1. Field of the Invention
This invention relates to cushioning devices for use in footwear, and to an article of footwear having a bellowed cushioning area.
2. Background Art
Athletic footwear must provide stable and comfortable support for the body while subject to various types of stress that occur during the various foot movements associated with athletic activity.
One of the problems associated with shoes has always been striking a balance between support and cushioning. Throughout the course of an average day, the feet and legs of an individual are subjected to substantial impact forces. Running, jumping, walking and even standing exert forces upon the feet and legs of an individual which can lead to soreness, fatigue, and injury.
Although the human foot possesses natural cushioning and rebounding characteristics, the foot alone is incapable of effectively overcoming many of the forces encountered during athletic activity. Unless an individual is wearing shoes which provide proper cushioning and support, the soreness and fatigue associated with athletic activity is more acute, and its onset accelerated. This results in discomfort for the wearer which diminishes the incentive for further athletic activity. Equally important, inadequately cushioned footwear can lead to injuries such as blisters, muscle, tendon and ligament damage, and bone stress fractures. Improper footwear can also lead to other ailments, including back pain. Thus, it is essential to have cushioning footwear when engaging in athletic activity. Further, any cushioning system added to athletic shoes must be inexpensive and simple to use.
Proper footwear should complement the natural functionality of the foot, in part by incorporating a sole which absorbs shocks and returns energy to the foot. However, different levels of cushioning may be desired depending on the type of activity. Accordingly, it is desirable to provide a shoe which can provide a varying level of support and cushioning in the sole of the foot.
The present invention resolves the above stated problems by providing an cushioning device comprising an air-tight, enclosed area defined by a first generally flat surface, a second generally flat surface and at least one bellowed surface. The bellowed surface collapses upon the force of the foot upon it to provides both cushioning and rebounding characteristics. In one embodiment, the cushioning device has an inflation mechanism for selectively introducing air into said enclosed area such that the level of support can be adjusted by the individual wearer. Further in one embodiment, the cushioning device is wedge-shaped with the first and second generally flat surfaces in close proximity at a first end and being separated by the bellowed surface at a second end.
The enclosed area is generally defined by an N number of sheets, including a first sheet, a second sheet, a third sheet, a fourth sheet and so on up to an Nth sheet. The first sheet is attached to the second sheet, the second sheet is attached to the third sheet, the third sheet is attached to the fourth sheet, and so on up to an Nth sheet. The first and Nth sheets are the first and second generally flat surfaces of the cushioning device while the intermediate sheets form the bellowed surface. In one embodiment, all but the first and Nth sheets are horseshoe shaped, such that the enclosed area is a single large cavity. In another embodiment, the enclosed area is made up of a plurality of chambers, wherein the first sheet and the second sheet form a first chamber, the third sheet and the forth sheet form a second chamber and so on. In this embodiment, a hole may be place in all but the first and Nth sheets such that each chamber is fluidly interconnected.
The sheets are formed from a fluid impermeable material, such as thermoplastic polyurethane.
The present invention contemplates an article of foot wear comprising a cushioning device comprising an enclosed area defined by a generally flat surface, a second generally flat surface and at least one bellowed surface.
The present invention also contemplates a process for manufacturing a bellowed cushioning device comprising providing four or more fluid impermeable sheets and attaching the sheets together to form a first generally flat surface, a second generally flat surface and a bellowed surface defining an fluid tight enclosed area.
The foregoing and other features and advantages of the present invention will be apparent from the following, more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings in which:
A preferred embodiment of the present invention is now described with reference to the Figures, in which like reference numerals are used to indicate identical or functionally similar elements. Also in the Figures, the left most digit of each reference numeral corresponds to the Figure in which the reference numeral is first used. While specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the invention. It will be apparent to a person skilled in the relevant art that this invention can also be employed in other applications.
A shoe for a left foot according to the present invention is shown generally at 100 in
It is preferred that the bellowed cushioning device 130 contain a fluid. Therefore, when pressure is placed on the bellowed cushioning device 130 the bellowed surface 132 collapses, forcing the fluid within into a smaller volume. The collapse of the bellowed surface 132 cushions the foot while the interior volume of fluid provides support for the foot. When the pressure on the bellowed cushioning device 130 is released, the bellowed surface 132 will rebound to its pre-collapsed shape and the fluid within will occupy the entire space.
