1. Technical Field
The subject technology relates to methods and systems for creating and implementing a behavioral demand response dispatch (BDRD) model and in particular, provides methods and systems for reducing resource consumption by predetermined amounts using a BDRD model.
2. Introduction
As the demand for electricity increases worldwide, meeting the demand has become more expensive. One way to meet energy demands is to find alternative energy sources, the importance of which has become increasingly important. Efforts to reduce electricity consumption have motivated advances in energy efficiency and demand response, such as novel ways for inducing power consumption reductions.
In certain aspects, the disclosed subject matter relates to a computer-implemented method for providing behavioral demand response dispatch notifications. The computer-implemented method can include steps for receiving a reduction request, the reduction request indicating a desired amount of a consumable resource for which consumption is to be reduced, receiving a population indicator, the population indicator defining a set of consumers associated with the reduction request, and determining, using a behavioral demand response dispatch (BDRD) model, one or more target users from among the set of consumers. In some aspects, the method can further include steps for providing a targeted, personalized communication to each of the one or more target users.
In another aspect, the subject technology relates to behavioral demand response dispatch systems including one or more processors, and a computer-readable medium comprising instructions stored therein, which when executed by the processors, cause the processors to perform operations including: receiving a reduction request indicating a desired amount of a consumable resource for which consumption is to be reduced, receiving a population indicator, the population indicator defining a set of consumers associated with the reduction request, and receiving preference information associated with one or more users from among the set of consumers associated with the reduction request. In certain aspects the processors can be further configured to execute operations for providing, using a behavioral demand response dispatch (BDRD) model, a demand reduction communication to one or more target users from among the set of consumers associated with the reduction request.
In yet another aspect, the disclosed subject matter relates to a computer-readable medium comprising instructions stored therein, which when executed by one or more processor(s), cause the processor(s) to perform operations including: receiving a reduction request indicating a desired amount of a consumable resource for which consumption is to be reduced, receiving a population indicator, the population indicator defining a set of consumers associated with the reduction request and receiving preference information associated with one or more users from among the set of consumers associated with the reduction request. In some implementations, the computer- readable medium may further include instructions for providing, using a behavioral demand dispatch (BDD) model, a demand reduction communication to one or more target users.
It is understood that other configurations of the subject technology will become readily apparent to those skilled in the art from the following detailed description, wherein various configurations of the subject technology are shown and described by way of illustration. The subject technology is capable of other and different configurations and its several details are capable of modification in various respects without departing from the scope of the subject technology. Accordingly, the detailed description and drawings are to be regarded as illustrative and not restrictive in nature.
Certain features of the subject technology are set forth in the appended claims. However, the accompanying drawings, which are included to provide further understanding, illustrate disclosed aspects and together with the description serve to explain the principles of the subject technology. In the drawings:
The detailed description set forth below is intended as a description of various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology can be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a more thorough understanding of the subject technology. However, it will be clear and apparent that the subject technology is not limited to the specific details set forth herein and may be practiced without these details. In some instances, structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.
When aggregated over a large number of consuming entities (e.g., power consumers or users/customers), resource consumption reductions can be treated as a generated resource. As applied to energy consumption, predictive reductions in energy use can therefore be treated as an alternative energy resource. As used herein, Demand Response (DR) approaches include conservation techniques in which a controlling authority (such as a commodity provider/utility), is given control over resource consumption through the ability to directly control one or more consuming devices. By way of example, in some DR implementations, a utility provider is granted control over power consumption capabilities for individual customers, e.g., through the ability to down-regulate consumption of particular appliances or devices. In contrast, Behavioral Demand Response (BDR) relates to changes in the resource consumption of end-use customers that is controlled by inducing changes in customer behavior.
Traditional DR methodologies are sometimes implemented by consolidating control over power consuming appliances with centralized control stations. In such implementations, consumption is controlled at some specified resolution (e.g., on a household-by-household basis) by enabling the controlling entity to directly monitor/control the consuming appliance/s. The centralized control of power consuming appliances enables the to accurate prediction and management of consumption reduction amounts. Although DR implementations provide certain advantages (e.g., highly predictability in consumption reduction amounts), many users/consumers are reluctant to abdicate control over their power use to an outside party. In contrast, behavioral demand response techniques keeps control over power use in the hands of the users/consumers and instead encourages the users/consumers to reduce consumption. However these BDR techniques are associated with the technical limitation of not having any infrastructure able to directly measure, predict, or manage the reduction of consumption.
The subject technology addresses the limitations of DR techniques by providing ways that consumption reduction can be achieved using behavioral demand techniques. In some approaches, a behavioral demand response dispatch (BDRD) model is used to serve precise consumption reductions using individually targeted dispatch communications. That is, aspects of the subject technology can help translate voluntary individual actions or behaviors into reliable and accurate reductions in resource consumption. Although many of the following design implementations and examples are provided in the context of electric power conservation, it is understood that other applications may be realized without departing from the scope of the invention. That is, the BDRD techniques disclosed herein can be applied to the reduction of any consumable resource, without departing from the scope of the subject invention.
