surface side of the pedestal-shaped attachment portion 86C from the lower side toward the upper side.
A state in which the base body 51B of the second example is combined with the load-receiving member 51A of the first example and the combined base body 51B and the load-receiving member 51A are incorporated into the square tube-shaped connection arm (cylindrical support body) 9a on the pipe 5b of the lower frame 5 in the bed main body 1A is shown in
In
Even in the incorporated state shown in
Meanwhile, a second example of the load-receiving member 51A of the load cell 51 is shown in
The main difference between the load-receiving member 51A of the second example shown in
In addition, unlike the load-receiving member 51A of the first example shown in
A third example of the load-receiving member 51A of the load cell 51 is shown in
In the load-receiving member 51A of the third example shown in
In addition, a fourth example of the load-receiving member 51A of the load cell 51 is shown in
In the load-receiving member 51A of the fourth example shown in
Moreover, a fifth example of the load-receiving member 51A of the load cell 51 is shown in
In the load-receiving member 51A of the fourth example shown in
In this way, when a plurality of auxiliary pins and a plurality of long holes corresponding to the plurality of auxiliary pins are provided, it is possible to stabilize a posture of the load-receiving member 51A even when a load is greatly changed or a biased load is applied.
In addition, a sixth example of the load-receiving member 51A of the load cell 51 is shown in
In the load-receiving member 51A of the sixth example shown in
In this case, as shown in
Moreover, a seventh example of the load-receiving member 51A of the load cell 51 is shown in
In the load-receiving member 51A of the seventh example shown in
In this way, if the protrusion portions 98 are formed on four side surfaces of the insertion portion 83 of the load-receiving member 51A, it is possible to prevent a position of the load-receiving member 51A from deviating inside the square tube-shaped connection arm (cylindrical support member) 9a. That is, when the position of the load-receiving member 51A deviates inside the square tube-shaped connection arm 9a and the side surface of the insertion portion 83 of the load-receiving member 51A comes into surface-contact with the inner wall of the square tube-shaped connection arm 9a, the load in the vertically downward direction of the load-receiving member 51A is applied to the square tube-shaped connection arm 9a due to the friction resistance therebetween. As a result, the load in the vertically downward direction transmitted to the base body 51B is decreased, and there is a concern that detection accuracy of a load may deteriorate. However, as described above, the protrusion portions 98 are formed, and the friction resistances between the tips of the protrusion portions 98 and the inner wall of the square tube-shaped connection arm 9a are decreased. Accordingly, it is possible to prevent the position of the load-receiving member 51A from deviating, and it is possible to prevent the load in the vertically downward direction transmitted to the base body 51B from being decreased.
In each of the above-described examples, a configuration of a cantilever type strain element is adopted by the base body 51B of the load cell 51. However, in some cases, a so-called compression type strain element may be adopted. An example (third example) of the base body 51B which is configured as a compression type is shown in
The base body 51B shown in
When a load is applied to the upper surface of the upper rectangular parallelepiped-shaped action portion 86A in a vertically downward direction, the surface of the operating portion 86B which is recessed in a drum shape is compressed in a vertical direction and extends in a horizontal direction. Accordingly, by appropriately determining directions of the plurality of strain gauges (strain sensitive resistors) adhering to the surface of the operating portion 86B, strain of the operating portion 86B is detected using the above-described Wheatstone bridge circuit or the like. As a result, it is possible to detect a change of the load applied to the action portion 86A. In addition, in
For example, when the above-described compression type base body 51B is combined with the load-receiving member 51A (refer to
In addition, similarly to each of the above-described examples, the insertion portion 83 of the load-receiving member 51A is inserted from the upper opening end 91 of the square tube-shaped connection arm 9a, and the lower end surface (abutment surface) 85A of the contact portion 85 of the load-receiving member 51A comes into contact with the upper surface of the action portion 86A of the base body 51B.
In this way, even in the case where the compression type base body 51 is used for the base body 51A of the load cell 51, similarly to those described above, a load applied from the bed surface-forming portion 100 of the bed main body 1A is applied to the load-receiving member 51A of the load cell 51 via the spindle 13, the load of the component in the vertically downward direction of the load is applied to the base body 51B, the operating portion 86B is compressed and deformed, and strain on the surface of the operating portion 86B is detected by the strain sensor 57.
In addition, in each example of the above-described load cells 51, as the strain sensor for detecting the magnitude of the strain, the configuration which uses the strain gauge (strain sensitive resistor) 57 is adopted. However, the present invention is not limited to the strain sensitive resistor, and for example, a conductive elastomeric sensor, an optical strain sensor, an electrostrictive device sensor, a piezoelectric device sensor, a magnetostrictive device sensor, or the like may be used.
Moreover, in the bed main body 1A, a mat or the like may be laid on the bed plate 2 in advance. In addition, the bed plate 2 may have a structure in which the bed plate 2 is divided in the length direction (longitudinal direction of the bed main body 1A), and may have a reclining function in which an upper half body side or a portion of a foot side of the user H gets up. In addition, the structures of the upper frame 3 and the lower frame 5 are not limited to the above-described frame structures, and may adopt various frame structures.
