Embodiments of the invention relate to elevator systems, and more particularly, to a bedplate for mounting a machine in a machine room of an elevator system.
Vertical travel of an elevator car is typically powered by a drive assembly that may be supported within an upper portion of an elevator hoistway by a support member, such as a bedplate for example. The drive assembly generally includes a traction machine composed of a gearless motor and a traction sheave, both of which may be mounted on a surface of the bedplate. Rotational torque generated by the motor is used to drive the traction sheave. Depending on the direction of rotation of the motor the traction sheave causes tension members to lift or lower the elevator car and counterweight vertically through the hoistway.
In conventional elevator systems, the counterweight is commonly positioned directly behind the elevator car, centered with the elevator car, or to the side of the elevator car. However, older elevator system may have an asymmetrical layout, where the counterweight is not generally centered relative to the car. To modernize these older elevator systems using existing bedplate structures, a time consuming and costly relocation of the counterweight is required.
According to one embodiment of the invention, a support member configured for use in a machine room of an elevator system is provided including a base having a car end and a counterweight end. The counterweight end is arranged substantially parallel to a wall of the machine room, and the counterweight end is arranged at an angle relative to the car end. An idler sheave having a plurality of grooves is mounted to the base in an orientation generally parallel to the car end. The idler sheave is configured to rotate about a first axis of rotation. A plurality of individual sheaves is mounted to the based in a staggered configuration substantially complementary to the angle of the counterweight end relative to the car end. Each individual sheave is configured to rotate about a second axis of rotation parallel to the first axis of rotation.
Additionally or alternatively, the invention may incorporate one or more of the following features individually or in various combinations:
According to another embodiment of the invention, an elevator system is provided including a hoistway having a machine room arranged at a first end. A car is coupled with at least one car guide rail for movement in the hoistway. A counterweight is coupled with at least one counterweight guide rail for movement in a hoistway. A support member positioned within the machine room includes a base having a car end and an opposite counterweight end. The counterweight end is positioned substantially parallel to a wall of the machine room. The counterweight end is arranged at an angle relative to the car end. An idle sheave having a plurality of grooves is mounted to the base in an orientation generally parallel to the car end. The idler sheave is configured to rotate about a first axis of rotation. A plurality of individual sheaves is mounted to the base in a staggered configuration complementary to the angle of the counterweight end relative to the car end. Each individual sheave is configured to rotate about a second axis of rotation parallel to the first axis of rotation. A machine is connected to the base in an orientation substantially parallel to the car end. The machine includes a traction sheave also having a plurality of grooves. A plurality of tension members are operably coupled to the elevator car and the elevator counterweight. Each tension member is received in one of the grooves of the traction shave, one of the grooves of the idler sheave, and a groove of one of the individual sheaves.
Additionally or alternatively, the invention may incorporate one or more of the following features individually or in various combinations:
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Referring now to
The elevator system 20 also includes a counterweight 28 configured to move vertically upwardly and downwardly within the hoistway 22. The term counterweight 28 as used herein includes a counterweight assembly that may itself include various components as would be understood by a person skilled in the art. The counterweight 28 moves in a direction generally opposite the movement of the elevator car 24 as is known in conventional elevator systems. Movement of the counterweight 28 is guided by counterweight guide rails 30 mounted within the hoistway 22. In the illustrated, non-limiting embodiment, the elevator car 24 and counterweight 28 include sheave assemblies 32, 34 that cooperate with tension members 36 and a traction sheave 38 mounted to a drive machine 40 to raise and lower the elevator car 24. The drive machine 40 in this exemplary embodiment of the invention is suited and sized for use with flat tension members 36. The sheave assembly 32, shown in
The drive machine 40 of the exemplary elevator system 20 is positioned and supported at a mounting location atop a support member 50, such as a bedplate for example, in a portion of the hoistway 22 or a machine room. Although the elevator system 20 illustrated and described in herein has an overslung 2:1 roping configuration, elevator systems 20 having other roping configurations and hoistway layouts are within the scope of the invention.
Referring now to
As is known, opposed ends of the tension members 36 are terminated in the elevator system 20 at dead end hitches 70 and 72. A plurality of dead end hitches 70, each being configured to connect to a car-side 36a (
The drive machine 40, configured to rotate about an axis of rotation R, is mounted near the car end 52 of the support member 50 in an orientation substantially parallel thereto. In the illustrated, non-limiting embodiment, the drive machine 40 is mounted to the upper surface 68 of the support member 50; however the drive machine 40 may he arranged. at another location about the support member 50, such as within the hollow interior 51 thereof for example. The traction sheave 38 (
An idler sheave 76 having a plurality of grooves 78 and an axis of rotation. S is mounted to the support member 50, parallel to the drive machine 40. In the illustrated, non-limiting embodiment, the idler sheave 76 is arranged in the hollow interior 51 of the support member 50, adjacent the machine 40, such that the tension members 36 extend generally vertically between traction sheave 38 and the idler sheave 74. The idler sheave 76 and. the machine may be arranged such that a portion of the circumference of the idler sheave 76 is substantially coplanar with a portion of the circumference of the traction sheave 38. In addition, each of the plurality of grooves 78 of the idler sheave 76 is generally aligned with one of the plurality of grooves of the traction sheave 38. In the illustrated embodiment, tension members 36 are configured to contact the traction sheave 38 around half of the circumference thereof.
A plurality of substantially identical individual sheaves 80 are mounted to the support member 50 adjacent the counterweight side 58. Each individual sheave 80 has a single groove 82 configured to receive one of the plurality of tension members 36. The individual sheaves 80 may be mounted, such. as with brackets and a plate for example, to the upper surface 68 of the support member 50, or alternatively, within the hollow interior 51 of the support member 50. In one embodiment, as a result of spatial constraints, at least one of the individual sheaves 80 is mounted to the upper surface 68 of the support member 50 and at least one of the individual sheaves 80 is mounted within the hollow interior 51 of the support member 50.
Each of the individual sheaves 80 is configured to rotate about a first axis of rotation T and a second axis of rotation X (
After wrapping about a quarter of the circumference of the idler sheave 76 and a quarter of the circumference of the individual sheaves 80, the tension members 36 extend vertically to an idler sheave 34 mounted to the counterweight 28, and then back to the support member 50 to connect to dead end hitches 72. The sheaves 80 are generally aligned with grooves (not shown) on the counterweight idler sheave 34. In one embodiment, the individual sheaves 80 and the idler sheave 34 on the counterweight are arranged such that a portion of the circumference of the each sheave 80 is substantially coplanar with a portion of the circumference of the counterweight idler sheave 34. Although the support member 50 is described with a plurality of individual sheaves 80, elevator systems where only some of the sheaves 80 receive a tension member 36 are within the scope of the invention.
By arranging the counterweight side 58 of the support member 50 substantially parallel to an adjacent hoistway wall (
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/071640 | 11/25/2013 | WO | 00 |