The behavioral demand response dispatch implementations of the subject invention allow for the receipt of a precise resource reduction request, “reduction request.” Based on the reduction request, the BDRD model can provide behavioral demand response (BDR) notifications to one or more individuals in a target population group. Although each notification may be different and customized to a particular recipient, the goal of the notification is to incentivize the recipient to reduce his/her energy consumption during a particular envelope of time. Thus, robust BDRD model implementations can accurately serve consumption reductions via behavioral change, without the need/ability to directly control power consuming devices or appliances. As discussed in further detail below, some resource reduction requests may be accompanied by an acceptable error threshold amount. Thus, if the resource reduction cannot be accurately/reliably served within an acceptable error margin, no notifications may be sent. Alternatively, depending on the accuracy of the actual resource reduction, the BDRD model may be updated (e.g., using a machine-learning process), increasing the robustness/accuracy of the BDRD model over time.
A BDRD model can be constructed, initialized and updated in various ways, using different types of information. In some aspects, a machine-learning approach is used to train/update a BDRD regression model that is configured to self-adapt as new data and examples are provided. A BDRD model can be constructed using data for known behavioral demand response scenarios, such as that collected for historic behavioral demand response trials, together with energy consumption data (e.g., provided as load curves or raw consumption data). Such data can include, but are not limited to, one or more of: power consumption amount/s, heating/cooling profiles, communication channel type/s, communication content type/s, geographic location/s and/or weather data. The BDRD model can also be further based on consumer and/or household specific demographic data for one or more resource consuming entities. Such data can include, but are not limited to: residence type (e.g., apartment, condominium, or townhome, etc.), residence size, income, stated communication preferences (e.g., mailers, email, text messages, etc.) and/or historic consumption information.
The BDRD model can be used to accurately and reliably reduce resource usage by predetermined amounts. As mentioned above, a tolerance may be specified, such that the BDRD model does not over/under reduce resource consumption, for example, beyond a predefined error threshold.
Once implemented, the BDRD model can be used to facilitate the generation and dispatch of consumer communications that can, in the aggregate, reliably and accurately reduce resource consumption (such as power consumption) for a given population or set of consuming entities (e.g., households and/or businesses). As discussed in further detail below, accurate and reliable consumption reductions can enable resource providers to more efficiently predict future demand, as well as effectively manage the need to provision supplemental power generation.
By way of example, a utility company wishing to reduce a power load on an electric grid at a peak consumption period may issue a reduction request to BDRD provider. The reduction request can indicate how much power needs to be conserved, as well as other information including a time period, and an acceptable error margin. In some implementations, “on-demand” behavioral demand response based consumption reductions can help utilities to save money by avoiding the need for emergency/auxiliary power generation. In turn, the reduction request is provided to the BDRD model so that various aspects of the dispatch can be determined. Such aspects can include: (1) an identification of relevant target customers that may be contacted, (2) a determination of available or preferred communication channels (for each target customer), and (3) a selection of notification content for each target customer.
In step 104, a population indicator is received (e.g., by a BDR dispatch system). Depending on implementation, the population indicator provides various types of information about the entities/users for which a communication dispatch is to be sent, e.g., to service the reduction request from step 102. The population indicator can include information that identifies relevant customers for which BDR dispatch communications may be sent. As such, the population indicator can be based on multiple factors, including a minimum number or arrangement of customers that may be required to satisfy the reduction request, and/or privacy considerations pertaining to one or more of those customers.
By way of example, the population indicator may provide identifying and/or contact information for only those customers that are actively enrolled in a BDR program, or that have indicated (e.g., “opted into”) an energy savings program in which they have agreed to be contacted. Alternatively, the population indicator may merely define a list of entities/consumers for which behavioral responses are necessary to achieve a target reduction consistent with the reduction request.
In step 106, a subset of target users are identified using the BDRD model. The target users are selected from a subset of users/entities identified by the population indicator provided in step 104. In some aspects, the BDRD model is used to analyze the entities/users defined by the population indicator to identify target users to whom dispatch notifications can be sent, e.g., to service the reduction request. Identification of the target users based on the BDRD model can be based on multiple factors that influence various weights of the BDRD regression model.
By way of example, the target users may be identified/selected based on one or more reliability indications suggesting that the selected target users have a relative high-likelihood of responding to a conservation dispatch communication, and/or that the respective consumption reductions of the target users are sufficient to achieve the reduction request, i.e., within an acceptable error parameter.
In step 108, a demand reduction communication is provided to the target users using the BDRD model. Depending on implementation, the BDRD model can be used to do one or more of: generate targeted demand reduction communications (e.g., for one or more specific user), select an appropriate communication channel, e.g., email, SMS, telephone dispatch, physical mailer, etc. for the respective target user, and/or determine a timing of the sending/arrival of the demand reduction communication.
The BDRD model can also be used to select from among one or more time periods in which an associated customer is provided with a dispatch notification. For example, a first customer may be provided a dispatch notification to incent them to reduce consumption at a first time (e.g., between 1-4 PM), whereas a second customer may be provided with a different dispatch notification to incent them to reduce consumption at a second time (e.g., between 4-7 PM).