The bellowed cushioning device 130 may be filled with any type of gas or liquid. Preferably, the bellowed cushioning device 130 contains air, since it is the most cost-effective fluid. Air may be contained in the bellowed cushioning device 130 at an ambient pressure or it may be pressurized. Preferably, the air within the bellowed cushioning device 130 is pressurized. The greater the pressure of the fluid in the bellowed cushioning device 130 the greater the volume that air occupies when compressed. Therefore, pressurized air will allow less collapse of the bellowed surface 132 than air at ambient pressure.
Air may be introduced into the bellowed cushioning device 130 at the time of manufacture or the device may include an inflation mechanism. Bellowed cushioning device 130 is shown inflated in
The preferred embodiment of
Another inflation mechanism, also described in U.S. Pat. No. 5,987,779, is a bulb having a hole in it on top. A finger can be placed over the hole in the bulb upon compression. Therefore, air is not permitted to escape through the hole and is forced into the bellowed cushioning device 130. When the finger is removed, ambient air is allowed to enter through the hole. U.S. Pat. No. 6,287,225 describes another type of on-board inflation mechanism suitable for the present invention. One skilled in the art can appreciate that a variety of inflation mechanisms designed for use with athletic footwear would be suitable for the present invention. Similarly, various types of one-way valves are suitable for use along with the inflation mechanism 140. Preferably, the valve will be relatively small and flat, for less bulkiness. As one possible example, U.S. Pat. No. 5,564,143 to Pekar describes a valve suitable for the present invention. The patent describes a valve formed between thermoplastic polyurethane sheets, which is particularly thin and simple to manufacture. One skilled in the art would understand that a variety of suitable valves are contemplated in the present invention and that the example above is not intended to limit the type of valves that may be used herein.
As seen in
In another embodiment, small perforations may be formed in the outside surfaces of bellowed cushioning device 130 to allow air to naturally diffuse out of bellowed cushioning device 130 when a predetermined pressure is reached. The material used to make bellowed cushioning device 130 may be of a flexible material such that these perforations will generally remain closed. If the pressure in bellowed cushioning device 130 becomes greater than a predetermined pressure, the force on the outside surfaces of bellowed cushioning device 130 will open the perforations and air will escape. When the pressure in bellowed cushioning device 130 is less than this predetermined pressure, air will escape very slowly, if at all, from these perforations.
As an alternative, deflation valve 142 may be a check valve, or blow off valve, which will open when the pressure in bellowed cushioning device 130 is at or greater than a predetermined level. In each of these situations, bellowed cushioning device 130 will not inflate over a certain amount no matter how much a user attempts to inflate the shoe.
One type of check valve has a spring holding a movable seating member against an opening in bellowed cushioning device 130. When the pressure from the air inside the bladder causes a greater pressure on the movable seating member in one direction than the spring causes in the other direction, the movable seating member moves away from the opening allowing air to escape bellowed cushioning device 130. In addition, any other check valve is appropriate for use in the present invention, as would be apparent to one skilled in the art. As an example, the VA-3497 Umbrella Check Valve (Part No. VL1682-104) made of Silicone VL1001M12 and commercially available from Vernay Laboratories, Inc. (Yellow Springs, Ohio, USA) may be a preferred check valve. Further, any check valve would be appropriate for use in any embodiment of the present invention.
In another embodiment, deflation valve 142 may be a release valve. A release valve is useful to provide the wearer with a greater degree of control in varying the level of support and cushion of bellowed cushioning device 130. One release valve may be similar to the check valve described above, but capable of being adjusted by the user. For example, the valve may have a mechanism for increasing or decreasing the tension in the spring, such that more or less air pressure, respectively, would be required to overcome the force of the spring and move the movable seating member away from the opening in bellowed cushioning device 130. Another type of release valve is a plunger type valve. This type of valve also uses a spring to hold a seating member against a hole on the inside of bellowed cushioning device 130. A plunger type device is attached to the seating member, such that when the plunger is depressed the seating member is forced away from the hole to allow air to escape. As would be apparent to one skilled in the art, any type of release valve is appropriate for use in the present invention, as would be apparent to one skilled in the art, and any release valve would be appropriate for use in any embodiment of the present invention.