In addition, the load detector 50 is not limited to the configuration in which the portion between the load cell 51 and the calculation unit 52 is electrically connected by the wire 55a and the portion between the calculation unit 52 and the transmission unit 53 is electrically connected by the wire 55b. That is, for example, the portions may be electrically connected using a wireless system. Meanwhile, a communication method between the transmission unit 53 and the reception unit 54 is not limited to the above-described a wireless communication network, and a wired communication network may be used. Moreover, in the load detector 50, the calculation unit 52 and the transmission unit 53 may be integrally formed.
In addition, in the above-described example shown in
In the example shown in
In addition, another example in which the lifting-lowering link mechanism 6 is not provided in the connection-support portion 102 is shown in
Similarly to the example shown in
Moreover, the example shown in
Moreover, as the example shown in
Meanwhile, in the present invention, the load cells 51 for detecting a load of the bed main body may be disposed in four leg portions 4 of the bed main body 1A. That is, in this kind of bed main body 1A, in general, the caster mechanism 8 for easily moving the bed main body 1A is provided in each leg portion 4. However, the load cell 51 may be interposed in the portion in which the cater mechanism 8 is accommodated or the inner portion of the caster mechanism 8.
In addition, when the lifting-lowering link mechanism 6 is not provided (for example, refer to the example shown in
Moreover, the present invention may be applied to a bed main body which does not include the lifting-lowering link mechanism and the caster mechanism. An example of this case is shown in
As described above, in the bed 1 having a load detection function to which the present invention is applied, the load cell 51 is incorporated into the site which is positioned at any location on the load transmission path extending from the bed surface-forming portion (configured by the bed plate 2 and the upper frame 3 in the above-described each embodiment) 100 to the leg portion 4 via the connection-support portion (regardless of the presence or absence of the lifting-lowering link mechanism 6 or the lower frame 5) 102, and at which a load from the bed surface-forming portion 100 side is received and the load is transmitted to the installation surface B side. Accordingly, the load cell 51 may be interposed at any of the portion between the bed surface-forming portion 100 and the connection support portion 102, the intermediate portion of the connection-support portion 102, a portion between the connection-support portion 102 and the leg portion 4, or the portion of the leg portion 4.
Moreover, in each of the above-described examples, the bed surface-forming portion 100 forming the bed surface T in the bed main body 1A is configured of the bed plate 2, and the upper frame 3 supporting the bed plate 2. However, in some cases, the bed surface-forming portion 100 may not include the upper frame 3, that is, may include only the bed plate 2. Even in this case, the present invention may be applied. For example, the load cell 51 may be interposed between the bed plate 2 and the connection-support portion (for example, column 102A) for supporting the bed plate 2.
In addition, as described above, in the case where the bed surface-forming portion 100 does not include the upper frame 3, that is, includes only the bed plate 2, the bed main body may be configured so that the lifting-lowering link mechanism 6 is provided in the connection-support portion 102 for supporting the bed plate 2 and the bed plate 2 is directly lifted, and even in this case, the present invention may be applied.
In addition, the bed main body may be configured so that the upper frame 3 functions as only a fence even when the bed surface-forming portion 100 includes the upper frame 3 and the lifting-lowering link mechanism 6 directly lifts and lowers the bed plate 2. In this case, since the upper frame 3 does not substantially support a load, the upper frame 3 is deviated from the load transmission path extending from the bed surface-forming portion 100 to the leg portion 4 via the connection-support portion 102. In addition, in this case, the load cell 51 may be interposed at any location on the load transmission path extending from the bed plate 2 to the leg portion 4 via the connection-support portion 102.
In addition, in the above descriptions, the link mechanism is applied to the mechanism for lifting and lowering the bed surface-forming portion 100. However, in some cases, a lifting-lowering mechanism which does not use a link mechanism, for example, a lifting-lowering mechanism such as a rotational screw type (screw type) which is manually or electrically driven or a jack type may be used, and the present invention may be also applied to a bed main body having a lifting-lowering mechanism other than the above-described link mechanisms.
A bed having a load detection function according to the present invention can be used in medical facilities (for example, hospitals, clinics, or the like), nursing facilities, care facilities, lodging facilities (for example, hotels, and inns), ordinary households (for example, home care or the like), or the like. In this case, by detecting a load applied to a bed, for example, it is possible to detect states (bed occupancy states) of a bed user such as having got into a bed (sleeping), having got up from a bed (rising), an in-bed position, a movement of a body (for example, turning over in a bed), or postures (for example, supine position, prone position, recumbent position, or the like). In addition, the bed-load detector according to the present invention can be incorporated into not only a new bed but also an existing bed, and even in the case where the bed-load detector is incorporated into an existing bed, the above-described functions can be utilized.
Number | Date | Country | Kind |
---|---|---|---|
2013-094606 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/061549 | 4/24/2014 | WO | 00 |