In step 110, a reduction amount for the consumable resource (e.g., based on the demand reduction communication of step 108), is measured to determine the efficacy of the demand reduction communication of step 108. In some approaches, wherein the BDRD is implemented as a machine-learning regression model, measurements of consumption reductions can be used as feedback (e.g., for the underlying neural network or machine-learning algorithm).
Although the reduction amount may be essentially any amount of consumable resource for which a reduction is desired, in some aspects, the reduction amount will correspond with a resource consumption reduction (e.g., power reduction) that would be necessary to avoid over-strain on the electric grid. By preventing scenarios in which auxiliary power stations are needed, utilities may save considerable resources by achieving accurate and sufficient reductions in power consumption, for example, on peak-demand days.
In optional step 112, the BDRD model is modified/updated based on the measurements of step 110. By way of example, the measurements can be used to modify one or more approximation functions used in the BDRD model.
By way of example, historic demand response data can provide evidence as to how resource (power) consumption has been historically effected by different variables such as: communication content, communication delivery type (e.g., email, telephone outreach, SMS, mailer, etc.), weather, time of day/year, time delay duration between notification delivery and targeted demand response time, etc.
Other various types of data may also be used to create the initial BDRD model. For example, demographic information about the recipients (e.g., entities, individual or users) may be used. Although the types of demographic information can depend on information availability and the particular BDRD model implementation, examples of demographic information can include: location, income, education, housing type, solar panel ownership status, electric vehicle ownership status, etc.
In step 204, the BDRD model is further tuned or “trained” using a training data set that includes historic behavioral demand response examples. By way of example, a requested reduction amount can be provided to the BDRD model and the corresponding output (e.g., dispatch notifications) can be compared against one or more historic dispatch notifications determined to have accurately achieved the requested reduction amount, for example, within a desired error tolerance interval. In this manner, training data can be used to provide examples and feedback to the BDRD model before the model is implemented with “live” data for which resultant measurements are yet unknown. Once the BDRD model has been sufficiently trained, i.e., exposed or provided an adequate amount of training data, the model can be used to receive new requests for which resulting reduction information is unknown.
An amount by which training data may be used to update or modify the BDRD model may depend on how closely (or accurately) a particular dispatch was able to achieve the reduction request. By way of example, an actual reduction amount deviating greatly from the requested reduction may cause a more significant change to one or more weights in the BDRD model, as compared to an actual reduction amount that was somewhat close to the requested reduction.
In order to provide notification dispatch services, dispatch system 302 is coupled to various components for delivering notifications to one or more of users 308, 310 and/or 312. In the illustrated example, dispatch system 302 is coupled to network 306, which in turn is connected to each of user devices 308A and 310A, associated with users 308 and 310, respectively. To facilitate the sending of physical mailers, BDR dispatch system 302 is also communicatively coupled to mail service 309, for example for producing and/or sending physical mailer 311 to user 312. Mail system 306 can represent a service for either producing physical notifications (e.g., by printing/collating mail notifications for various customers) and/or may represent a mail carrier or delivery service.
It is understood that BDR dispatch system 302 may be implemented using one or more computers, servers and/or processing device/s connected over a network, e.g., a local area network (LAN), a wide area network (WAN), or a network of networks, such as the Internet. Similarly, network 306 can represent any geographically centric interconnection of devices, or a geographically disparate interconnection of computers, such as the Internet. As such, network 306 can include a variety of publicly and/or privately switched networks, such as cellular telephone network/s and/or publicly operated telephone service/s.
In practice, BDR dispatch system 302 can be used to issue BDR notifications in response to a reduction request, for example, that is received from a utility customer (not illustrated). As discussed above, the BDR Dispatch Model may be used to determine a variety of variables relating to the dispatch of BDR notifications. For example, BDR Dispatch Model can be used to identify users to whom notifications are to be sent, generate personalized BDR notifications for each customer, select communication channels for delivery, and transmit/send the BDR notifications.
Resource reduction requests can be accompanied by information defining a set of customers/consumers that can be contacted. Factors determining whether or not a particular customer can be sent BDR notifications can vary with implementation. For example, before a customer may be contacted, he/she may first need to give permission, or otherwise “opt-in” to a service or program in which BDR notifications are delivered as a matter of course.
Once a contactable set of customers are identified, a subset of those customers can be identified by the BDR model, for example, to determine which customers should receive BDR notifications in order to achieve the received reduction request. By way of example, there may exist a large population of customers for which notifications may be delivered, however the amount of energy to be reduced, as specified by the reduction request, may be relatively low. Consequently, only a small fraction of total contactable customers may need to be provided with BDR notifications to achieve the desired reduction. Alternatively, for a larger request a majority (or all) of the available customers may need to be contacted.
The BDR dispatch model of BDR dispatch system 302 can also be used to identify one or more communication channels through which an associated customer may be contacted. In some instances, a customer may be reachable via only one communication channel; however, some customers may be reachable via multiple channels (e.g., SMS and email, etc.). In the latter case, the BDR dispatch model can be configured to select the proper communication channel for each corresponding customer.