Bellowed cushioning device 130 may include more than one type of deflation valve 142. For example, bellowed cushioning device 130 may include both a check valve and a release valve. Alternatively, bellowed cushioning device 130 may contain a deflation valve 142 which is a combination release valve and check valve. The deflation valve 142 and inflation mechanism 140 may be molded as a unitary single piece as shown by the crossmarks 380 and 381 in piece 352 of
Bellowed cushioning device 130 may be formed as a unitary structure. The entire structure may be blow molded or injection molded from a thermoplastic material. An injection molded or blow molded bellowed cushioning device 130 will likely be somewhat rigid. Another alternative is forming bellowed cushioning device 130 from a plurality of thin, flexible, durable thermoplastic sheets, such as a polyurethane film available from J.P. Stevens & Co., Inc., Northampton, Mass.
In one embodiment, these thermoplastic sheets form a series of fluidly connected chambers that make up bellowed cushioning device 130.
In one embodiment, the sheets are attached to each other by welding. In a most preferred embodiment, the sheets are attached to each other by radio frequency welding. However, the sheets may be attached by heat welding, ultrasonic welding or any other means for securing thermoplastic sheets together in an airtight manner.
Second sheet 352 is also attached to third sheet 353a along an outer weld line 358 to form a first chamber 471. Third sheet 353a is then attached to sheet 353b, which is identical to sheet 353a, along an inner weld line 359. A second chamber 472 is formed when the sheet 353b is attached to a fourth sheet 354 along an outer weld line 358. To form the air tight bellows-like shape of bellowed cushioning device 130, all sheets are attached together along common bottom weld line 360. Fourth sheet 354 is not attached to any other sheet to form a second generally flat surface 511 (see
One skilled in the art would understand that the distance between inner weld lines 359 and outer weld line 359 can be any length provided that they are uniform throughout each third sheet 353.
Chambers 471 and 472 of
As seen in
Another embodiment is described with respect to
As air enters bellowed cushioning device 130, its volume will increase. A natural-state volume, therefore, is initially determined by the amount of air pumped into the bellowed cushioning device 130. The natural-state volume of the shoe will provide lift to the wearer when standing. This lift may also provide a height advantage to the wearer.
As the foot exerts downward pressure on bellowed cushioning device 130, the bellowed surface 132 collapses upon itself, to cushion the foot from the force of this pressure. As this happens the air in bellowed cushioning device 130 compresses, increasing the pressure of the air and decreasing the volume of bellowed cushioning device 130 to a compressed-state volume. However, the compressed air will not allow bellowed cushioning device 130 to completely collapse, thus providing support to the foot with each step. As the foot begins to rise, the pressure of the air expands the volume of bellowed cushioning device 130 back to its natural-state. The release of energy caused by the expansion of air is returned to the foot as bellowed cushioning device 130 springs from its compressed-state volume to its natural-state volume.
Even when bellowed cushioning device 130 is not inflated, the bellowed configuration is resilient enough to provide a sufficient volume so that bellowed surface 132 will collapse with the downward pressure from a typical step. Therefore, the foot is cushioned by the resiliency of bellowed cushioning device 130 even when it only contains air at ambient pressure.
Although bellowed cushioning device 130 is shown in
Bellowed cushioning device 130 of the embodiments shown in
Bellowed cushioning device 130 may be located entirely within the interior of sole 120 or upper 110, or bellowed cushioning device 130 may have at least its bellowed surface 132 as part of the exterior of a shoe or sole 120 thereof, as shown in
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that they have been presented by way of example only, and not limitation, and various changes in form and details can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Additionally, all references cited herein, including issued U.S. patents, or any other references, are each entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited references.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art (including the contents of the references cited herein), readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one of ordinary skill in the art.
This application is a non-provisional application claiming priority to U.S. Patent Application No. 60/488,389 filed Jul. 21, 2003, the contents of which are incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60488389 | Jul 2003 | US |