Communication channel determinations may be based on an associated contact quality indicator, for example, indicating that the communication channel information (e.g., physical address, email address, telephone number, and/or SMS message) is reliable, i.e., communications over which are likely to reach the intended customer. Such indications may be based on historic information indicating whether or not contact has been confirmed with the customer via a particular channel and/or whether the contact information was explicitly provided by the customer, etc. Customer contact information and/or contact information quality indicator information may be stored in the BDRD Data volume in modules 304.
As discussed above, once the BDR dispatch model has been used to identify the set of customers for which notifications are to be provided, as well as which communications channels are used for the dispatch, the model may also be used to formulate individualized BDR notification content. Such formulations can be based on historic customer use data and/or demographic data, for example, stored in a database in modules 304. Once notification content has been generated, BDRD system 302 can execute the dispatch, for example, to one or more of customers 308, 310 and/or 312, using an associated communication path.
Further to the example of
In some aspects, physical mailers may be used to provide follow up communications, and/or feedback relating to a previous BDR dispatch notification. By way of example, a dispatch notification sent via email may be later followed with a physical mailer, e.g., to provide additional information and/or incentives to the receiving customer.
In the example environment 400 of
Each of buildings 410, 422, and residence 416 can provide power usage data/statistics to Utility Co. system 406, e.g., via a meter reading 415. Alternatively, for those entities having smart meter devices (e.g., AMI devices) such as buildings 410 and 422, usage data may be received automatically by Utility Co. system 406, e.g., via network 408.
In some instances, climate/power use data may be received, for example from an entity such as residence 416, via a climate control device 418, such as a smart thermostat, or other monitoring device.
In some aspects, computing device 500 can include one or more communication components 506, such as a Wi-Fi, Bluetooth®, radio frequency, near-field communication, wired, or wireless communication system. Computing device 500 can communicate with a network, such as the Internet, and may be able to communicate with other such devices, such AMI devices and/or smart thermostat devices.
As discussed above, computing device 500 can include at least one input element 508 able to receive conventional input from a user. Input element 508 can include, for example, a push button, touch pad, touch screen, wheel, joystick, keyboard, mouse, keypad, or any other such device or element whereby a user can input a command to device 500. In some implementations, however, such a device might not include any buttons at all, and might be controlled only through a combination of visual and/or audio commands, such that a user can control device 500 without having to be in physical contact. Computing device 500 includes display element 510, such as a touch screen or liquid crystal display (LCD).
The various embodiments can be implemented in a wide variety of operating environments, which in some cases can include one or more user computers, computing devices, and/or processing devices which can be used to operate any of a number of applications. User or client devices can include any of a number of general purpose personal computers, such as desktop or laptop computers running a standard operating system, as well as cellular, wireless, and handheld devices running mobile software and capable of supporting a number of networking and messaging protocols. Such a system also can include a number of workstations running any of a variety of commercially-available operating systems and other known applications for purposes such as development and database management. These devices also can include other electronic devices, such as dummy terminals, thin-clients, gaming systems, and other devices capable of communicating via a network.
Various aspects also can be implemented as part of at least one service or Web service, such as may be part of a service-oriented architecture. Services such as Web services can communicate using any appropriate type of messaging, such as by using messages in extensible markup language (XML) format and exchanged using an appropriate protocol such as SOAP (derived from the “Simple Object Access Protocol”). Processes provided or executed by such services can be written in any appropriate language, such as the Web Services Description Language (WSDL). Using a language such as WSDL allows for functionality such as the automated generation of client-side code in various SOAP frameworks.
Most embodiments utilize at least one network that would be familiar to those skilled in the art for supporting communications using any of a variety of commercially-available protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, and CIFS. The network can be, for example, a local area network, a wide-area network, a virtual private network, the Internet, an intranet, an extranet, a public switched telephone network, an infrared network, a wireless network, and any combination thereof.
In embodiments utilizing a Web server, the Web server can run any of a variety of server or mid-tier applications, including HTTP servers, FTP servers, CGI servers, data servers, Java servers, and business map servers. The server(s) also may be capable of executing programs or scripts in response requests from user devices, such as by executing one or more Web applications that may be implemented as one or more scripts or programs written in any programming language, such as Java®, C, C# or C++, or any scripting language, such as Perl, Python, or TCL, as well as combinations thereof. The server(s) may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, and IBM®.
The environment can include a variety of data stores and other memory and storage media as discussed above. These can reside in a variety of locations, such as on a storage medium local to (and/or resident in) one or more of the computers or remote from any or all of the computers across the network. In a particular set of embodiments, the information may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers, servers, or other network devices may be stored locally and/or remotely, as appropriate. Where a system includes computerized devices, each such device can include hardware elements that may be electrically coupled via a bus, the elements including, for example, at least one central processing unit (CPU), at least one input device (e.g., a mouse, keyboard, controller, touch screen, or keypad), and at least one output device (e.g., a display device, printer, or speaker). Such a system may also include one or more storage devices, such as disk drives, optical storage devices, and solid-state storage devices such as random access memory (“RAM”) or read-only memory (“ROM”), as well as removable media devices, memory cards, flash cards, etc.
Such devices also can include a computer-readable storage media reader, a communications device (e.g., a modem, a network card (wireless or wired), an infrared communication device, etc.), and working memory as described above. The computer-readable storage media reader can be connected with, or configured to receive, a computer-readable storage medium, representing remote, local, fixed, and/or removable storage devices as well as storage media for temporarily and/or more permanently containing, storing, transmitting, and retrieving computer-readable information. The system and various devices also typically will include a number of software applications, modules, services, or other elements located within at least one working memory device, including an operating system and application programs, such as a client application or Web browser. It should be appreciated that alternate embodiments may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Storage media and computer readable media for containing code, or portions of code, can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information such as computer readable instructions, data structures, program modules, or other data, including RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the a system device. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the various embodiments.
It is understood that any specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged, or that only a portion of the illustrated steps be performed. Some of the steps may be performed simultaneously. For example, in certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.”
A phrase such as an “aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A phrase such as a configuration may refer to one or more configurations and vice versa.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/937,263, filed on Feb. 7, 2014, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4334275 | Levine | Jun 1982 | A |
4843575 | Crane | Jun 1989 | A |
5513519 | Cauger et al. | May 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5717609 | Packa et al. | Feb 1998 | A |
5855011 | Tatsuoka | Dec 1998 | A |
5873251 | Iino | Feb 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5948303 | Larson | Sep 1999 | A |
6035285 | Schlect et al. | Mar 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6295504 | Ye et al. | Sep 2001 | B1 |
6327605 | Arakawa et al. | Dec 2001 | B2 |
6701298 | Jutsen | Mar 2004 | B1 |
6732055 | Bagepalli et al. | May 2004 | B2 |
6778945 | Chassin et al. | Aug 2004 | B2 |
6785620 | Kishlock et al. | Aug 2004 | B2 |
6972660 | Montgomery, Jr. et al. | Dec 2005 | B1 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7073073 | Nonaka et al. | Jul 2006 | B1 |
7073075 | Freyman et al. | Jul 2006 | B2 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7142949 | Brewster et al. | Nov 2006 | B2 |
7149727 | Nicholls et al. | Dec 2006 | B1 |
7200468 | Ruhnke et al. | Apr 2007 | B2 |
7243044 | McCalla | Jul 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7356548 | Culp et al. | Apr 2008 | B1 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7460502 | Arima et al. | Dec 2008 | B2 |
7460899 | Almen | Dec 2008 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7561977 | Horst et al. | Jul 2009 | B2 |
7991513 | Pitt | Aug 2011 | B2 |
8065098 | Gautam | Nov 2011 | B2 |
8166047 | Cohen et al. | Apr 2012 | B1 |
8180591 | Yuen et al. | May 2012 | B2 |
8239178 | Gray et al. | Aug 2012 | B2 |
D667841 | Rai et al. | Sep 2012 | S |
8260468 | Ippolito et al. | Sep 2012 | B2 |
8275635 | Stivoric et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8348840 | Heit et al. | Jan 2013 | B2 |
8375118 | Hao et al. | Feb 2013 | B2 |
8417061 | Kennedy et al. | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8478447 | Fadell et al. | Jul 2013 | B2 |
8489245 | Carrel | Jul 2013 | B2 |
8583288 | Rossi et al. | Nov 2013 | B1 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8660813 | Curtis et al. | Feb 2014 | B2 |
8690751 | Auphan | Apr 2014 | B2 |
D707245 | Bruck et al. | Jun 2014 | S |
8751432 | Berg-Sonne et al. | Jun 2014 | B2 |
D710871 | McCormack et al. | Aug 2014 | S |
8805000 | Derby et al. | Aug 2014 | B2 |
D714335 | Cojuangco et al. | Sep 2014 | S |
D729268 | Nies et al. | May 2015 | S |
9031703 | Nakamura et al. | May 2015 | B2 |
D740847 | Yampolskiy et al. | Oct 2015 | S |
20010047290 | Petras et al. | Nov 2001 | A1 |
20020065581 | Fasca | May 2002 | A1 |
20020178047 | Or et al. | Nov 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030011486 | Ying | Jan 2003 | A1 |
20030018517 | Dull et al. | Jan 2003 | A1 |
20030023467 | Moldovan | Jan 2003 | A1 |
20030216971 | Sick et al. | Nov 2003 | A1 |
20040024717 | Sneeringer | Feb 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040140908 | Gladwin et al. | Jul 2004 | A1 |
20050257540 | Choi et al. | Nov 2005 | A1 |
20060089851 | Silby et al. | Apr 2006 | A1 |
20060103549 | Hunt et al. | May 2006 | A1 |
20060195438 | Galuten | Aug 2006 | A1 |
20060240803 | Valeriano | Oct 2006 | A1 |
20060246968 | Dyke-Wells | Nov 2006 | A1 |
20070061735 | Hoffberg et al. | Mar 2007 | A1 |
20070203860 | Golden et al. | Aug 2007 | A1 |
20070213992 | Anderson et al. | Sep 2007 | A1 |
20070255457 | Whitcomb et al. | Nov 2007 | A1 |
20070260405 | McConnell et al. | Nov 2007 | A1 |
20080027885 | van Putten et al. | Jan 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080195561 | Herzig | Aug 2008 | A1 |
20080244429 | Stading | Oct 2008 | A1 |
20080281473 | Pitt | Nov 2008 | A1 |
20080281763 | Yliniemi | Nov 2008 | A1 |
20080304112 | Matsuno | Dec 2008 | A1 |
20080306985 | Murray et al. | Dec 2008 | A1 |
20090106202 | Mizrahi | Apr 2009 | A1 |
20090106674 | Bray et al. | Apr 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090217175 | Bechtel et al. | Aug 2009 | A1 |
20090217179 | Mons et al. | Aug 2009 | A1 |
20090326726 | Ippolito et al. | Dec 2009 | A1 |
20100004790 | Harbin, III | Jan 2010 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100076835 | Silverman | Mar 2010 | A1 |
20100082174 | Weaver | Apr 2010 | A1 |
20100099954 | Dickinson et al. | Apr 2010 | A1 |
20100138363 | Batterberry et al. | Jun 2010 | A1 |
20100156665 | Krzyzanowski et al. | Jun 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100198713 | Forbes, Jr. et al. | Aug 2010 | A1 |
20100217452 | McCord et al. | Aug 2010 | A1 |
20100217549 | Galvin et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100217642 | Crubtree et al. | Aug 2010 | A1 |
20100217651 | Crabtree et al. | Aug 2010 | A1 |
20100232671 | Dam et al. | Sep 2010 | A1 |
20100241648 | Ito et al. | Sep 2010 | A1 |
20100286937 | Hedley et al. | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100292856 | Fujita | Nov 2010 | A1 |
20100324962 | Nesler et al. | Dec 2010 | A1 |
20100332373 | Crabtree et al. | Dec 2010 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110040666 | Crabtree et al. | Feb 2011 | A1 |
20110061014 | Frader-Thompson et al. | Mar 2011 | A1 |
20110063126 | Kennedy et al. | Mar 2011 | A1 |
20110106316 | Drew et al. | May 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110153102 | Tyagi et al. | Jun 2011 | A1 |
20110178842 | Rane et al. | Jul 2011 | A1 |
20110178937 | Bowman | Jul 2011 | A1 |
20110205245 | Kennedy et al. | Aug 2011 | A1 |
20110231320 | Irving | Sep 2011 | A1 |
20110251730 | Pitt | Oct 2011 | A1 |
20110251807 | Rada et al. | Oct 2011 | A1 |
20110282505 | Tomita et al. | Nov 2011 | A1 |
20110313964 | Sanchey Loureda et al. | Dec 2011 | A1 |
20120022700 | Drees | Jan 2012 | A1 |
20120036250 | Vaswani et al. | Feb 2012 | A1 |
20120053740 | Venkatakrishnan et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120078417 | Connell, II et al. | Mar 2012 | A1 |
20120078434 | Hindi | Mar 2012 | A1 |
20120084063 | Drees et al. | Apr 2012 | A1 |
20120179692 | Hsiao et al. | Jul 2012 | A1 |
20120215369 | Desai et al. | Aug 2012 | A1 |
20120216123 | Shklovskii et al. | Aug 2012 | A1 |
20120259583 | Noboa | Oct 2012 | A1 |
20120259678 | Overturf et al. | Oct 2012 | A1 |
20120290230 | Berges Gonzalez et al. | Nov 2012 | A1 |
20120310708 | Curtis et al. | Dec 2012 | A1 |
20130060531 | Burke et al. | Mar 2013 | A1 |
20130060720 | Burke | Mar 2013 | A1 |
20130073105 | Schmid | Mar 2013 | A1 |
20130097481 | Kotler et al. | Apr 2013 | A1 |
20130173064 | Fadell et al. | Jul 2013 | A1 |
20130253709 | Renggli et al. | Sep 2013 | A1 |
20130254151 | Mohagheghi | Sep 2013 | A1 |
20130261799 | Kuhlmann et al. | Oct 2013 | A1 |
20130262040 | Buckley | Oct 2013 | A1 |
20130282181 | Lu | Oct 2013 | A1 |
20130345884 | Forbes, Jr. | Dec 2013 | A1 |
20140006314 | Yu et al. | Jan 2014 | A1 |
20140019319 | Derby et al. | Jan 2014 | A1 |
20140074300 | Shilts et al. | Mar 2014 | A1 |
20140107850 | Curtis | Apr 2014 | A1 |
20140148706 | Van Treeck et al. | May 2014 | A1 |
20140163746 | Drew et al. | Jun 2014 | A1 |
20140207292 | Ramagem et al. | Jul 2014 | A1 |
20140278687 | McConky | Sep 2014 | A1 |
20140337107 | Foster | Nov 2014 | A1 |
20150012147 | Haghighat-Kashani | Jan 2015 | A1 |
20150134280 | Narayan | May 2015 | A1 |
20150227522 | O'Donnell et al. | Aug 2015 | A1 |
20150254246 | Sheth et al. | Sep 2015 | A1 |
20150267935 | Devenish et al. | Sep 2015 | A1 |
20150269664 | Davidson | Sep 2015 | A1 |
20150310019 | Royer et al. | Oct 2015 | A1 |
20150310463 | Turfboer et al. | Oct 2015 | A1 |
20150310465 | Chan et al. | Oct 2015 | A1 |
20150324819 | Lin et al. | Nov 2015 | A1 |
20150326679 | Lin et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2010315015 | Jul 2014 | AU |
2779754 | May 2011 | CA |
2832211 | Nov 2012 | CA |
3703387 | Aug 1987 | DE |
102011077522 | Dec 2012 | DE |
0003010 | Jul 1979 | EP |
2705440 | Mar 2014 | EP |
2496991 | Sep 2014 | EP |
1525656 | Sep 1978 | GB |
2238405 | May 1991 | GB |
2000-270379 | Sep 2000 | JP |
2004-233118 | Aug 2004 | JP |
2006-119931 | May 2006 | JP |
2007-133468 | May 2007 | JP |
2011-027305 | Feb 2011 | JP |
2012-080679 | Apr 2012 | JP |
2012-080681 | Apr 2012 | JP |
2013-020307 | Jan 2013 | JP |
WO 03102865 | Dec 2003 | WO |
WO 03104941 | Dec 2003 | WO |
WO 2008101248 | Aug 2008 | WO |
WO 2009085610 | Jul 2009 | WO |
WO 2011057072 | May 2011 | WO |
WO 2012112358 | Aug 2012 | WO |
WO 2012154566 | Nov 2012 | WO |
WO 2014004148 | Jan 2014 | WO |
WO 2014182656 | Nov 2014 | WO |
Entry |
---|
Steel et al., “On the web's cutting edge, anonymity in name only”, Aug. 4, 2010, Wall Street Journal. |
International Search Report and Written Opinion for PCT Application No. PCT/US2015/038692, dated Sep. 24, 2015, 13 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2010/055621, dated May 15, 2012, 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/055621, dated Dec. 23, 2010, 9 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/036539, dated Jul. 6, 2012, 8 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2012/036539, dated Nov. 21, 2013, 7 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/046126, dated Aug. 22, 2013, 9 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/046126, dated Jan. 8, 2015, 8 pages. |
International Search Report for PCT Application No. PCT/US2014/036901, dated Aug. 28, 2014, 3 pages. |
Patent Examination Report No. 1 for Australian Patent Application No. 2010315015, dated Dec. 17, 2013, 3 pages. |
Extended European Search Report for European Patent Application No. 12782569.3, dated Nov. 27, 2014, 7 pages. |
Author Unknown, “An Inconvenient Truth,” Jan. 9, 2008, 2 pages, available at http://web.archive.org/web/2008019005509/http://www.climatecrisis.net/takeaction/carbonca/. |
Author Unknown, “Calculate Your Impact,” Jul. 28, 2008, 4 pages, available at http://web.archive.org/web/20080728161614/http://green.yahoo.com/calculator/. |
Author Unknown, “Carbon Footprint Calculator: What's My Carbon Footprint?” The Nature Conservancy, Jul. 8, 2008, 8 pages, available at http://web.archive.org/web/20080708193253/http://www.nature.org/initiatives/climatechange/calculator/2008. |
Author Unknown, “CoolClimate Calculator,” May, 19,2008, 15 pages, available at http://web.archive.orgi/web/20080519220643/bie.berkeley.edu/collcale/calculations.html. |
Author Unknown, “Lifecycle Climate Footprint Calculator,” Berkeley Institute of the Environment, Nov. 23, 2007, 6 pages, available at http://web.archive.org/web/20071123115832/http://bie.berkeley.edu/calculator. |
Author Unknown, “More than just a thermostat.,” http://www.ecobee.com/, 4 pages, Jul. 16, 2013. |
Author Unknown, “Popups Climate Change: Carbon Calculator—Greenhouse Gas and Carbon Dioxide Calculator Wed Pages,” The Nature Conservancy, 5 pages, Feb. 29, 2008, available at http://web.archive.org/web/20080229072420/www.nature.org/popups/misc/art20625.html. |
Bailey, Timothy, et al., “Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers,” UCSD Technical Report CS94-351, Proceedings of the Second International Conf. on Intelligent Systems for Molecular Biology, 1994, 33 pages. |
Chen, Hanfeng, et al., “Testing for a Finite Mixture Model With Two Components,” Journal of the Royal Statistical Society, Series B, vol. 66, No. 1, 26 pages, 2004. |
De Prensa, Boletine, “TXU Energy Budget Alerts Give Consumers Control of Electricity Costs,” TXU Energy, http://www.txu.com/es/about/press, 2 pages, May 23, 2012. |
Deb, Partha, “Finite Mixture Models,” Hunter College and the Graduate Center, CUNY NBER, FMM Slides, 42 pages, Jul. 2008. |
D'Urso, M., et al., “A Simple Strategy for Life Signs Detection Via an X-Band Experimental Set-Up,” Progress in Electromagnectics Research C, vol. 9, pp. 119-129 (2009). |
Eckmann, J.P., et al., “Ergodic theory of chaos and strange attractors,” Reviews of Modern Physics, vol. 57, No. 3, Part I, pp. 617-656, Jul. 1985. |
Espinoza, Marcelo, et al., “Short-Term Load Forecasting, Profile Identification, and Customer Segmentation: A Methodology Based on Periodic Time Series,” IEEE Transactions on Power Systems, vol. 20, No. 3, pp. 1622-1630, Aug. 2005. |
Fels, Margaret F., “Prism: An Introduction,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 5-18, 1986. |
Fels, Margaret F., et al., Seasonality of Non-heating Consumption and Its effect on Prism Results, Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 139-148, 1986. |
Figueiredo, Vera, et al., “An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques,” IEEE Transactions on Power Systems, vol. 20, No. 2, pp. 596-602, May 2005. |
Fitbit® Official Site, “Flex, One & Zip Wireless Activity & Sleep Trackers,” http://www.fitbit.com/, 4 pages, Jul. 15, 2013. |
Friedman, Jerome, et al., “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Sotfware, vol. 33, Iss. 1, pp. 1-22, Jan. 2010. |
Goldberg, Miriam L., et al., “Refraction of Prism Results into Components of Saved Energy,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 169-180, 1986. |
Jansen, R.C., “Maximum Likelihood in a Generalized Linear Finite Mixture Model by Using the EM Algorithm,” Biometrics, vol. 49, pp. 227-231, Mar. 1993. |
Jawbone, “Know yourself. Live better.” https://jawbone.com/up/, 7 pages, Jul. 15, 2013. |
Leisch, Friedrich, “FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R,” Journal of Statistical Software, http://www.jstatsoft.org/, vol. 11 (8), pp. 1-18, Oct. 2004. |
Liang, Jian, et al. “Load Signature Study-Part II: Disaggregation Framework, Simulation, and Applications,” IEEE Transactions on Power Delivery, vol. 25, No. 2, pp. 561-569, Apr. 2010. |
Liang, Jian, et al., “Load Signature Study-Part I: Basic Concept, Structure, and Methodology,” IEEE Transactions on Power Delivery, vol. 25, No. 2, pp. 551-560, Apr. 2010. |
Mint.com, “Budgets you'll actually stick to,” Budgeting-Calculate and Categorize your spending, https://www.mint.com/how-it-works/budgeting/, 2 pages, Jul. 12, 2013. |
Mint.com, “We're always on alert.” Alerts for bills, fees & going over budget, https://www.mint.com/how-it-works/alerts/, 2 pages, Jul. 12, 2013. |
Morabito, Kerri, “High User Campaign,” posted at Kerri Morabito, posting date not given, © Kerri Morabito, 2015, available at <URL: http://www.kerrimorabito.com/high-user-campaign.html>. |
Mori, Hiroyuki, “State-of-the-Art Overview on Data Mining in Power Systems,” IEEE, pp. 33-37, 2006. |
Muthen, Bengt, et al., Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm, Biometrics, vol. 55, pp. 463-469, Jun. 1999. |
Nest, “The Learning Thermostat,” http://www.nest.com/, 2 pages, Jul. 15, 2013. |
Nike.com, “Nike + FuelBand. Tracks your all-day activity and helps you do more . . . ,” http://www.nike.com/us/en_us/c/nikeplus-f..uelband, 7 pages, Jul. 15, 2013. |
Rose, O. “Estimation of the Hurst Parameter of Long-Range Dependent Time Series,” University of Wuirzburg, Institute of Computer Science, Research Report Series, Report No. 137, 15 pages, Feb. 1996. |
Sawka, Michael N., et al., “Human Adaptations to Heat and Cold Stress,” RTOMP-076, 16 pages, Oct. 2001. |
Stephen, Bruce, et al. “Domestic Load Characterization Through Smart Meter Advance Stratification,” IEEE Transactions on Smart Grid, Power Engineering Letter, vol. 3, No. 3, pp. 1571-1572, Sep. 2012. |
Stoop, R., et al., “Calculation of Lyapunov exponents avoiding spurious elements,” Physica D 50, pp. 89-94, May 1991. |
Wang, Xiaozhe, et al. “Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series,” Faculty of information Technology, Department of Econometrics and Business Statistics, Monash University, pp. 1-34. |
Wang, Xiaozhe, et al., “Characteristic-Based Clustering for Time Series Data,” Data Mining and Knowledge Discovery, Springer Science & Business Media, LLC, vol. 13, pp. 335-364 (2006). |
Wehrens, Ron, et al. “Self- and Super-organizing Maps in R: The kohonen Package,” Journal of Statistical Software, vol. 21, Iss. 5, pp. 1-19, Oct. 2007. |
Wikipedia, “Akaike information criterion,” 6 pages, Aug. 17, 2012. |
244. Wikipedia, “Mixture model,” 10 pages, Oct. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20150227846 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61937263 | Feb 2014 | US |